Middle Cambrian Protospongiid Sponges and Chancelloriids from the Precordillera of Mendoza Province, Western

Total Page:16

File Type:pdf, Size:1020Kb

Middle Cambrian Protospongiid Sponges and Chancelloriids from the Precordillera of Mendoza Province, Western See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/275386221 Middle Cambrian protospongiid sponges and chancelloriids from the Precordillera of Mendoza Province, western... Article in Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen · June 2013 DOI: 10.1127/0077-7749/2013/0329 CITATIONS READS 3 33 2 authors, including: Matilde Sylvia Beresi National Scientific and Technical Research Council 35 PUBLICATIONS 126 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Cambrian and Ordovician sponges and chancelloriids View project All content following this page was uploaded by Matilde Sylvia Beresi on 17 August 2017. The user has requested enhancement of the downloaded file. N. Jb. Geol. Paläont. Abh. 268/3, 259–274 Article Stuttgart, June 2013 Middle Cambrian protospongiid sponges and chancelloriids from the Precordillera of Mendoza Province, western Argentina Matilde S. Beresi and J. Keith Rigby † With 8 figures Beresi, M.s. & rigBy, J.K. (2013): Middle Cambrian protospongiid sponges and chancelloriids from the Precordillera of Mendoza Province, western Argentina. – N. Jb. Geol. Paläont. Abh., 268: 259– 274; Stuttgart. Abstract: A Middle Cambrian faunule from different sections of the San Isidro region, Precordillera of Mendoza Province, western Argentina, include previously unrecorded and new material. Speci- mens in the collections are simple reticulosan hexactinellids determined as Diagoniella cf. cyathi- formis, Diagoniella sp., (?) Diagoniella sp., indeterminate protospongioid spicule assemblages and several root tuft types. In addition a possible scleritome of Chancelloria cruceana Rusconi, 1954 is re-described and illustrated, and sclerites assigned to Archiasterella are here described for the first time. Key words: Middle Cambrian, protospongioid sponges, chancelloriids, San Isidro region, Mendoza Province, Precordillera Argentina. 1. Introduction of Chancelloria have been described and figured from the Middle-Upper Cambrian carbonate platform and The Porifera (sponges) are sessile filter-feeding organ- slope facies of the Argentine Precordillera (Beresi isms with an extremely effective and complex network & rigBy 1994; Beresi & Banchig 1997). A synthe- of water-conducting channels and a defined bauplan. sis of Cambrian sponge occurrences in the Argentine They are the oldest living metazoans. Their fossil re- Precordillera was given by Beresi (2003). Protospongia cord extends back to the Late Neoproterozoic although asperoense (rusconi, 1952) and Chancelloria crucea- most of these reports are ambiguous and have been na (rusconi, 1954) were the first Cambrian species de- questioned (Pisera 2006). The beginning of sponge scribed from the San Isidro region, in the Precordillera diversification during the Cambrian is relatively well of Mendoza Province. Disarticulated protospongiid known thanks to their very good preservation, from spicules and chancelloriid sclerites were subsequent- the Chengjiang fauna in China and the Burgess Shale ly reported from this area by Pernas (1964), Devizia in Canada, where even sponges with unfused spicules (1973), BorDonaro & Martos (1985), hereDia et al. occur. (1987), and Beresi & hereDia (1995). Siliceous sponge Spiculate sponges assigned to Protospongia, spicules from diverse Cambrian and Ordovician sec- Diagoniella and Kiwetinokia and the first Cambrian tions of the Precordillera were described by Mehl & anthaspidellid skeletal fragments, as well as sclerites lehnert (1997). ©2013 E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de DOI: 10.1127/0077-7749/2013/0329 0077-7749/2013/0329 $ 4.00 eschweizerbart_xxx 260 Matilde S. Beresi and J. Keith Rigby Fig. 1. Location map of the San Isidro area, Precordillera of Mendoza Province, western Argentina, showing the fossilifer- ous levels (modified from tortello & BorDonaro 1997). In the collection samples studied here, there are a san grade which have unilaminar skeletal net of hexac- few preserved semi-articulated fragile protospongiid tine derivatives spicules (stauractines, pentactines) in a sponges. These sponges represent the simple reticulo- regular ordered quadruling. The majority of the sam- eschweizerbart_xxx Middle Cambrian protospongiid sponges and chancelloriids 261 Fig 2. Schematic stratigraphic column of the Estancia San Isidro Formation (Middle Ordovician), San Isidro area, Mendoza Precordillera and sponge spicules and chancelloriid sclerites distribution. ples yield a mass of disarticulated spicules that make poriferan affinity (Bengtson & hou 2001). This view the interpretation of the relationships of these early was accepted also by some workers on sponges, e.g., fossils difficult. rigBy (1986), Mehl (1996). For detailed taxonomic Sclerites of chancelloriids are in the collections. discussion see Bengtson et al. (1990). On the contrary, Chancelloriids were sessile, benthic, radially sym- sPerling et al. (2007: 355) considered that these “Prob- metrical organisms. They range from the earliest lematica” are organized around a poriferan body plan, Cambrian to the early Late Cambrian, flourishing in namely a “benthic, sessile micro-suspension feeding shallow marine environments, often as components of organism” and they cannot be removed from the por- archaeocyathan mounds (Janussen et al. 2002). Wal- iferan grade based simply on spicule characteristics.” cott (1920) originally described chancelloriids as por- The principal coeloscleritophorans include chancel- iferans. However, others have suggested possible af- loriids, halkieriids, sachitids, and siphogonuchitids. finities with the extinct Coeloscleritophora (Bengtson The aim of this paper is to document the Middle & Missarzhevsky 1981) and rejected the presumed Cambrian protospongiid sponges, detached spicule as- eschweizerbart_xxx 262 Matilde S. Beresi and J. Keith Rigby semblages, sclerites of chancelloriids, and a possible fied as a chancelloriid (MCNAM-PI. 15671). However, the scleritome of Chancelloria cruceana discovered dur- first author recently began a detailed revision of a part of ing a review of invertebrate collections stored in the the Cambrian specimens not included in the type material. From a total of 150 revised samples there are 100 sam- “Museo de Ciencias Naturales y Antropológicas Juan ples of marlstones, calcipelites and calcarenites bearing Cornelio Moyano” (Mendoza), as part of the first au- spicules and chancelloriid sclerites together with trilobites, thor’s project searching for new fossil material from Hyolithes, and phosphatic brachiopods. The sponges repre- this interesting and promising Precordilleran area. sent 40 % of the studied samples including protospongiids and unidentified hexactinellids (28 %), root tufts (7%) and chancelloriids (5%). Approximately 40 samples bearing the 2. Geological setting best preserved spicules assemblages and chancelloriid scle- rites are described in this paper. The classic locality of San Isidro area is located at Sponge spicules and chancelloriids were examined by 32°51' S, 69°00' W, in the eastern side of the Precor- binocular microscope (Olympus SZ61); photographs were dillera of Mendoza Province, western Argentina (Fig. taken with this microscope. 1), as part of a vast carbonate platform. In this region, Chancelloriid terminology used here follows sDzuy (1969), Beresi & rigBy (1994) and ranDell et al. (2005), the Darriwilian talus olistostromic Estancia San Isidro with a few modifications. A basic chancelloriid sclerite Formation (hereDia & Beresi 2006) contains diverse possesses a central ray perpendicular to the body wall, and Cambrian-Ordovician allochthonous blocks (olisto- lateral rays lying parallel to the body surface surround the liths) (Fig. 2). The “San Isidro olistoliths” record trilo- central ray. Rays enter the central disc proximally and proj- bites of lower Middle Cambrian age (Glossopleura and ect distally. Individual sclerites are described by number of lateral rays + number of central rays (e.g., a 5+1: sclerite has Oryctocephalus zones sensu BorDonaro et al. (1993), five lateral rays and one central ray. Lateral rays are classi- together with Hyolithes sp., phosphatic brachiopods, fied by their orientation relative to the main body axis. Since Girvanella, echinoderm ossicles (?), sponge spicules the lateral ray oriented towards the apex is termed the verti- and chancelloriid sclerites from the shallow carbonate cal ray, those perpendicular to it are called the horizontal platform. The “San Martín olistoliths” (upper Middle rays. Repository: All sponges and chancelloriids treated here Cambrian) are composed of dark fine-grained mud- are deposited in the Invertebrate collection of the Juan Cor- stones and marls, which yielded late Middle Cambrian nelio Moyano Museum, at Mendoza, Argentina, under the agnostids (BorDonaro et al. 1993) and assemblages of catalogue numbers MCNAM- PI 13281 to 23059. protospongioid spicules which point to a deep-water setting (peri-platform environment). Sponges and 5. Systematic Palaeontology chancelloriids from the carbonate samples of the San Isidro and San Martín olistoliths (Middle Cambrian) Class Hexactinellida schMiDt, 1870 are described in this paper, while those fossiliferous Subclass Amphidiscophora schulze, 1887 samples from the Upper Cambrian La Cruz olistoliths Order Reticulosa reiD, 1958 are not included in this study. Superfamily Protospongioidea Finks, 1960 Family Protospongiidae hinDe, 1887
Recommended publications
  • Early Sponge Evolution: a Review and Phylogenetic Framework
    Available online at www.sciencedirect.com ScienceDirect Palaeoworld 27 (2018) 1–29 Review Early sponge evolution: A review and phylogenetic framework a,b,∗ a Joseph P. Botting , Lucy A. Muir a Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China b Department of Natural Sciences, Amgueddfa Cymru — National Museum Wales, Cathays Park, Cardiff CF10 3LP, UK Received 27 January 2017; received in revised form 12 May 2017; accepted 5 July 2017 Available online 13 July 2017 Abstract Sponges are one of the critical groups in understanding the early evolution of animals. Traditional views of these relationships are currently being challenged by molecular data, but the debate has so far made little use of recent palaeontological advances that provide an independent perspective on deep sponge evolution. This review summarises the available information, particularly where the fossil record reveals extinct character combinations that directly impinge on our understanding of high-level relationships and evolutionary origins. An evolutionary outline is proposed that includes the major early fossil groups, combining the fossil record with molecular phylogenetics. The key points are as follows. (1) Crown-group sponge classes are difficult to recognise in the fossil record, with the exception of demosponges, the origins of which are now becoming clear. (2) Hexactine spicules were present in the stem lineages of Hexactinellida, Demospongiae, Silicea and probably also Calcarea and Porifera; this spicule type is not diagnostic of hexactinellids in the fossil record. (3) Reticulosans form the stem lineage of Silicea, and probably also Porifera. (4) At least some early-branching groups possessed biminerallic spicules of silica (with axial filament) combined with an outer layer of calcite secreted within an organic sheath.
    [Show full text]
  • Skeletonized Microfossils from the Lower–Middle Cambrian Transition of the Cantabrian Mountains, Northern Spain
    Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain SÉBASTIEN CLAUSEN and J. JAVIER ÁLVARO Clausen, S. and Álvaro, J.J. 2006. Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain. Acta Palaeontologica Polonica 51 (2): 223–238. Two different assemblages of skeletonized microfossils are recorded in bioclastic shoals that cross the Lower–Middle Cambrian boundary in the Esla nappe, Cantabrian Mountains. The uppermost Lower Cambrian sedimentary rocks repre− sent a ramp with ooid−bioclastic shoals that allowed development of protected archaeocyathan−microbial reefs. The shoals yield abundant debris of tube−shelled microfossils, such as hyoliths and hyolithelminths (Torellella), and trilobites. The overlying erosive unconformity marks the disappearance of archaeocyaths and the Iberian Lower–Middle Cambrian boundary. A different assemblage occurs in the overlying glauconitic limestone associated with development of widespread low−relief bioclastic shoals. Their lowermost part is rich in hyoliths, hexactinellid, and heteractinid sponge spicules (Eiffelia), chancelloriid sclerites (at least six form species of Allonnia, Archiasterella, and Chancelloria), cambroclaves (Parazhijinites), probable eoconchariids (Cantabria labyrinthica gen. et sp. nov.), sclerites of uncertain af− finity (Holoplicatella margarita gen. et sp. nov.), echinoderm ossicles and trilobites. Although both bioclastic shoal com− plexes represent similar high−energy conditions, the unconformity at the Lower–Middle Cambrian boundary marks a drastic replacement of microfossil assemblages. This change may represent a real community replacement from hyolithelminth−phosphatic tubular shells to CES (chancelloriid−echinoderm−sponge) meadows. This replacement coin− cides with the immigration event based on trilobites previously reported across the boundary, although the partial infor− mation available from originally carbonate skeletons is also affected by taphonomic bias.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 67, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY IV No. 6.—MIDDLE CAMBRIAN SPONGIAE (With Plates 60 to 90) BY CHARLES D. WALCOTT (Publication 2580) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1920 Z$t Bovb Qgattimote (press BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY IV No. 6.—MIDDLE CAMBRIAN SPONGIAE By CHARLES D. WALCOTT (With Plates 60 to 90) CONTENTS PAGE Introduction 263 Habitat = 265 Genera and species 265 Comparison with recent sponges 267 Comparison with Metis shale sponge fauna 267 Description of species 269 Sub-Class Silicispongiae 269 Order Monactinellida Zittel (Monaxonidae Sollas) 269 Sub-Order Halichondrina Vosmaer 269 Halichondrites Dawson 269 Halichondrites elissa, new species 270 Tuponia, new genus 271 Tuponia lineata, new species 272 Tuponia bellilineata, new species 274 Tuponia flexilis, new species 275 Tuponia flexilis var. intermedia, new variety 276 Takakkawia, new genus 277 Takakkawia lineata, new species 277 Wapkia, new genus 279 Wapkia grandis, new species 279 Hazelia, new genus 281 Hazelia palmata, new species 282 Hazelia conf erta, new species 283 Hazelia delicatula, new species 284 Hazelia ? grandis, new species 285. Hazelia mammillata, new species 286' Hazelia nodulifera, new species 287 Hazelia obscura, new species 287 Corralia, new genus 288 Corralia undulata, new species 288 Sentinelia, new genus 289 Sentinelia draco, new species 290 Smithsonian Miscellaneous Collections, Vol. 67, No. 6 261 262 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 6j Family Suberitidae 291 Choia, new genus 291 Choia carteri, new species 292 Choia ridleyi, new species 294 Choia utahensis, new species 295 Choia hindei (Dawson) 295 Hamptonia, new genus 296 Hamptonia bowerbanki, new species 297 Pirania, new genus 298 Pirania muricata, new species 298 Order Hexactinellida O.
    [Show full text]
  • Discovery of Sponge Body Fossils from the Late Meishucunian (Cambrian)At Jinsha , Guizhou, South China*
    PROGRESS IN NATURAL SCIENCE Vol .15 , No .8 , August 2005 Discovery of sponge body fossils from the late Meishucunian (Cambrian)at Jinsha , Guizhou, south China* YANG Xinglian1, 2** , ZHAO Yuanlong2 , WANG Yue2 and WANG Pingli2 (1 .Nanjing Institute of Geology and Palaeontology , Chinese Academy of S ciences, Nanjing 210008 , C hina;2 .Institute of Resource and Environm ent , Guizhou University , Guiyang 550003 , China) Received December 28 , 2004 ;revised March 3 , 2005 Abstract Here w e report discovery of a sponge body fossil Triticispongia sp .from the base of low er Camb rian Niu titang Forma- tion at Jinsha , Guizhou .Stratigraphically , the fossil horizon is located below Ni-Mo ore layer with the Niutitang Biota above , and is equiv- alent to the late Meishucunian .The species is global in shape with skeletons composed of stau ractins and monaxons.Triticispongia sp .re- ported here may be the earliest sponge body fossils of Cambrian , w hich provides new information for understanding early evolution and ra- diation of sponge animals. Keywords: sponges, Cambrian, Niutitang Formation, Guizhou, China . Since abundant sponges and large bivalved first radiation of sponges should happen in the Niuti- arthropods from the low er Cambrian Niutitang For- tang time interval[ 8] . mation at Sancha , Dayong , Hunan Province were discovered[ 1, 2] , much attention has been paid to why Here we report the earliest sponge body fossils there are so many fossils preserved in the early Cam- located below Ni-M o ore layer from the late Meishu- brian black shale in this oxy gen-deficient environ- cunian pelitic silicalite , siliceous mudstone at the base ment .During recent years , m any w ell preserved mul- of the Niutitang Formation in Jinsha , Guizhou ti-phyla fossils were reported from the early Cambrian (Fig .1).Energy-dispersive X-ray (EDX) analysis [ 3—5] black shale no t only in Guizhou Province , but al- revealed that the sponge spicules are com posed of SiO 2 so in western Zhejiang and southern Anhui[ 6, 7] , south (Fig .2).
    [Show full text]
  • Paleontological Contributions
    Paleontological Contributions Number 3 A new Cambrian arthropod, Emeraldella brutoni, from Utah Martin Stein, Stephen B. Church, and Richard A. Robison September 30, 2011 Lawrence, Kansas, USA ISSN 1946-0279 paleo.ku.edu/contributions http://hdl.handle.net/1808/8086 Paleontological Contributions September 30, 2011 Number 3 A NEW CAMBRIAN ARTHROPOD, EMERALDELLA BRUTONI, FROM UTAH Martin Stein,1* Stephen B. Church,2 and Richard A. Robison1 1University of Kansas, Department of Geology, Lawrence, Kansas 66045, USA, [email protected], [email protected]; 2Sinclair Oil & Gas Company, Salt Lake City, Utah 84130, USA, [email protected] ABSTRACT Emeraldella is a rare arthropod of relatively large body size that belongs with the trilobite-like arthropods, Artiopoda. E. brutoni n. sp. from the Wheeler Formation of west-central Utah is the second species described and marks the first confirmed occurrence of Emeraldella outside the Burgess Shale of British Columbia. An articulated, flagelliform telson, similar to that of the Burgess Shale taxon Molaria, is recognized in Emeraldella. Evidence for the presence of lamellae on the exopods of Molaria is presented, supporting affinity of that taxon with Artiopoda. A close relationship between Emeraldella and Molaria is tentatively suggested, based on the morphology of tergites and telson. Keywords: Wheeler Formation, Drum Mountains, exceptional preservation, Arthropoda INTRODUCTION others (2007), Elrick and Hinnov (2007), Brett and others (2009), Halgedahl and others (2009), and Howley and Jiang (2010), The Wheeler Formation of west-central Utah is well known have provided more detailed information about its stratigraphy for its diverse and exceptionally preserved biota, which was and depositional environments. One of us (S.B.C.) collected the reviewed by Robison (1991).
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • First Skeletal Microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East)
    First skeletal microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East) OLAF ELICKI ELICKI, O., 2011:12:23. First skeletal microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East). Memoirs of the Association of Australasian Palaeontologists 42, 153-173. ISSN 0810-8889. For the first time, a Cambrian microfauna is reported from the Jordan Rift Valley. The fauna comes from low-latitude carbonates of the Numayri Member (Burj Formation, Jordan) and to a lesser degree the equivalent Nimra Member (Timna Formation, Israel). Co-occuring with trilobite, brachiopod and hyolith macrofossils, the microfauna is represented mostly by disarticulated poriferid (mostly hexactinellids) and echinoderm remains (eocrinoids and edrioasteroids). Among the hexactinellids, Rigbyella sp., many isolated triactins and tetractins, as well as a few pentactins and rare hexactins occur. Additional poriferid spicules come from heteractinids (Eiffelia araniformis [Missarzhevsky, 1981]) and polyactinellids (?Praephobetractinia). Chancelloriids (Archiasterella cf. hirundo Bengtson, 1990, Allonnia sp., Chancelloria sp., ?Ginospina sp.) are a rather rare faunal element. Micromolluscs are represented mainly by an indeterminable helcionellid. The probable octocoral spicule Microcoryne cephalata (Bengtson, 1990), torellellid and hyolithellid hyolithelminths, and a bradoriid arthropod occur as very few or single specimens. The same is the case with a probable siphogonuchitid. The occurrence of a cornulitid related microfossil may extend the stratigraphic range of this fossil group significantly. The rather low-diversity microfauna is overwhelmingly dominated by sessile epibenthic biota. The preferred feeding habit seems to have been suspension feeding and minor deposit feeding. The microfauna from the Jordan Rift Valley is typical for low-latitude carbonate environments of Cambrian Series 3 age that corresponds to the traditional late early to middle Cambrian.
    [Show full text]
  • The Sirius Passet Lagerstätte of North Greenland: a Remote Window on the Cambrian Explosion
    Downloaded from http://jgs.lyellcollection.org/ by guest on December 2, 2019 Review Focus article Journal of the Geological Society Published online July 26, 2019 https://doi.org/10.1144/jgs2019-043 | Vol. 176 | 2019 | pp. 1023–1037 The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian Explosion David A. T. Harper1,2*, Emma U. Hammarlund2,3, Timothy P. Topper4,5, Arne T. Nielsen6, Jan A. Rasmussen7, Tae-Yoon S. Park8 & M. Paul Smith9 1 Palaeoecosystems Group, Department of Earth Sciences, Durham University, Durham DH1 3LE, UK 2 Department of Geology, University of Lund, Sölvegatan 12, SE 223 62 Lund, Sweden 3 Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 2, Medicon Village 404, SE-223 81 Lund, Sweden 4 Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China 5 Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden 6 Department of Geosciences and Natural Resource Management, Copenhagen University, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark 7 Fossil and Mo-clay Museum, Museum Mors, Skarrehagevej 8, DK-7900 Nykøbing Mors, Denmark 8 Division of Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea 9 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK DATH, 0000-0003-1315-9494; EUH, 0000-0001-7625-4793; TPT, 0000-0001-6720-7418; JAR, 0000-0003-0520-9148; T-YSP, 0000-0002-8985-930X; MPS, 0000-0002-5141-1577 * Correspondence: [email protected] Abstract: The lower Cambrian Lagerstätte of Sirius Passet, Peary Land, North Greenland, is one of the oldest of the Phanerozoic exceptionally preserved biotas.
    [Show full text]
  • The Early History of the Metazoa—A Paleontologist's Viewpoint
    ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons.
    [Show full text]
  • A Review of Cambrian and Ordovician Stratigraphy in New South Wales
    Quarterly Notes Geological Survey of New South Wales September 2011 No 137 A review of Cambrian and Ordovician stratigraphy in New South Wales Abstract We present a comprehensive review of a significant interval spanning 100 million years in the geological history of New South Wales, listing all currently accepted groups, formations and constituent members of Cambrian and Ordovician age. These units are briefly described and placed in their tectonic context, with the most up-to-date biostratigraphic and isotopic age dating assembled to constrain correlations (depicted in 25 representative stratigraphic columns) across orogenic belts and terranes. Rock units previously assigned a Cambrian or Ordovician age, whose names are now obsolete, redundant or are known to be younger, are also discussed or listed in an appendix. The increasingly diverse literature on the Cambrian and Ordovician stratigraphy of the state is reflected in an extensive bibliography. This review is intended to benefit the mineral exploration industry, research workers both locally and overseas, and geological mapping generally by providing a ready reference to Cambrian and Ordovician rocks in NSW. It also indicates where current data are insufficient to resolve precise age determinations and correlations, thereby highlighting those areas that require further work before a complete synthesis of the early Palaeozoic geological history of NSW can be undertaken. Keywords: Cambrian, Ordovician, New South Wales, stratigraphy, biostratigraphy, Delamerian Orogen, Lachlan Orogen, New England Orogen, Narooma Terrane. Introduction The Cambrian and Ordovician periods span an throughout the Ordovician (Glen 2005; Glen et al. 2009). interval of almost exactly 100 million years, from Cambrian rocks are therefore, in comparison with 542–443 Ma, during which the New South Wales Ordovician strata, relatively poorly represented areally portion of the Tasmanides expanded from restricted in NSW.
    [Show full text]
  • Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park
    Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park By Linda Sue Lassiter1, Justin S. Tweet2, Frederick A. Sundberg3, John R. Foster4, and P. J. Bergman5 1Northern Arizona University Department of Biological Sciences Flagstaff, Arizona 2National Park Service 9149 79th Street S. Cottage Grove, Minnesota 55016 3Museum of Northern Arizona Research Associate Flagstaff, Arizona 4Utah Field House of Natural History State Park Museum Vernal, Utah 5Northern Arizona University Flagstaff, Arizona Introduction As impressive as the Grand Canyon is to any observer from the rim, the river, or even from space, these cliffs and slopes are much more than an array of colors above the serpentine majesty of the Colorado River. The erosive forces of the Colorado River and feeder streams took millions of years to carve more than 290 million years of Paleozoic Era rocks. These exposures of Paleozoic Era sediments constitute 85% of the almost 5,000 km2 (1,903 mi2) of the Grand Canyon National Park (GRCA) and reveal important chronologic information on marine paleoecologies of the past. This expanse of both spatial and temporal coverage is unrivaled anywhere else on our planet. While many visitors stand on the rim and peer down into the abyss of the carved canyon depths, few realize that they are also staring at the history of life from almost 520 million years ago (Ma) where the Paleozoic rocks cover the great unconformity (Karlstrom et al. 2018) to 270 Ma at the top (Sorauf and Billingsley 1991). The Paleozoic rocks visible from the South Rim Visitors Center, are mostly from marine and some fluvial sediment deposits (Figure 5-1).
    [Show full text]
  • The Palaeontology Newsletter
    The Palaeontology Newsletter Contents100 Editorial 2 Association Business 3 Annual Meeting 2019 3 Awards and Prizes AGM 2018 12 PalAss YouTube Ambassador sought 24 Association Meetings 25 News 30 From our correspondents A Palaeontologist Abroad 40 Behind the Scenes: Yorkshire Museum 44 She married a dinosaur 47 Spotlight on Diversity 52 Future meetings of other bodies 55 Meeting Reports 62 Obituary: Ralph E. Chapman 67 Grant Reports 72 Book Reviews 104 Palaeontology vol. 62 parts 1 & 2 108–109 Papers in Palaeontology vol. 5 part 1 110 Reminder: The deadline for copy for Issue no. 101 is 3rd June 2019. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 100 2 Editorial This 100th issue continues to put the “new” in Newsletter. Jo Hellawell writes about our new President Charles Wellman, and new Publicity Officer Susannah Lydon gives us her first news column. New award winners are announced, including the first ever PalAss Exceptional Lecturer (Stephan Lautenschlager). (Get your bids for Stephan’s services in now; check out pages 34 and 107.) There are also adverts – courtesy of Lucy McCobb – looking for the face of the Association’s new YouTube channel as well as a call for postgraduate volunteers to join the Association’s outreach efforts. But of course palaeontology would not be the same without the old. Behind the Scenes at the Museum returns with Sarah King’s piece on The Yorkshire Museum (York, UK). Norman MacLeod provides a comprehensive obituary of Ralph Chapman, and this issue’s palaeontologists abroad (Rebecca Bennion, Nicolás Campione and Paige dePolo) give their accounts of life in Belgium, Australia and the UK, respectively.
    [Show full text]