Carl-Gustaf Rossby: National Severe Storms Laboratory, a Study in Mentorship Norman, Oklahoma

Total Page:16

File Type:pdf, Size:1020Kb

Carl-Gustaf Rossby: National Severe Storms Laboratory, a Study in Mentorship Norman, Oklahoma John M Lewis Carl-Gustaf Rossby: National Severe Storms Laboratory, A Study in Mentorship Norman, Oklahoma Abstract Meteorologist Carl-Gustaf Rossby is examined as a mentor. In order to evaluate him, the mentor-protege concept is discussed with the benefit of existing literature on the subject and key examples from the recent history of science. In addition to standard source material, oral histories and letters of reminiscence from approxi- mately 25 former students and associates have been used. The study indicates that Rossby expected an unusually high migh' degree of independence on the part of his proteges, but that he was HiGH exceptional in his ability to engage the proteges on an intellectual basis—to scientifically excite them on issues of importance to him. Once they were entrained, however, Rossby was not inclined to follow their work closely. He surrounded himself with a cadre of exceptional teachers who complemented his own heuristic style, and he further used his influence to establish a steady stream of first-rate visitors to the institutes. In this environment that bristled with ideas and discourse, the proteges thrived. A list of Rossby's proteges and the titles of their doctoral dissertations are also included. 1. Motivation for the study WEATHERMAN \ CARl-GUSTAF ROSSBY The process by which science is passed from one : UNIVERSITY or oKUtttflMMA \ generation to the next is a subject that has always LIBRARY I fascinated me. When I entered graduate school with the intention of preparing myself to be a research FIG. 1. A portrait of Carl-Gustaf Rossby superimposed on a scientist, I now realize that I was extremely ignorant of weather map that appeared on the cover of Time magazine, 17 the training that lay in store. I envisioned a continuation December 1956. The editor received three letters from weatherwise of classroom instruction coupled with the more chal- readers who spotted inconsistencies on the map (14 January 1957 issue). lenging job of digesting material from the seminars. The step or jump from these pragmatic tasks to "research" was, however, nebulous at best. Fortu- Because of his charismatic nature and involvement in nately, I came under the influence of a professor who international affairs, he appeared in a feature article entrained me into his scientific thought process, helped and on the cover of Time magazine shortly before his identify my strengths and weaknesses, and encour- death (see Fig. 1). aged me to become a contributing member of his There are several reasons why I have concentrated research group. This scientific socialization is an es- on Rossby. Although I did not know him personally, I sential, if not the most fundamental, component in the was stimulated by the "Rossby" stories I heard from progress of science. It is part of the more complex professors and older graduate students at the Univer- process called "mentorship." sity of Chicago in the early 1960s—the bits and pieces The subject of this study is Carl-Gustaf Arvid Rossby of information I gathered on Rossby made me desir- (1898-1957), a renowned meteorologist who founded ous of more. From an objective viewpoint, such a study research programs at the Massachusetts Institute of benefits from the large body of written information Technology, University of Chicago, and Stockholm about Rossby in the public domain. Furthermore, his University between the late 1920s and the early 1950s. scientific descendants are just now completing their careers and they are still available to provide a direct ©1992 American Meteorological Society link with Rossby's approach to mentorship. Bulletin American Meteorological Society 1425 Unauthenticated | Downloaded 10/11/21 02:13 PM UTC I will use oral histories from Rossby's progeny and undercutting, envy, smothering, and oppressive con- associates to complement the traditional source mate- trol on the part of the mentor, and for greedy demand- rials. I've tried to avoid the subtle pitfalls and traps that ing, clinging admiration, self-denying gratitude, and lurk about in the acquisition of oral history. I have done arrogant ingratitude on the part of the recipient." this by following the guide of David DeVorkin, curator Kanigel (1986) has admirably captured interactions of for the history of astronomy at the Smithsonian Institu- this type between mentors and proteges in the new tion (DeVorkin 1990). and rapidly advancing field of neuropharmacology. Although sociologist Harriet Zuckerman limited her study to the scientific elite, she identified key ingredi- 2. Mentorship ents associated with successful mentorship experi- ences (Zuckerman 1977). She emphasized that it is a. Idealized mentor-protege concept not knowledge or skills that proteges acquire from their The word mentor has its linguistic origin in Greek masters so much as a "style of thinking." It is problem mythology. In Homer's Odyssey, the valiant and clever finding as much as problem solving. In his tribute to warrior Odysseus goes to the Trojan War and leaves Niels Bohr, James Franck (1963) focuses on this transmission process when he says, "What Bohrtaught them, by example and discussion, was the ability, for which he provided the model, to think problems through ... key ingredients associated to the end.... The word 'teach' cannot really be used with successful mentorship it here, since character traits cannot really be taught; but their importance can be pointed out, thereby awaken- isn't knowledge or skills that proteges ing them in those people in whom they are, as it were, acquire from their masters so much dormant." as a "style of thinking." It is problem This ability to help the protege realize his or her finding as much as problem solving. dream and to identify the dormant talent is expressed eloquently by one of history's greatest teachers, Socrates. In Plato's dialogue, Theaetetus, Socrates discusses mentorship in the company of an older his house, family, and slaves in the care of "Mentor, mathematics teacher (Theodorus) and a teenage stu- comrade in arms of the prince, Odysseus, an old man dent (Theaetetus). Since Socrates' mother, now." This companion acts as a guardian and tutor for Phaenarete, was a midwife, it was natural for him to Odysseus' young son Telemachus. As a result of this express his ideas in terms of this profession: guardianship and training, the word mentor has gen- erally been used to make reference to any friendly My art of midwifery...is that my patients are men...and my advisor (World Book 1961). concern is...with the soul that is in travail of birth. And the highest point of my art is the power to prove by every test In its broader context, mentorship has inspired a whether the offspring of a young man's thought is a false host of researchers and writers to explore the subject. phantom or instinct with life and truth.... The many admirable The work of Hermann Hesse is especially notable, truths they bring to birth have been discovered by themselves with Demian and Magister Ludi as prime examples from within. But the delivery is heaven's work and mine. (Hesse 1965,1970). The protagonists in these novels, Emil Sinclair and Joseph Knecht, respectively, find b. Guideposts from the recent history of science morally strong, culturally elevated masters who help Niels Bohr (French and Kennedy 1985; Aaserud them escape from the confines of western materialism 1990) and Louis Agassiz (Cooper 1917; Lurie 1960) that Hesse found so repugnant. were scientists who exemplified success in mentorship. Yale psychologist Daniel Levinson and his collabo- Perfection in such a complicated task, however, is rators (Levinson et al. 1970) made an exhaustive rarely if ever achieved in view of the innumerable investigation into the mentorship process that relied variables that appear in the mentor-protege equation. on a series of case studies over a 10-yr period. They Aaserud (1990) clearly indicated that Bohr found it highlighted the role of a mentor in supporting and difficult to express his physics reasoning in the form of facilitating the "Realization of the Dream." The mentor a polished monologue and needed human sounding "fosters the young adult's development by believing in boards to work out his intellectual problems. Most him, sharing the youthful Dream and giving it his helpers regarded that role with hindsight to be one of blessing." They go on to say that, "like all love relation- life's greatest experiences. Victor Weisskopf, how- ships, the course of the mentor relationship is rarely ever, is quoted in this same book, "The experience smooth.... There is plenty of room for exploitation, was not always positive and had the effect of extin- 1426 Vol. 73, No. 9, September 1992 Unauthenticated | Downloaded 10/11/21 02:13 PM UTC guishing some of the younger physicists as indepen- a. His scientific background and approach to research dent thinkers." Zuckerman (1977) convincingly argues that the Outstanding mentors such as Bohr and Agassiz are mentor-protege chain (called "master/apprentice" in typically inspirational in the public lecture or the more her book) is germane to the progress of science. One intimate classroom. Their styles can be markedly of the most spectacular chains in the history of science different, as in the case of the slow, halting discourse is the one associated with the nineteenth-century of Bohr or the eloquent and smooth delivery of Agassiz. German chemist, Justus von Liebig. Zuckerman dis- The inspiration, however, is generally independent of cusses the development of this chain, and Holmes style and comes from the enthusiasm and excitement (1989) elaborates further. Because of the scholarly generated by the teacher, with due emphasis on work that has traced scientific progress via mentorship aesthetics and the logical foundations of the subject. chains, it is both informative and appropriate to briefly Richard Feynman, late professor of physics at the trace Rossby's scientific genealogy.1 In Bergeron's California Institute of Technology, epitomized the great reminiscence (Bergeron 1959) it becomes clear that teacher in his roles both as a lecturer and as a textbook Rossby's mentor was Vilhelm Bjerknes, the venerable writer.
Recommended publications
  • The Brainstormers the Electromagnetic Field
    COMMENT SPRING BOOKS weather forecasting, particularly in the United States. Between the birth of Bjerknes — the oldest — in 1862 and the death of Wexler, the youngest, in 1962, there passed a forma- Inventing tive and innovative Atmospheric century. As Fleming Science: reveals, their lives were Bjerknes, Rossby, linked, with Bjerknes Wexler, and the teaching Rossby and Foundations Rossby, Wexler. of Modern Meteorology In 1904, in ‘Weather JAMES RODGER forecasting as a prob- FLEMING lem in mechanics and MIT Press: 2016. physics’, Bjerknes set the agenda for applying the laws of physics to the atmosphere to predict the weather (V. Bjerknes Meteorol. Z. 21, 1–7; 1904). His vision was to use a sufficiently accurate knowledge of the state of the atmosphere and the laws that govern its evolution to forewarn people about weather to come. His motiva- METEOROLOGY tion was to make his mark in what was for him a new field of science — he began his career working with his father, a physicist at the University of Oslo, on fluid analogies for The brainstormers the electromagnetic field. He was eager, too, to provide practical advice on hazards that affected mariners, farmers and the public. Alan Thorpe enjoys a hymn to some of the founders of Fleming notes the absence of a book-length the science and institutions of weather forecasting. biography of Rossby, and I hope that this will be rectified soon. To me, he is a first among equals. As well as building institutions, he t is thanks to the efforts of an international impacts, mostly on US weather forecasting.
    [Show full text]
  • European Mathematical Society
    CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF MARTIN RAUSSEN Department of Mathematical Sciences, Aalborg University Fredrik Bajers Vej 7G DK-9220 Aalborg, Denmark e-mail: [email protected] ASSOCIATE EDITORS VASILE BERINDE Department of Mathematics, University of Baia Mare, Romania NEWSLETTER No. 52 e-mail: [email protected] KRZYSZTOF CIESIELSKI Mathematics Institute June 2004 Jagiellonian University Reymonta 4, 30-059 Kraków, Poland EMS Agenda ........................................................................................................... 2 e-mail: [email protected] STEEN MARKVORSEN Editorial by Ari Laptev ........................................................................................... 3 Department of Mathematics, Technical University of Denmark, Building 303 EMS Summer Schools.............................................................................................. 6 DK-2800 Kgs. Lyngby, Denmark EC Meeting in Helsinki ........................................................................................... 6 e-mail: [email protected] ROBIN WILSON On powers of 2 by Pawel Strzelecki ........................................................................ 7 Department of Pure Mathematics The Open University A forgotten mathematician by Robert Fokkink ..................................................... 9 Milton Keynes MK7 6AA, UK e-mail: [email protected] Quantum Cryptography by Nuno Crato ............................................................ 15 COPY EDITOR: KELLY
    [Show full text]
  • History of Frontal Concepts Tn Meteorology
    HISTORY OF FRONTAL CONCEPTS TN METEOROLOGY: THE ACCEPTANCE OF THE NORWEGIAN THEORY by Gardner Perry III Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1961 Signature of'Author . ~ . ........ Department of Humangties, May 17, 1959 Certified by . v/ .-- '-- -T * ~ . ..... Thesis Supervisor Accepted by Chairman0 0 e 0 o mmite0 0 Chairman, Departmental Committee on Theses II ACKNOWLEDGMENTS The research for and the development of this thesis could not have been nearly as complete as it is without the assistance of innumerable persons; to any that I may have momentarily forgotten, my sincerest apologies. Conversations with Professors Giorgio de Santilw lana and Huston Smith provided many helpful and stimulat- ing thoughts. Professor Frederick Sanders injected thought pro- voking and clarifying comments at precisely the correct moments. This contribution has proven invaluable. The personnel of the following libraries were most cooperative with my many requests for assistance: Human- ities Library (M.I.T.), Science Library (M.I.T.), Engineer- ing Library (M.I.T.), Gordon MacKay Library (Harvard), and the Weather Bureau Library (Suitland, Md.). Also, the American Meteorological Society and Mr. David Ludlum were helpful in suggesting sources of material. In getting through the myriad of minor technical details Professor Roy Lamson and Mrs. Blender were indis-. pensable. And finally, whatever typing that I could not find time to do my wife, Mary, has willingly done. ABSTRACT The frontal concept, as developed by the Norwegian Meteorologists, is the foundation of modern synoptic mete- orology. The Norwegian theory, when presented, was rapidly accepted by the world's meteorologists, even though its several precursors had been rejected or Ignored.
    [Show full text]
  • The History of Weather Prediction
    Haley Cica 14 September 2009 Willard Clark Intro into Integrated Science Nicholas Scaturo Paper 1 The History of Weather Prediction The article “ The origins of computer weather prediction and climate modeling” by Peter Lynch is about all of the different people who made possible the current understanding of the world weather and the ability to predict it by making giant leaps in both mathematics, hydrodynamics, and computer technology. No one man could have made this possible; it took the life’s work of many different men to make weather prediction and understanding a reality. It all started with the development of thermodynamics and hydrodynamics. Then came three men who might be considered the founding fathers of weather prediction, these men were Cleveland Abbe, Vilhelm Bjerknes, and Lewis Fry Richardson. In 1901 Cleveland Abbe wrote a paper titled “ The physical basis of long-range weather forecasting” which proposed using mathematics to predict weather. Not long after, Vilhelm Bjerknes, a Norwegian scientist introduced a plan to predict weather which included two steps: To observe the atmosphere, then calculate movement using the laws of motion. In 1922, while working at the Meteorological Office in, Lewis Fry Richardson wrote a book titled “ Weather Prediction by Numerical Process” where he criticized the then current practice of using an “ Index of Weather Maps” to predict weather by finding a previous map that resembled your current map and deducing that the weather will act in a similar manner. This method was of course highly inaccurate as Richardson points out. He then laid out a forecasting scheme which was based on Bjerknes’ program and involved an unimaginable volume of numerical computation which he realized would be practically impossible without computers.
    [Show full text]
  • Interview with Arild Stubhaug
    Interview Interview with Arild Stubhaug Conducted by Ulf Persson (Göteborg, Sweden) Arild Stubhaug, who is known among mathematicians for his bio graphy of Abel, has also produced a noted biography of Sophus Lie and is now involved Arild Stubhaug with a statue of Gösta Mittag-Leffl er in the project of writing a bi- ography of the Swedish math- language turned out to be the most interesting subject of ematician Mittag-Leffl er and the work for me. After mathematics I studied Latin, history mathematical period in which he of literature and eastern religion purely out of personal was infl uential. Following up the curiosity and desire. At that time such a combination interview, we will also have the could never be part of a regular university degree, hence privilege of giving a sample of I have never been regularly employed. Arild Stubhaug the up-coming work in a forth- coming issue of the Newsletter. But why Mittag-Leffl er? Abel is one of the greatest mathematicians ever, this is an uncontroversial fact, You are an established literary writer in Norway, and if and his short life has all the ingredients of romantic I recall correctly you already had your fi rst work pub- tragedy. Lie may not be of the same exalted stature, lished by the age of twenty-two. You have written poetry but of course the notion of “Lie”, in group-theory and as well as novels, what made you start writing biogra- algebra, is a mathematical household word. But Mit- phies of Norwegian mathematicians in recent years? tag-Leffl er? I think that any mathematician would be In recent years…, that is not exactly correct.
    [Show full text]
  • D6. 27Ri-7T Carleman's Result Was an Early Predecessor of the Beurling-Rudin Theorem [RUDI; HOF, Pp
    transactions of the american mathematical society Volume 306, Number 2, April 1988 OUTER FUNCTIONS IN FUNCTION ALGEBRAS ON THE BIDISC HÂKAN HEDENMALM ABSTRACT. Let / be a function in the bidisc algebra A(D2) whose zero set Z(f) is contained in {1} x D. We show that the closure of the ideal generated by / coincides with the ideal of functions vanishing on Z(f) if and only if f(-,a) is an outer function for all a e D, and /(l, ■) either vanishes identically or is an outer function. Similar results are obtained for a few other function algebras on D2 as well. 0. Introduction. In 1926, Torsten Carleman [CAR; GRS, §45] proved the following theorem: A function f in the disc algebra A(D), vanishing at the point 1 only, generates an ideal that is dense in the maximal ideal {g £ A(D): g(l) = 0} if and only if lim (1-Í) log |/(0I=0. R3t->1- This condition, which Carleman refers to as / having no logarithmic residue, is equivalent to / being an outer function in the sense that log\f(0)\ = ± T log\f(e*e)\d6. 27ri-7T Carleman's result was an early predecessor of the Beurling-Rudin Theorem [RUDI; HOF, pp. 82-89], which completely describes the collection of all closed ideals in A(D). For a function / in the bidisc algebra A(D2), let Z(f) = {z £ D2 : f(z) = 0} be its zero set, and denote by 1(f) the closure of the principal ideal in A(D2) generated by /. For E C D , introduce the notation 1(E) = {/ G A(D2) : / = 0 on E}.
    [Show full text]
  • Efficient Quantum Algorithm for Dissipative Nonlinear Differential
    Efficient quantum algorithm for dissipative nonlinear differential equations Jin-Peng Liu1;2;3 Herman Øie Kolden4;5 Hari K. Krovi6 Nuno F. Loureiro5 Konstantina Trivisa3;7 Andrew M. Childs1;2;8 1 Joint Center for Quantum Information and Computer Science, University of Maryland, MD 20742, USA 2 Institute for Advanced Computer Studies, University of Maryland, MD 20742, USA 3 Department of Mathematics, University of Maryland, MD 20742, USA 4 Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway 5 Plasma Science and Fusion Center, Massachusetts Institute of Technology, MA 02139, USA 6 Raytheon BBN Technologies, MA 02138, USA 7 Institute for Physical Science and Technology, University of Maryland, MD 20742, USA 8 Department of Computer Science, University of Maryland, MD 20742, USA Abstract While there has been extensive previous work on efficient quantum algorithms for linear differential equations, analogous progress for nonlinear differential equations has been severely limited due to the linearity of quantum mechanics. Despite this obstacle, we develop a quantum algorithm for initial value problems described by dissipative quadratic n-dimensional ordinary differential equations. Assuming R < 1, where R is a parameter characterizing the ratio of the nonlinearity to the linear dissipation, this algorithm has complexity T 2 poly(log T; log n)/, where T is the evolution time and is the allowed error in the output quantum state. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T . We achieve this improvement using the method of Carleman linearization, for which we give an improved convergence theorem.
    [Show full text]
  • 1999 Atmospheric Research Technical Highlights (PDF, 4.8
    Laboratory for Atmospheres PHILOSOPHY, ORGANIZATION, MAJOR ACTIVITIES, AND 1999 HIGHLIGHTS JanuaryJanuary 20002000 National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD 20771 NASA GODDARD SPACE FLIGHT CENTER Laboratory for Atmospheres PHILOSOPHY, ORGANIZATION, MAJOR ACTIVITIES, AND 1999 HIGHLIGHTS January 2000 2 1 3 4 5 6 1 Hurricane Fran as rendered on NASA 5 An example of the very realistic patterns computers using data captured by NOAA’s of cyclones and fronts that appear in surface GOES-8 satellite on September 4, 1996. wind fields generated by the 1-degree latitude by 1-degree longitude ver- 2 The Cassini Mission to Saturn and its sion of the GEOS global atmospheric model. moon, Titan. 6 October average total column ozone as 3 The Leonardo-BRDF formation of measured by the Total Ozone Mapping microsatellites viewing the Himalayas and Spectrometer (TOMS). Red and yellow indi- the Indian subcontinent. cate high overhead column amounts. Blue 4 The Goddard Lidar Observatory for Winds and purple show low values. The Antarctic (GLOW), a mobile Doppler lidar system Ozone hole appears as the very low column designed for field measurement of wind pro- amounts in the two later years. files from the surface into the stratosphere. A profile of wind speed and direction appears in the foreground, along with wind data obtained from a balloon sonde. Cover designed by Bill Welsh National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, MD 20771 January 2000 Dear Reader: Welcome to the Laboratory for Atmospheres and to our review of the Laboratory’s accomplishments for 1999! The Laboratory for Atmospheres consists of four hundred scientists, technologists, and administrative per- sonnel working within the Earth Sciences Directorate of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC).
    [Show full text]
  • Generalized Fourier Transformations: the Work of Bochner and Carleman Viewed in the Light of the Theories of Schwartz and Sato
    GENERALIZED FOURIER TRANSFORMATIONS: THE WORK OF BOCHNER AND CARLEMAN VIEWED IN THE LIGHT OF THE THEORIES OF SCHWARTZ AND SATO CHRISTER O. KISELMAN Uppsala University, P. O. Box 480, SE-751 06 Uppsala, Sweden E-mail: [email protected] Salomon Bochner (1899–1982) and Torsten Carleman (1892–1949) presented gen- eralizations of the Fourier transform of functions defined on the real axis. While Bochner’s idea was to define the Fourier transform as a (formal) derivative of high order of a function, Carleman, in his lectures in 1935, defined his Fourier trans- form as a pair of holomorphic functions and thus foreshadowed the definition of hyperfunctions. Jesper L¨utzen, in his book on the prehistory of the theory of dis- tributions, stated two problems in connection with Carleman’s generalization of the Fourier transform. In the article these problems are discussed and solved. Contents: 1. Introduction 2. Bochner 3. Streamlining Bochner’s definition 4. Carleman 5. Schwartz 6. Sato 7. On Carleman’s Fourier transformation 8. L¨utzen’s first question 9. L¨utzen’s second question 10. Conclusion References 1 Introduction In order to define in an elementary way the Fourier transform of a function we need to assume that it decays at infinity at a certain rate. Already long ago mathematicians felt a need to extend the definition to more general functions. In this paper I shall review some of the attempts in that direction: I shall explain the generalizations presented by Salomon Bochner (1899–1982) and Torsten Carleman (1892–1949) and try to put their ideas into the framework of the later theories developed by Laurent Schwartz and Mikio Sato.
    [Show full text]
  • BJERKNES – LIKE FATHER – LIKE SON by Doria B. Grimes U.S. Dept
    BJERKNES – LIKE FATHER – LIKE SON By Doria B. Grimes U.S. Dept. of Commerce National Oceanic and Atmospheric Administration Central Library [email protected] A comparison of the lives of the Bjerknes family of researchers – Carl Anton (1825- 1903), Vilhelm (1862-1951), and Jakob (1897-1975) reveal unique parallelisms that are significant to the history of meteorology and to this great family legacy of scholars. Some of these parallelisms were caused by international events, while others were by personal choice. In the following presentation, I will four notable occurrences: 1) personal decisions to postpone scholarship to support a father’s research 2) relocations due to international conflicts 3) establishment of world renowned schools of meteorology and 4) funding from the Carnegie Institute of Washington. 1. Personal Choice Both Vilhelm and Jakob willingly postponed their education and personal research interests in order to support their respective father’s scientific investigations. Vilhelm During the 1980’s and 1880’s Carl Anton Bjerknes worked in relative isolation on hydrodynamic analogies. In 1882, Carl represented Norway at the Paris International Electric Exhibition where he gained international recognition on his electromagnetic theory and analogies which was successfully demonstrated by his son, Vilhelm. Vilhelm continued to assist his father until 1889, when at the age of 27 he “had to get away … to develop his own skills and career opportunities.”1 Vilhelm earned a Norwegian Doctorate in 1892 at the age of 30. He preferred electromagnetic wave studies above his father’s interest in hydrodynamic theory. Through Carl Anton’s influence, a position was created at the Stockholm H»gskola.
    [Show full text]
  • Circa 1900) Vilhelm Bjerknes (1862–1951
    TCD 8th March, 2005 A Century of Numerical Weather Prediction: The Pre-history of Numerical The View from Limerick Weather Prediction Peter Lynch (circa 1900) [email protected] Meteorology & Climate Centre, University College Dublin Vilhelm Bjerknes, Max Margules and Lewis Fry Richardson Physics Society, Trinity College Dublin 2 Vilhelm Bjerknes (1862–1951) Vilhelm Bjerknes (1862–1951) • Born in March, 1862. • Matriculated in 1880. • Fritjøf Nansen was a fellow-student. • Paris, 1989–90. Studied under Poincar´e. • Bonn, 1890–92. Worked with Heinrich Hertz. Vilhelm Bjerknes • Worked in Stockholm, 1983–1907. • 1898: Circulation theorems published • 1904: Meteorological Manifesto • Christiania (Oslo), 1907–1912. • Leipzig, 1913–1917. • Bergen, 1917–1926. • 1919: Frontal Cyclone Model. • Oslo, 1926 — 1951. Retired 1937. Died, April 9,1951. Vilhelm Bjerknes on the quay at Bergen, painted by Rolf Groven, 1983 3 4 Bjerknes’ 1904 Manifesto Graphical v. Numerical Approach x To establish a science of meteorology, with the aim of pre- dicting future states of the atmosphere from the present Bjerknes ruled out analytical solution of the mathematical state. equations, due to their nonlinearity and complexity: “If it is true . that atmospheric states develop according to physi- cal law, then . the conditions for the rational solution of forecasting “For the solution of the problem in this problems are: form, graphical or mixed graphical and 1. An accurate knowledge of the state of the atmosphere numerical methods are appropriate, which at the initial time. methods must be derived either from the 2. An accurate knowledge of the physical laws according to partial differential equations or from the which one state .
    [Show full text]
  • Hurricane Sandy (2012), the TRMM Satellite, and the Physics of the Hot Towers
    Hurricane Sandy (2012), the TRMM Satellite, and the Physics of the Hot Towers Alan Stahler of KVMR interviews Owen Kelley of NASA Goddard — Broadcast on Tuesday, 27 November 2012, on the 15th Anniversary of the Launch of the TRMM Satellite Broadcast: 38.5 minutes duration starting at noon PST on KVMR-FM, Nevada City, California Contacts: [email protected], 530-265-9073, and [email protected], 301-614-5245 00:00 The TRMM Instruments Stahler: Owen, how does TRMM, the Tropical Rainfall Measuring Mission, see rain? Kelley: It is called the flying rain gauge1 because it has every instrument ever used from space to measure rain. It has an infrared camera that sees how high and cold the clouds are... Stahler: You can see those images from GOES. GOES is a geostationary satellite. That means it hovers over the equator and gives us our daily weather picture. Kelley: Since the 60s, we've had that view from space.2 Stahler: Because it's infrared, it is essentially giving you the temperature of the clouds, and the colder the cloud, the higher up it is in the atmosphere. This lets you see how high, how tall the clouds are... Kelley: And that matters because air doesn't get lifted from the earth's surface to high up unless there is energy being transformed into strong updrafts. So [cloud top temperature] tells you something about the physics that is going on inside the clouds. If you are out on a sunny day and a little puffy cloud comes along, you don't get worried, but if you suddenly see it get dark and a cloud shoots up and starts to cover a lot of territory, then you know it's a big storm cloud and you might not want to set out on a hike.
    [Show full text]