Pollen Morphology of the Genus Rhododendron (Ericaceae) in Korea

Total Page:16

File Type:pdf, Size:1020Kb

Pollen Morphology of the Genus Rhododendron (Ericaceae) in Korea Jour. Korean For. Soc. Vol. 99, No. 5, pp. 663~672 (2010) JOURNAL OF KOREAN FOREST SOCIETY Pollen Morphology of the Genus Rhododendron (Ericaceae) in Korea Joonmoh Park1 and Unsook Song2* 1Jeollabuk-Do Forest Environment Research Inst., Jinan 567-883, Korea 2Inst. of Agricultural Science & Technology, Chonbuk Nat. University, Jeonju, 561-756, Korea Abstract : The pollen morphology of eleven species and three forms of the genus Rhododendron (Ericaceae) in Korea was examined using light, scanning electron and transmission electron microscopy. The pollen grains are grouped in permanent tetrahedral tetrads; viscin threads are present on the tetrads. The hexacolporate tetrads are of tricolporate monads whereby the apertures form in pairs at six points in the tetrad. The exine sculpture pattern is rugulate, scabrate or verrucate on mesocolpium but psilate, rugulate or microscabrate around the aperture on apocolpium. The exine of Korean Rhododendron pollen consists of tectum, columella, foot layer and endexine. The surface of viscin threads is more or less smooth. The threads are sometimes tangled together and occasionally divided into strands. Six types are recognized based on the pollen morphology. The types are: (1) Micranthum-type (rugulate mesocolpium and psilate apocolpium), (2) Tomentosum-type (rugulate mesocolpium and apocolpium), (3) Aureum-type (scabrate mesocolpium and rugulate apocolpium), (4) Brachycarpum-type (scabrate mesocolpium and rod shaped-microscabrate apocolpium), (5) Schlippenbachii- type (scabrate mesocolpium and round-microscabrate apocolpium) and (6) Weyrichii-type (verrucate mesocolpium). Key words : pollen type, Rhododendron, tetrahedral tetrad, viscin thread Introduction Lee, 1988) tried to solve those problems, there has been no taxonomic progress because of almost the same char- The Rhododendron L., one of the largest genera in the acters and methods used in the studies. Ericaceae, belongs to the Rhododendroideae (Rehder, The pollen of Rhododendron is a tetrahedral tetrad com- 1940; Leach, 1961; Cronquist, 1981). It consists of about bined from four monads while pollen grains of other plants 1,200 taxa, and widespread in temperate, cool, subtrop- are commonly monads. The size of tetrads and exine strat- ical regions and in tropical mountains except for Africa ification vary according to authors (Wodehouse, 1935; Erdt- and South America regions (Leach, 1961; Bailey and man, 1952; 1969; Yang, 1952; Waha, 1982; Praglowski and Bailey, 1978; Galle, 1995). There are 22 native Rhodo- Grafstrom, 1985). The genus has been palynologically attrac- dendron taxa in Korea, and their distribution ranges tive because of viscin threads (Bowers, 1930; Ikuse, 1956; from very low areas along seacoasts to ca. 2,000 m high Oldfield, 1959; Ueno, 1978; Foss, 1988; Keri and Zetter, mountains (Lee, 1989). 1992; Crepet, 1996; Abraham-Peskir et al., 1997). Since R. schlippenbachii Maxim. was firstly documented Pollen morphology of Korean Rhododendron has been in 1870 as a Korean Rhododendron species (Nakai, 1919), reported (Lee, 1979; Jang, 1986; Choo, 1987) briefly there have been a number of fragmentary systematic using light microscopy and scanning electron micros- studies on the genus in Korea. Nakai (1919) reported 12 copy. There have not been any transmission electron species and three varieties of the Korean Rhododendron. microscopic studies on Korean Rhododendron, yet. However, some scientific names and morphological Therefore, this study aimed to examine eleven species characters proposed by Nakai were turned out not to be and three forms of Korean Rhododendron using light, correct. The number range of Rhododendron taxa has scanning electron and transmission electron microscopy, been 17 to 23 by different scientists (Nakai, 1952; Chung, and further contribute to the systematics of Korean 1957; Lee, 1989; Lee, 1996a; Lee, 1996b). Though recent Rhododendron. systematic studies (Choo, 1987; Hwang, 1987; 1999; Materials and Methods *Corresponding author E-mail: [email protected] Pollen material from 11 species, 3 forms of Korean 663 664 Jour. Korean For. Soc. Vol. 99, No. 5 (2010) microtome (Rechert-Jung, Type 701704). The exine struc- ture and viscin thread were examined by a JEM-1200EXII at 1,500-10,000X (2,000 accelerating voltage). Terminology Terminology follows Punt et al. (2007). Results 1. Pollen morphology of Korean Rhododendron taxa The pollen grains of the genus are compound grains. Four monads are combined into a tetrahedral tetrad hav- ing viscin threads. Each pollen grain of the tetrad is iso- polar and radially symmetrical, either circular (Figure 2c) or Figure 1. Schematic representation of tetrad tetrahedral somewhat rounded triangular (Figure 3c) in polar view, grains of Rhododendron indicating the positions of pollen and oblate to oblate spheroidal in equatorial view. The characters measured (TD=tetrad diameter, DT=diameter tetrads are rhomboidal. The hexacolporate tetrads are of of top grain, AD=apocolpium diameter, PL=polar axis length, EW=equatorial width, CL=colpus length and CW=colpus tricolporate monads whereby the apertures form in pairs width). at six points in the tetrad. There are 12 lalongate endoapertures in the tetrad. The mesocolpium is sca- brate, rugulate or verrucate while the aperture area is Rhododendron was collected throughout the country microscabrate, rugulate or psilate (Figures 2-4). from March 1998 to July 1999. Pollen of five species; R. The exine of the Korean Rhododendron pollen con- aureum, R. confertissimum, R. dauricum, R. tomentosum sists of tectum, columella, foot layer and endexine. The and R. redowskianum in North Korea was extracted from exine thickness shows a tendency to get thicker toward the specimens in Chonbuk Nat. University and Seoul apertures. The tectum is thicker than the columella. And Nat. University herbaria (Specimens Investigated). The the foot layer is thicker than the endexine. The tectum is pollen specimens are preserved in the herbarium of the either eutectate or tectate-perforate according to taxa. The Department of Forest Resources, Chonbuk Nat. Univer- columella is of either rod shape (Figure 2f) or granule sity, Korea. (Figure 3d). The foot layer is the thickest while endexine For LM, the pollen grains were acetolysed and mounted is the thinnest with some irregular grooves (Figure 2b). in glycerol jelly (Erdtman, 1952; Song and Kim, 1999). The viscin threads are almost smooth. Most of them An Olympus B201 was used to measure seven charac- are long and drooping or tangled. Sometimes, the threads ters; tetrad diameter (TD), diameter of top grain (DT), are branched into two strands and some are very short. apocolpium diameter (AD), monad polar axis length (PL), monad equatorial width (EW), colpus length (CL) 2. Pollen grain size and colpus width (CW) at 400X (Figure 1). Fifty tetrads The diameter range of tetrads is 30.0 to 70.0 µm which per taxon were investigated. are medium to big pollen grains according to Erdtman For SEM, acetolysed pollen grains were dehydrated in (1952). Rhododendron tomentosum is the smallest with ethanol series and transferred onto aluminum stubs (Har- the mean size of 32.0 µm while R. schlippenbachii f. ley and Daly, 1995; Harley et al., 2005). The pollen sus- albiflorum is the biggest (60.9 µm). The pollen size of pensions on the stubs were covered with an inverted monads and tetrads varies according to taxa (Table 1). glass beaker and left to evaporate at room temperature. The pollen grains were coated with ca. 90 nm of plat- 3. Aperture inum (Cressington Sputter Coater Q108). The examina- The monads are isopolar. The hexacolporate tetrads tion of pollen grains was conducted with a JEOL JSM- are of tricolporate monads whereby the apertures form in 5600 LV at 650-10,000X (2,000 accelerating voltage). pairs at six points in the tetrad. There are 12 lalongate For TEM, pollen was fixed in 2% of glutaraldehyde endoapertures. Rhododendron tomentosum has the short- solution for 90 minutes and in 1% of OsO4 solution for est aperture length (14.1 µm) while R. weyrichii has the another 90 minutes, and dehydrated using propylene oxide. longest (21.5 µm) one. For the aperture diameter, R. tomen- Then the pollen was embedded in epoxy resin for two tosum has the shortest (2.30 µm) one while R. yedoense hours and the ultra-thin sectioning was done by an Ultra- f. poukhanense has the longest (3.40 µm) one (Table 1). Pollen morphology of the genus Rhododendron (Ericaceae) in Korea 665 Figure 2. LM, SEM and TEM images of pollen types I (a-b) and II (c-f). a-b. R. micranthum. (a) a tetrad showing rugulate mesocolpium but psilate apocolpium and aperture areas (SEM), (b) a part of exine on mesocolpium showing tectum (arrow, te), columellae (arrow, co), foot layer (arrow, fl) and endexine (arrow, en) (TEM). c, e, f. R. redowskianum. (c) a high focused tetrahedral tetrad (LM), (e) a rugulate tetrad (SEM), and (f) a part of exine showing tectum (te), columellae (co), foot layer (fl) and very thin endexine (en) (TEM). d. R. tomentosum of detail of apertural region (SEM). 4. Equatorial and polar view rounded triangular in polar view. The every pollen grain in equatorial view is oblate to oblate spheroidal (P/E=0.68-0.95) but the mean P/E of 5. Exine pattern each taxon shows that the pollen is suboblate. The tet- The exine sculpture pattern is rugulate, scabrate or verru- rads are rounded lozenge shaped in equatorial view. They cate on mesocolpium but psilate, rugulate or microsca- are radially symmetrical and either circular or somewhat brate around the aperture and on apocolpium. Rhododendron 666 Jour. Korean For. Soc. Vol. 99, No. 5 (2010) Table 1. Pollen morphological data of the genus Rhododendron in Korea by LM. TD DT AD PL EW Aperture Taxon P/E (µm) (µm) (µm) (µm) (µm) CL(µm) CW(µm) Rhododendron aureum 53.0±2.9 35.2±2.6 20.1±1.3 31.3±2.4 36.5±1.4 0.86±0.04 17.1±1.8 2.80±0.26 R.
Recommended publications
  • Pollination Ecology and Evolution of Epacrids
    Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes.
    [Show full text]
  • And East Siberian Rhododendron (Rh. Adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry
    molecules Article Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry Mayya Razgonova 1,2,* , Alexander Zakharenko 1,2 , Sezai Ercisli 3 , Vasily Grudev 4 and Kirill Golokhvast 1,2,5 1 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia; [email protected] (A.Z.); [email protected] (K.G.) 2 SEC Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia 3 Agricultural Faculty, Department of Horticulture, Ataturk University, 25240 Erzurum, Turkey; [email protected] 4 Far Eastern Investment and Export Agency, 123112 Moscow, Russia; [email protected] 5 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia * Correspondence: [email protected] Academic Editors: Seung Hwan Yang and Satyajit Sarker Received: 29 June 2020; Accepted: 12 August 2020; Published: 19 August 2020 Abstract: Rhododendron sichotense Pojark. and Rhododendron adamsii Rheder have been actively used in ethnomedicine in Mongolia, China and Buryatia (Russia) for centuries, as an antioxidant, immunomodulating, anti-inflammatory, vitality-restoring agent. These plants contain various phenolic compounds and fatty acids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) extraction has been shown to be the method of choice for the recovery of these naturally occurring compounds. Operative parameters and working conditions have been optimized by experimenting with different pressures (300–400 bar), temperatures (50–60 ◦C) and CO2 flow rates (50 mL/min) with 1% ethanol as co-solvent. The extraction time varied from 60 to 70 min.
    [Show full text]
  • Aromas from Quebec. IV. Chemical Composition of the Essential Oil of Ledum Groenlandicum: a Review
    American Journal of Essential Oils and Natural Products 2015; 2 (3): 06-11 ISSN: 2321 9114 Aromas from Quebec. IV. Chemical composition of the AJEONP 2015; 2 (3): 06-11 © 2015 AkiNik Publications essential oil of Ledum groenlandicum: A review Received: 23-02-2015 Accepted: 14-04-2015 Guy Collin Guy Collin Université du Québec à Abstract Chicoutimi, 555 boul. de Limonene and -selinene are the most important compounds of the essential oil of the aerial parts of l’Université, Saguenay (Que), Ledum groenlandicum. However there are important variations either in the composition or in the Canada G7H 2B1 relative percentages between the twelve analyzed commercial samples. Uncommon or rare compounds such as hydroperoxides and p-mentha-1,8(10)-dien-9-yl esters are observed in one and two samples, respectively. Germacrone, a reputed compound of this oil, is not ever present in the samples. Germacrone epoxides observed in a sample containing almost 30% of germacrone could be the results of an oxidation process. Short comparison with the composition of the Ledumpalustre oil is made. In both cases, equally large variation in compositionis observed. Keywords: Ledum groenlandicum, Rhododendron groenlandicum, essential oil composition, limonene, -selinene, germacrone 1. Introduction Rhododendron groenlandicum (Oeder) Kron and Judd (old: Ledum groenlandicum Retzius, Labrador tea), Ericaeae,is present on a large northern part of the North American continent from Greenland to Alaska. It is found in most parts of the territory of Canada and in several states in the north of the United States.It is a subshrub to erect port top tens of centimeters but can, in good growing conditions, form bushes up to 1.50 m in height.
    [Show full text]
  • Resemblances and Disparities of Two Biotas Ziwei Zhang
    Resemblances and Disparities of two Biotas A Comparison Study of Vascular Plant Biodiversity of two Locations in Uppsala and Beijing Ziwei Zhang Degree project in biology, Bachelor of science, 2013 Examensarbete i biologi 15 hp till kandidatexamen, 2013 Institutionen för biologisk grundutbildning och Avd för växtekologi och evolution, Uppsala universitet Handledare: Håkan Rydin Abstract This paper focuses on the flora distribution and difference in biodiversities of two chosen locations in Uppsala and Beijing, through inventorial and analytic methods. The factors that may cause the difference were also discussed from theoretical perspectives. Inventories of vascular plant species were carried out in two locations of the two cities. The collected species data were then grouped into families as well as life forms; and were compared with each other as well as with the statistics from the entire species pool in the chosen city. Both resemblances and disparities were found. The statistical analyses with Minitab supported the hypotheses that the floral compositions of these two locations differ to a great extent. Various factors such as climate, grazing, human impacts, historical reasons, precipitation, humidity and evolution, can account for the disparities. 2 Contents ABSTRACT ............................................................................................................................................................ 2 1. INTRODUCTION .............................................................................................................................................
    [Show full text]
  • 12. RHODODENDRON Linnaeus, Sp. Pl. 1: 392. 1753
    Flora of China 14: 260–455. 2005. 12. RHODODENDRON Linnaeus, Sp. Pl. 1: 392. 1753. 杜鹃属 du juan shu Fang Mingyuan (方明渊), Fang Ruizheng (方瑞征 Fang Rhui-cheng), He Mingyou (何明友), Hu Linzhen (胡琳贞 Hu Ling-cheng), Yang Hanbi (杨汉碧 Yang Han-pi); David F. Chamberlain Shrubs or trees, terrestrial or epiphytic, with various hairs, and/or with peltate scales or glabrous, indumentum sometimes detersile (the hairs tangled and coming away as a layer). Leaves evergreen, deciduous or semideciduous, alternate, sometimes clustered at stem apex; margin entire, very rarely crenulate, abaxial indumentum sometimes with a pellicle (a thin skinlike layer on the surface). Inflorescence a raceme or corymb, mostly terminal, sometimes lateral, few- to many-flowered, sometimes reduced to a single flower. Calyx persistent, 5–8-lobed, sometimes reduced to a rim, lobes minute and triangular to large and conspicuous. Corolla funnelform, campanulate, tubular, rotate or hypocrateriform, regular or slightly zygomorphic, 5(–8)-lobed, lobes imbricate in bud. Stamens 5–10(–27), inserted at base of corolla, usually declinate; filaments linear to filiform, glabrous or pilose towards base; anthers without appendages, opening by terminal or oblique pores. Disk usually thick, 5–10(–14)-lobed. Ovary 5(–18)-locular, with hairs and/or scales, rarely glabrous. Style straight or declinate to deflexed, persistent; stigma capitate-discoid, crenate to lobed. Capsule cylindrical, coniform, or ovoid, sometimes curved, dehiscent from top, septicidal; valves thick or thin, straight or twisted. Seeds very numerous, minute, fusiform, always winged, or both ends with appendages or thread-like tails. About 1000 species: Asia, Europe, North America, two species in Australia; 571 species (409 endemic) in China.
    [Show full text]
  • Further Chromosome Studies on Vascular Plant Species from Sakhalin, Moneran and Kurile Islands
    Title Further Chromosome Studies on Vascular Plant Species from Sakhalin, Moneran and Kurile Islands Author(s) Probatova, Nina S.; Barkalov, Vyacheslav Yu.; Rudyka, Elvira G.; Pavlova, Nonna S. Citation 北海道大学総合博物館研究報告, 3, 93-110 Issue Date 2006-03 Doc URL http://hdl.handle.net/2115/47822 Type bulletin (article) Note Biodiversity and Biogeography of the Kuril Islands and Sakhalin vol.2 File Information v. 2-4.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Biodiversity and Biogeography of the Kuril Islands and Sakhalin (2006) 2, 93-110. Further Chromosome Studies on Vascular Plant Species from Sakhalin, Moneran and Kurile Islands Nina S. Probatova, Vyacheslav Yu. Barkalov, Elvira G. Rudyka and Nonna S. Pavlova Laboratory of Vascular Plants, Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia e-mail: [email protected] Abstract Chromosome numbers for 86 vascular plant species of 69 genera and 32 families, from Sakhalin, Moneron and Kurile Islands, are given. The chromosome numbers are reported here for the first time for the following 17 species: Arabis japonica, Artemisia punctigera, Calamagrostis urelytra, Callianthemum sachalinense, Cerastium sugawarae, Dianthus sachalinensis, Lonicera tolmatchevii, Melandrium sachalinense, Myosotis sachalinensis, Oxytropis austrosachalinensis, O. helenae, O. sachalinensis, Polemonium schizanthum, Ranunculus hultenii, Rubus pseudochamaemorus, Scrophularia grayana and Senecio dubitabilis. In addition, for Alchemilla gracilis, Allium ochotense, Caltha fistulosa, Chrysosplenium kamtschaticum, Draba cinerea, Echinochioa occidentalis, Erysimum pallasii, Sagina crassicaulis and Stellaria fenzlii, new cytotypes were revealed. At present, in Sakhalin, Moneron and the Kurile Islands chromosome numbers have been counted for 536 species. Chromosome numbers are now known for 48 species from Moneron.
    [Show full text]
  • The Red List of Rhododendrons
    The Red List of Rhododendrons Douglas Gibbs, David Chamberlain and George Argent BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) is a membership organization linking botanic gardens in over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. Published by Botanic Gardens Conservation FAUNA & FLORA INTERNATIONAL (FFI) , founded in 1903 and the International, Richmond, UK world’s oldest international conservation organization, acts to conserve © 2011 Botanic Gardens Conservation International threatened species and ecosystems worldwide, choosing solutions that are sustainable, are based on sound science and take account of ISBN: 978-1-905164-35-6 human needs. Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. THE GLOBAL TREES CAMPAIGN is undertaken through a partnership between FFI and BGCI, working with a wide range of other The designation of geographical entities in this document and the presentation of the material do not organizations around the world, to save the world’s most threatened trees imply any expression on the part of the authors and the habitats in which they grow through the provision of information, or Botanic Gardens Conservation International delivery of conservation action and support for sustainable use.
    [Show full text]
  • Expected and Unexpected Evolution of Plant
    Hein and Knoop BMC Evolutionary Biology (2018) 18:85 https://doi.org/10.1186/s12862-018-1203-4 RESEARCH ARTICLE Open Access Expected and unexpected evolution of plant RNA editing factors CLB19, CRR28 and RARE1: retention of CLB19 despite a phylogenetically deep loss of its two known editing targets in Poaceae Anke Hein and Volker Knoop* Abstract Background: C-to-U RNA editing in mitochondria and chloroplasts and the nuclear-encoded, RNA-binding PPR proteins acting as editing factors present a wide field of co-evolution between the different genetic systems in a plant cell. Recent studies on chloroplast editing factors RARE1 and CRR28 addressing one or two chloroplast editing sites, respectively, found them strictly conserved among 65 flowering plants as long as one of their RNA editing targets remained present. Results: Extending the earlier sampling to 117 angiosperms with high-quality genome or transcriptome data, we find more evidence confirming previous conclusions but now also identify cases for expected evolutionary transition states such as retention of RARE1 despite loss of its editing target or the degeneration of CRR28 truncating its carboxyterminal DYW domain. The extended angiosperm set was now used to explore CLB19, an “E+”-type PPR editing factor targeting two chloroplast editing sites, rpoAeU200SF and clpPeU559HY, in Arabidopsis thaliana. We found CLB19 consistently conserved if one of the two targets was retained and three independent losses of CLB19 after elimination of both targets. The Ericales show independent regains of the ancestrally lost clpPeU559HY editing, further explaining why multiple-target editing factors are lost much more rarely than single target factors like RARE1.
    [Show full text]
  • VRS Indumentum Feb 2005
    I ndumentum Newsletter of the Vancouver Rhododendron Society March Meeting: Thursday, March 17, 7:30 p.m., Floral Hall at VanDusen Botanical Garden Program: Allenye Cook, His Years at Sunningdale Plant Sales: Diane Kehoe, Harold Fearing Vancouver Chapter 2005 Executive Allenye Cook and His Years At Sunningdale Nursery President: Louis Peterson Only the very newest members of the VRS will not know Alleyne Cook, a founding Vice President: Lothar Mischke VRS member and premier authority on rhododendrons in our area. Alleyne has Past President: Ron Knight kindly agreed to act as a substitute for Hank Helm, originally scheduled to speak on Treasurer: Barbara Sherman March 17th, who has had to cancel. Secretary: Bill Spohn Alleyne was born in New Zealand, where he did his first apprenticeship with Membership: Carole Conlin the famous nursery Duncan and Davies. He then went on for an advanced apprenticeship at another even more famous nursery, Sunningdale, in England. The Newsletter: Todd & Shannon Major experience at Sunningdale was evidently a determining Program: Louis Peterson & Carole Conlin one in Alleyne’s career, leading him first to the Royston Directors: Nursery on Vancouver Island, which was something of Gerard Picher - 3 years a pioneer in the area in raising species rhododendrons, John Priestman - 2 years and owned by Ted and Mary Grieg, then to Stanley Bill Herbst - 1 year Park where an unusually enlightened Parks Director, Bill Livingston, recognized his extraordinary capabilities. Education: Louis Peterson As a result Alleyne created the Ted and Mary Grieg Advertising: Tony Clayton Rhododendron Garden, which we all know and value R. ‘Mrs.
    [Show full text]
  • Tracheophyte of Xiao Hinggan Ling in China: an Updated Checklist
    Biodiversity Data Journal 7: e32306 doi: 10.3897/BDJ.7.e32306 Taxonomic Paper Tracheophyte of Xiao Hinggan Ling in China: an updated checklist Hongfeng Wang‡§, Xueyun Dong , Yi Liu|,¶, Keping Ma | ‡ School of Forestry, Northeast Forestry University, Harbin, China § School of Food Engineering Harbin University, Harbin, China | State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China ¶ University of Chinese Academy of Sciences, Beijing, China Corresponding author: Hongfeng Wang ([email protected]) Academic editor: Daniele Cicuzza Received: 10 Dec 2018 | Accepted: 03 Mar 2019 | Published: 27 Mar 2019 Citation: Wang H, Dong X, Liu Y, Ma K (2019) Tracheophyte of Xiao Hinggan Ling in China: an updated checklist. Biodiversity Data Journal 7: e32306. https://doi.org/10.3897/BDJ.7.e32306 Abstract Background This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years. This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years.
    [Show full text]
  • VOLUME 2 Part 1
    Rhododendrons International The Online Journal of the World’s Rhododendron Organizations V i s re n y ro as d en od Rhod Azaleas Volume 2, 2018. Part 1 - Rhododendron Organisations in Countries with American Rhododendron Society Chapters Rhododendrons International 1 Contents ii From the Editor, GLEN JAMIESON 1 Part 1. Rhododendron Organisations in Countries with American Rhododendron Society Chapters 1 Canadian Rhododendron Societies, GLEN JAMIESON AND NICK YARMOSHUK 41 Danish Rhododendron Society, JENS HOLGER HANSEN 45 Rhododendron Society in Finland, KRISTIAN THEQVIST 57 Rhododendrons in the Sikkimese Himalayas, and the J.D. Hooker Chapter, KESHAB PRADHAN 73 Rhododendrons in The Netherlands and Belgium, HENRI SPEELMAN 86 Rhododendron Species Conservation Group, United Kingdom, JOHN M. HAMMOND 95 The Scottish Rhododendron Society, JOHN M. HAMMOND 102 Part 2. Rhododendron Articles of Broad Interest 102 Maintaining a National Collection of Vireya Rhododendrons, LOUISE GALLOWAY AND TONY CONLON 116 Notes from the International Rhododendron Register 2016, ALAN LESLIE 122 A Project to Develop an ex situ Conservation Plan for Rhododendron Species in New Zealand Collections, MARION MACKAY 128 A Summary of Twenty Years in the Field Searching for Wild Rhododendrons, STEVE HOOTMAN 138 Vireyas from West and East: Distribution and Conservation of Rhododendron section Schistanthe, MARION MACKAY JOURNAL CONTACTS Journal Editor: Glen Jamieson, Ph.D. Issue Layout: Sonja Nelson Journal Technical Reviewers: Gillian Brown, Steve Hootman, Hartwig Schepker, Barbara Stump. Comments on any aspect of this new journal and future articles for consideration should be submitted in digital form to: Dr. Glen Jamieson [email protected] Please put “Rhododendrons International” in the subject line.
    [Show full text]
  • Additions to the Boreal Flora of the Northwest Territories with a Preliminary Vascular Flora of Scotty Creek
    Additions to the Boreal Flora of the Northwest Territories with a Preliminary Vascular Flora of Scotty Creek MARIE -È VE GARON -L ABRECQUE 1, 2, 6 , É TIENNE LÉVEILLÉ -B OURRET 3, 4 , K ELLINA HIGGINS 5, and OLIVER SONNENTAG 5 1Département des sciences biologiques, Pavillon Marie-Victorin, Université de Montréal, 90 avenue Vincent-d’Indy, Montréal, Québec H3C 3J7 Canada 2Department of Biology, 209 Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 Canada 3Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5 Canada 4Musée canadien de la nature, 1750 chemin Pink, Gatineau, Québec J9J 3N7 Canada 5Département de géographie, Université de Montréal, 520 chemin Côte-Sainte-Catherine, Montréal, Québec H3C 3J7 Canada 6Corresponding author: [email protected] Garon-Labrecque, Marie-Ève, Étienne Léveillé-Bourret, Kellina Higgins, and Oliver Sonnentag. 2015. Additions to the boreal flora of the Northwest Territories with a preliminary vascular flora of Scotty Creek. Canadian Field-Naturalist 129(4): 349–367. We present the first survey of the vascular flora of Scotty Cr eek, a peatland-dominated watershed with discontinuous permafrost about 60 km south of Fort Simpson, Northwest Territories (NWT). Of the 140 vascular plant taxa found at Scotty Creek, two are additions to the boreal flora of NWT: Arethusa bulbosa (Dragon’s-mouth, Orchidaceae) and Carex pauciflora (Few-flowered Sedge, Cyperaceae). The occurrence of Arethusa bulbosa extends the known range of this species 724 km to the northwest, making this purportedly eastern American plant almost pan-Canadian. Two other major range extensions (> 200 km) are reported for Carex brunnescens subsp.
    [Show full text]