Abstract Volume
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Download
Dorjnamjaa et al. Mongolian Geoscientist 49 (2019) 41-49 https://doi.org/10.5564/mgs.v0i49.1226 Mongolian Geoscientist Review paper New scientific direction of the bacterial paleontology in Mongolia: an essence of investigation * Dorj Dorjnamjaa , Gundsambuu Altanshagai, Batkhuyag Enkhbaatar Department of Paleontology, Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia *Corresponding author. Email: [email protected] ARTICLE INFO ABSTRACT Article history: We review the initial development of Bacterial Paleontology in Mongolia and Received 10 September 2019 present some electron microscopic images of fossil bacteria in different stages of Accepted 9 October 2019 preservation in sedimentary rocks. Indeed bacterial paleontology is one the youngest branches of paleontology. It has began in the end of 20th century and has developed rapidly in recent years. The main tasks of bacterial paleontology are detailed investigation of fossil microorganisms, in particular their morphology and sizes, conditions of burial and products of habitation that are reflected in lithological and geochemical features of rocks. Bacterial paleontology deals with fossil materials and is useful in analysis of the genesis of sedimentary rocks, and sedimentary mineral resources including oil and gas. The traditional paleontology is especially significant for evolution theory, biostratigraphy, biogeography and paleoecology; however bacterial paleontology is an essential first of all for sedimentology and for theories sedimentary ore genesis or biometallogeny Keywords: microfossils, phosphorite, sedimentary rocks, lagerstatten, biometallogeny INTRODUCTION all the microorganisms had lived and propagated Bacteria or microbes preserved well as fossils in without breakdowns. Bacterial paleontological various rocks, especially in sedimentary rocks data accompanied by the data on the first origin alike natural substances. -
Autor: T-I Ij Ii 11 Iil U Li U Titel: H I] Il !J Band: I~ Ii Fj Ii [I S
;; ij Il 1I U it li ii H 13 u Autor: t-i ij ii 11 iil u li U Titel: H I] Il !J Band: I~ Ii fj iI [i s. 181 - 201. li 13 U li U It ii I,i Ii U t-i il il ii 11 il 11 li Il il lil U Ii il 1I l~ li Ii vörhanuen 1I 1,1 ti U n u 1I ii It 11 u I1 U li 1.1 it jj u ii u n 11 ii 11 H.l l,I II n il ii li ii ii U Ii U li 11 I] II !l !:! 1'1 I1 6 ?e> O$-15k~w'rl~1i. 180 T.A. Platonova& L. V. Kulangieva: Marine £noplido- ZOOSYST. ROSSICA Val. 3 @ Zoological Institute, Sl.Peter~ 1995 pharynx aod proposal of two new families. Zool. Tchesunov, A. V. 1991. On the slruclure of thc cephaJic Zhurn., 69(8): 5-17. (In Russian), culiclc in frcc-living ncmatodcsof thc famHy Linho- - Tchesunov, A.V. 1990b. Long-hairy Xyalida (Ncma- mocidae (Nemaloda. Chromadoria, Siphonolaimo- loda, Chromadoria, Monhystcrida) in thc Whitc ideaL Zoo!. Zhurn., 70(5): 21-27. (In RussianL The phylogeny and classification ofthe phylum Sca: ncw spccics, new combinations arid s~atusof Ih~ genus Trichotheristus. Zoo!. Zhurn., 69(10): 5-19. Reeei."ed 27 Mo)! /99J (In R!JssianL Cephalorhyncha A.V. Adrianov & V.V. Malakhov Adrianov, A.V. & Malakhoy, V. V. 1995. Thc phylogcny and c1assification of thc phylum Cephalorhyncha. Zoosystematica Rossica, 3(2),' 1994: 181-201. The phylum Ccphalorhyncha is a laxon including headproboscis worms: Priapulida, Loricifera, Kinorhyncha, Nematomorpha. -
Skeletonized Microfossils from the Lower–Middle Cambrian Transition of the Cantabrian Mountains, Northern Spain
Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain SÉBASTIEN CLAUSEN and J. JAVIER ÁLVARO Clausen, S. and Álvaro, J.J. 2006. Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain. Acta Palaeontologica Polonica 51 (2): 223–238. Two different assemblages of skeletonized microfossils are recorded in bioclastic shoals that cross the Lower–Middle Cambrian boundary in the Esla nappe, Cantabrian Mountains. The uppermost Lower Cambrian sedimentary rocks repre− sent a ramp with ooid−bioclastic shoals that allowed development of protected archaeocyathan−microbial reefs. The shoals yield abundant debris of tube−shelled microfossils, such as hyoliths and hyolithelminths (Torellella), and trilobites. The overlying erosive unconformity marks the disappearance of archaeocyaths and the Iberian Lower–Middle Cambrian boundary. A different assemblage occurs in the overlying glauconitic limestone associated with development of widespread low−relief bioclastic shoals. Their lowermost part is rich in hyoliths, hexactinellid, and heteractinid sponge spicules (Eiffelia), chancelloriid sclerites (at least six form species of Allonnia, Archiasterella, and Chancelloria), cambroclaves (Parazhijinites), probable eoconchariids (Cantabria labyrinthica gen. et sp. nov.), sclerites of uncertain af− finity (Holoplicatella margarita gen. et sp. nov.), echinoderm ossicles and trilobites. Although both bioclastic shoal com− plexes represent similar high−energy conditions, the unconformity at the Lower–Middle Cambrian boundary marks a drastic replacement of microfossil assemblages. This change may represent a real community replacement from hyolithelminth−phosphatic tubular shells to CES (chancelloriid−echinoderm−sponge) meadows. This replacement coin− cides with the immigration event based on trilobites previously reported across the boundary, although the partial infor− mation available from originally carbonate skeletons is also affected by taphonomic bias. -
Palaeobiology of the Early Ediacaran Shuurgat Formation, Zavkhan Terrane, South-Western Mongolia
Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs To cite this article: Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs (2016): Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2016.1259272 To link to this article: http://dx.doi.org/10.1080/14772019.2016.1259272 Published online: 20 Dec 2016. Submit your article to this journal Article views: 48 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [Harvard Library] Date: 31 January 2017, At: 11:48 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1259272 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson a*,SeanMcMahona,UyangaBoldb, Francis A. Macdonaldc and Derek E. G. Briggsa,d aDepartment of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, 06511, USA; bDepartment of Earth Science and Astronomy, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; cDepartment of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts, 02138, USA; dPeabody Museum of Natural History, Yale University, 170 Whitney Avenue, New Haven, Connecticut, 06511, USA (Received 4 June 2016; accepted 27 September 2016) Early diagenetic chert nodules and small phosphatic clasts in carbonates from the early Ediacaran Shuurgat Formation on the Zavkhan Terrane of south-western Mongolia preserve diverse microfossil communities. -
Available Generic Names for Trilobites
AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 67, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY IV No. 6.—MIDDLE CAMBRIAN SPONGIAE (With Plates 60 to 90) BY CHARLES D. WALCOTT (Publication 2580) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1920 Z$t Bovb Qgattimote (press BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY IV No. 6.—MIDDLE CAMBRIAN SPONGIAE By CHARLES D. WALCOTT (With Plates 60 to 90) CONTENTS PAGE Introduction 263 Habitat = 265 Genera and species 265 Comparison with recent sponges 267 Comparison with Metis shale sponge fauna 267 Description of species 269 Sub-Class Silicispongiae 269 Order Monactinellida Zittel (Monaxonidae Sollas) 269 Sub-Order Halichondrina Vosmaer 269 Halichondrites Dawson 269 Halichondrites elissa, new species 270 Tuponia, new genus 271 Tuponia lineata, new species 272 Tuponia bellilineata, new species 274 Tuponia flexilis, new species 275 Tuponia flexilis var. intermedia, new variety 276 Takakkawia, new genus 277 Takakkawia lineata, new species 277 Wapkia, new genus 279 Wapkia grandis, new species 279 Hazelia, new genus 281 Hazelia palmata, new species 282 Hazelia conf erta, new species 283 Hazelia delicatula, new species 284 Hazelia ? grandis, new species 285. Hazelia mammillata, new species 286' Hazelia nodulifera, new species 287 Hazelia obscura, new species 287 Corralia, new genus 288 Corralia undulata, new species 288 Sentinelia, new genus 289 Sentinelia draco, new species 290 Smithsonian Miscellaneous Collections, Vol. 67, No. 6 261 262 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 6j Family Suberitidae 291 Choia, new genus 291 Choia carteri, new species 292 Choia ridleyi, new species 294 Choia utahensis, new species 295 Choia hindei (Dawson) 295 Hamptonia, new genus 296 Hamptonia bowerbanki, new species 297 Pirania, new genus 298 Pirania muricata, new species 298 Order Hexactinellida O. -
British Columbia Geological Survey Geological Fieldwork 1990
GEOLOGY OF THE MOUNT BRUSSILOF MAGNESITE DEPOSIT, SOUTHEASTERN BRITISH COLUMBIA (825/12, 13) By George J. Simandl and Kirk D. Hancock KEYWOKLIS: Industrial minerals, rconomic geology. mag- nesitr. Cathedral Formation. Middle Cambrian. dolumitiz- tion, porosity. base metal association, deposit model. INTRODUCTION Magnesite (M&O,) is an induswial mineral that can bc converted into either caustic, fused or dead-burned magne- sia. Dead-burned magnesia is used mainly in the manufac- ture of refractory products; caustic magnesia is used in treatment of water, in animal feedstuffs, fertilizers. magne- sia cements, insulating boards and wood-pulp processing, in chemicals and pharmaceuticals and us a curing agent in rubber (Coope. 19X7). Magnesium metal is produced either from magnesite or from caustic mapnesia. In the short-term future. production of dead-burned mag- nesia is cxpectcd to remain constant. however, demand for caustic magnesia is increasing (Duncan, IYYO). With the increasing trend toward the use of high-perfomxmce “mag- carbon” refractories. future demand for fused magnesia looks promising. A number of magnesite deposits are known in British Columbia (Grzant, 19X7). the most important of these is the Mount Brussilof orebody. It is hosted by dolomites of the TECTONIC SETTING Middle Cambrian Cathedral Formation. The Mount Brussilof deposit is located in the Forekm3 rectonostratiEnlphic belt and within the “Kicking Horse HISTORY Rim”, as defined by Aitken (1971, 1989). It is situated east of a Cambrian bathymetric feature commonly referred to as The Mount Brussilof deposit was discovered during the Cathedral escarpment (Fritz. 1990: Aitken xnd regional mapping by the Geological Survey of Canada Mcllreath, 19X4, 1990). -
Abstract Volume
https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E. -
The Extent of the Sirius Passet Lagerstätte (Early Cambrian) of North Greenland
The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland JOHN S. PEEL & JON R. INESON Ancillary localities for the Sirius Passet biota (early Cambrian; Cambrian Series 2, Stage 3) are described from the im- mediate vicinity of the main locality on the southern side of Sirius Passet, north-western Peary Land, central North Greenland, where slope mudstones of the Transitional Buen Formation abut against the margin of the Portfjeld Forma- tion carbonate platform. Whilst this geological relationship may extend over more than 500 km east–west across North Greenland, known exposures of the sediments yielding the lagerstätte are restricted to a 1 km long window at the south-western end of Sirius Passet. • Keywords: Early Cambrian, Greenland, lagerstätte. PEEL, J.S. & INESON, J.R. The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Bulletin of Geosciences 86(3), 535–543 (4 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received March 24, 2011; accepted in revised form July 8, 2011; published online July 28, 2011; issued September 30, 2011. John S. Peel, Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75 236 Uppsala, Sweden; [email protected] • Jon R. Ineson, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; [email protected] Almost all of the fossils described from the early Cambrian The first fragmentary fossils from the Sirius Passet Sirius Passet Lagerstätte of northern Peary Land, North Lagerstätte (GGU collection 313035) were collected by Greenland, were collected from a single, west-facing talus A.K. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 53, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.-0LENELLUS AND OTHER GENERA OF THE MESONACID/E With Twenty-Two Plates CHARLES D. WALCOTT (Publication 1934) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 12, 1910 Zl^i £orb (gaitimovt (pnee BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.—OLENELLUS AND OTHER GENERA OF THE MESONACID^ By CHARLES D. WALCOTT (With Twenty-Two Plates) CONTENTS PAGE Introduction 233 Future work 234 Acknowledgments 234 Order Opisthoparia Beecher 235 Family Mesonacidas Walcott 236 Observations—Development 236 Cephalon 236 Eye 239 Facial sutures 242 Anterior glabellar lobe 242 Hypostoma 243 Thorax 244 Nevadia stage 244 Mesonacis stage 244 Elliptocephala stage 244 Holmia stage 244 Piedeumias stage 245 Olenellus stage 245 Peachella 245 Olenelloides ; 245 Pygidium 245 Delimitation of genera 246 Nevadia 246 Mesonacis 246 Elliptocephala 247 Callavia 247 Holmia 247 Wanneria 248 P.'edeumias 248 Olenellus 248 Peachella 248 Olenelloides 248 Development of Mesonacidas 249 Mesonacidas and Paradoxinas 250 Stratigraphic position of the genera and species 250 Abrupt appearance of the Mesonacidse 252 Geographic distribution 252 Transition from the Mesonacidse to the Paradoxinse 253 Smithsonian Miscellaneous Collections, Vol. 53, No. 6 232 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 53 Description of genera and species 256 Nevadia, new genus 256 weeksi, new species 257 Mcsonacis Walcott 261 niickwitzi (Schmidt) 262 torelli (Moberg) 264 vermontana -
1158 Peel.Vp
A new arthropod from the lower Cambrian Sirius Passet Fossil-Lagerstätte of North Greenland JOHN S. PEEL & MARTIN STEIN Aaveqaspis inesoni gen. et sp. nov., is described from the lower Cambrian Sirius Passet Fossil-Lagerstätte of Peary Land, North Greenland. It has a semicircular head shield and a thorax with 5 tergites. The tail shield carries 2 pairs of spines, the most anterior of which is enormous and dominates the trunk. A. inesoni lacks any preserved trace of eyes, as is also the case with several other Sirius Passet arthropods, suggesting that the fossils accumulated in deeper water than the contemporaneous Chengjiang Fossil-Lagerstätte of China or the middle Cambrian Burgess Shale assemblages of British Columbia. • Key words: Cambrian, arthropod, Sirius Passet, Lagerstätte, Greenland. PEEL,J.S.&STEIN, M. 2009. A new arthropod from the lower Cambrian Sirius Passet Fossil-Lagerstätte of North Greenland. Bulletin of Geosciences 84(4), 625–630 (3 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received July 30, 2009; accepted in revised form September 22, 2009; published online October 9, 2009; is- sued December 31, 2009. John S. Peel, Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75 236 Uppsala, Sweden; [email protected] • Martin Stein, Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden; [email protected] Black laminated mudstones and siltstones juxtaposed with biomineralized hard parts is the trilobite Buenellus against the prominent buried escarpment of an eroded Blaker, 1988 which, although restricted to this locality carbonate platform in Peary Land, North Greenland (Blaker & Peel 1997), indicates the Nevadella Zone of the (Fig. -
AND MICROFOSSIL RECORD of the CAMBRIAN PRIAPULID OTTOIA by MARTIN R
[Palaeontology, 2015, pp. 1–17] THE MACRO- AND MICROFOSSIL RECORD OF THE CAMBRIAN PRIAPULID OTTOIA by MARTIN R. SMITH1,THOMASH.P.HARVEY2 and NICHOLAS J. BUTTERFIELD1 1Department of Earth Sciences, University of Cambridge, Cambridge, UK; e-mails: [email protected], [email protected] 2Department of Geology, University of Leicester, Leicester, UK ; e-mail: [email protected] Typescript received 11 December 2014; accepted in revised form 31 March 2015 Abstract: The stem-group priapulid Ottoia Walcott, 1911, Ottoiid priapulids represented an important component of is the most abundant worm in the mid-Cambrian Burgess Cambrian ecosystems: they occur in a range of lithologies Shale, but has not been unambiguously demonstrated else- and thrived in shallow water as well as in the deep-water where. High-resolution electron and optical microscopy of setting of the Burgess Shale. A wider survey of Burgess macroscopic Burgess Shale specimens reveals the detailed Shale macrofossils reveals specific characters that diagnose anatomy of its robust hooks, spines and pharyngeal teeth, priapulid sclerites more generally, establishing the affinity establishing the presence of two species: Ottoia prolifica of a wide range of Small Carbonaceous Fossils and demon- Walcott, 1911, and Ottoia tricuspida sp. nov. Direct com- strating the prominent role of priapulids in Cambrian parison of these sclerotized elements with a suite of shale- seas. hosted mid-to-late Cambrian microfossils extends the range of ottoiid priapulids throughout the middle to upper Key words: Burgess Shale, Small Carbonaceous Fossils, pri- Cambrian strata of the Western Canada Sedimentary Basin. apulid diversity, Selkirkia. S TEM-group priapulid worms were a conspicuous compo- in analyses of its ecological and evolutionary significance nent of level-bottom Cambrian faunas (Conway Morris (Wills 1998; Bruton 2001; Vannier 2012; Wills et al.