7 Natural History and Evolutionary Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History and Philosophy of Systematic Biology
History and Philosophy of Systematic Biology Bock, W. J. (1973) Philosophical foundations of classical evolutionary classification Systematic Zoology 22: 375-392 Part of a general symposium on "Contemporary Systematic Philosophies," there are some other interesting papers here. Brower, A. V. Z. (2000) Evolution Is Not a Necessary Assumption of Cladistics Cladistics 16: 143- 154 Dayrat, Benoit (2005) Ancestor-descendant relationships and the reconstruction of the Tree of Lif Paleobiology 31: 347-353 Donoghue, M.J. and J.W. Kadereit (1992) Walter Zimmermann and the growth of phylogenetic theory Systematic Biology 41: 74-84 Faith, D. P. and J. W. H. Trueman (2001) Towards an inclusive philosophy for phylogenetic inference Systematic Biology 50: 331-350 Gaffney, E. S. (1979) An introduction to the logic of phylogeny reconstruction, pp. 79-111 in Cracraft, J. and N. Eldredge (eds.) Phylogenetic Analysis and Paleontology Columbia University Press, New York. Gilmour, J. S. L. (1940) Taxonomy and philosophy, pp. 461-474 in J. Huxley (ed.) The New Systematics Oxford Hull, D. L. (1978) A matter of individuality Phil. of Science 45: 335-360 Hull, D. L. (1978) The principles of biological classification: the use and abuse of philosophy Hull, D. L. (1984) Cladistic theory: hypotheses that blur and grow, pp. 5-23 in T. Duncan and T. F. Stuessy (eds.) Cladistics: Perspectives on the Reconstruction of Evolutionary History Columbia University Press, New York * Hull, D. L. (1988) Science as a process: an evolutionary account of the social and conceptual development of science University of Chicago Press. An already classic work on the recent, violent history of systematics; used as data for Hull's general theories about scientific change. -
1. Adaptation and the Evolution of Physiological Characters
Bennett, A. F. 1997. Adaptation and the evolution of physiological characters, pp. 3-16. In: Handbook of Physiology, Sect. 13: Comparative Physiology. W. H. Dantzler, ed. Oxford Univ. Press, New York. 1. Adaptation and the evolution of physiological characters Department of Ecology and Evolutionary Biology, University of California, ALBERT F. BENNETT 1 Irvine, California among the biological sciences (for example, behavioral CHAPTER CONTENTS science [I241). The Many meanings of "Adaptationn In general, comparative physiologists have been Criticisms of Adaptive Interpretations much more successful in, and have devoted much more Alternatives to Adaptive Explanations energy to, pursuing the former rather than the latter Historical inheritance goal (37). Most of this Handbook is devoted to an Developmentai pattern and constraint Physical and biomechanical correlation examination of mechanism-how various physiologi- Phenotypic size correlation cal systems function in various animals. Such compara- Genetic correlations tive studies are usually interpreted within a specific Chance fixation evolutionary context, that of adaptation. That is, or- Studying the Evolution of Physiological Characters ganisms are asserted to be designed in the ways they Macroevolutionary studies Microevolutionary studies are and to function in the ways they do because of Incorporating an Evolutionary Perspective into Physiological Studies natural selection which results in evolutionary change. The principal textbooks in the field (for example, refs. 33, 52, 102, 115) make explicit reference in their titles to the importance of adaptation to comparative COMPARATIVE PHYSIOLOGISTS HAVE TWO GOALS. The physiology, as did the last comparative section of this first is to explain mechanism, the study of how organ- Handbook (32). Adaptive evolutionary explanations isms are built functionally, "how animals work" (113). -
Why Natural History Matters
Why Practice Natural History? Why Natural History Matters Thomas L. Fleischner Thomas L. Fleischner ([email protected]) is a professor in the Environmental Studies Program at Prescott College, 220 Grove Avenue, Prescott, Arizona 86301 U.S.A., and founding President of the Natural History Network. The world needs natural history now more children: we turn over stones, we crouch to than ever. Because natural history – which look at insects crawling past, we turn our I have defined as “a practice of intentional heads to listen to new sounds. Indeed, as focused attentiveness and receptivity to the we grow older we have to learn to not pay more-than-human world, guided by attention to our world. The advertising honesty and accuracy” (Fleischner 2001, industry and mass consumer culture 2005) – makes us better, more complete collude to encourage this shrinking of the human beings. This process of “careful, scope of our attention. But natural history patient … sympathetic observation” attentiveness is inherent in us, and it can be (Norment 2008) – paying attention to the reawakened readily. larger than human world – allows us to build better human societies, ones that are It is easy to forget what an anomalous time less destructive and dysfunctional. Natural we now live in. Natural history is the history helps us see the world, and thus oldest continuous human tradition. ourselves, more accurately. Moreover, it Throughout human history and encourages and inspires better stewardship “prehistory,” attentiveness to nature was so of the Earth. completely entwined with daily life and survival that it was never considered as a Natural history encourages our conscious, practice separate from life itself. -
Auditory Experience Controls the Maturation of Song Discrimination and Sexual Response in Drosophila Xiaodong Li, Hiroshi Ishimoto, Azusa Kamikouchi*
RESEARCH ARTICLE Auditory experience controls the maturation of song discrimination and sexual response in Drosophila Xiaodong Li, Hiroshi Ishimoto, Azusa Kamikouchi* Graduate School of Science, Nagoya University, Nagoya, Japan Abstract In birds and higher mammals, auditory experience during development is critical to discriminate sound patterns in adulthood. However, the neural and molecular nature of this acquired ability remains elusive. In fruit flies, acoustic perception has been thought to be innate. Here we report, surprisingly, that auditory experience of a species-specific courtship song in developing Drosophila shapes adult song perception and resultant sexual behavior. Preferences in the song-response behaviors of both males and females were tuned by social acoustic exposure during development. We examined the molecular and cellular determinants of this social acoustic learning and found that GABA signaling acting on the GABAA receptor Rdl in the pC1 neurons, the integration node for courtship stimuli, regulated auditory tuning and sexual behavior. These findings demonstrate that maturation of auditory perception in flies is unexpectedly plastic and is acquired socially, providing a model to investigate how song learning regulates mating preference in insects. DOI: https://doi.org/10.7554/eLife.34348.001 Introduction Vocal learning in infants or juvenile birds relies heavily on the early experience of the adult conspe- cific sounds. In humans, early language input is necessary to form the ability of phonetic distinction *For correspondence: and pattern detection in the phase of auditory learning (Doupe and Kuhl, 1999; Kuhl, 2004). [email protected] Because of the strong parallels between speech acquisition of humans and song learning of song- Competing interests: The birds, and the difficulties to investigate the neural mechanisms of human early auditory memory at authors declare that no cellular resolution, songbirds have been used as a predominant model in studying memory formation competing interests exist. -
The Voc and Swedish Natural History. the Transmission of Scientific Knowledge in the Eighteenth Century
THE VOC AND SWEDISH NATURAL HISTORY. THE TRANSMISSION OF SCIENTIFIC KNOWLEDGE IN THE EIGHTEENTH CENTURY Christina Skott In the later part of the eighteenth century Sweden held a place as one of the foremost nations in the European world of science. This was mainly due to the fame of Carl Linnaeus (1707–78, in 1762 enno- bled von Linné), whose ground breaking new system for classifying the natural world created a uniform system of scientific nomenclature that would be adopted by scientists all over Europe by the end of the century. Linnaeus had first proposed his new method of classifying plants in the slim volume Systema Naturae, published in 1735, while he was working and studying in Holland. There, he could for the first time himself examine the flora of the Indies: living plants brought in and cultivated in Dutch gardens and greenhouses as well as exotic her- baria collected by employees of the VOC. After returning to his native Sweden in 1737 Linnaeus would not leave his native country again. But, throughout his lifetime, Systema Naturae would appear in numerous augmented editions, each one describing new East Indian plants and animals. The Linnean project of mapping the natural world was driven by a strong patriotic ethos, and Linneaus would rely heavily on Swed- ish scientists and amateur collectors employed by the Swedish East India Company; but the links to the Dutch were never severed, and he maintained extensive contacts with leading Dutch scientists through- out his life. Linnaeus’ Dutch connections meant that his own students would become associated with the VOC. -
200 Central Park West - American Museum of Natural History, Borough of Manhattan
June 15, 2021 Name of Landmark Building Type of Presentation Month xx, year Public Hearing The current proposal is: Preservation Department – Item 4, LPC-21-08864 200 Central Park West - American Museum of Natural History, Borough of Manhattan How to Testify Via Zoom: https://us02web.zoom.us/j/84946202332?pwd=MjdJUjY2a0d3TWEwUDVlVEorM2lCQT09 Note: If you want to testify on an item, join the Webinar ID: 849 4620 2332 Zoom webinar at the agenda’s “Be Here by” Passcode: 951064 time (about an hour in advance). When the By Phone: Chair indicates it’s time to testify, “raise your 1 646-558-8656 US (New York) hand” via the Zoom app if you want to speak (*9 on the phone). Those who signed up in 877-853-5257 US (Toll free) advance will be called first. 888-475-4499 US (Toll free) Equestrian Statue of Theodore Roosevelt Proposed Relocation Theodore Roosevelt Park, MN NYC Parks American Museum of Natural History Site Location Manhattan American Museum of Natural History Frederick Douglass Circle Upper West Side 2 Site Location View of the American Museum of Natural History, 2020, NYC Parks 3 Site Location Equestrian Statue of Theodore Roosevelt, 2020, NYC Parks 4 Existing Site Views Equestrian Statue of Theodore Roosevelt looking northwest (left) and southwest (right) 2015, NYC Parks 5 History Roosevelt Memorial model, Date unknown, AMNH 6 History October 28, 1940, New York Times October 1940 view of the equestrian statue, from the south. Photo by Thane L. Bierwert, AMNH Research Library / Digital Special Collections 7 History Landmarks Preservation Commission designation photo of the Roosevelt Memorial, 1967, LPC 8 Composition and Context 9 Photo by Denis Finnin / AMNH Sustained Public Controversy Vandalism of Equestrian Statue of Vandalism of Equestrian Statue of Theodore Roosevelt, Theodore Roosevelt, 1971, New 2017, NYC Parks 10 York Times Sustained Public Controversy Addressing the Statue exhibition at AMNH, C. -
The Evolution of Bird Song: Male and Female Response to Song Innovation in Swamp Sparrows
ANIMAL BEHAVIOUR, 2001, 62, 1189–1195 doi:10.1006/anbe.2001.1854, available online at http://www.idealibrary.com on The evolution of bird song: male and female response to song innovation in swamp sparrows STEPHEN NOWICKI*, WILLIAM A. SEARCY†, MELISSA HUGHES‡ & JEFFREY PODOS§ *Evolution, Ecology & Organismal Biology Group, Department of Biology, Duke University †Department of Biology, University of Miami ‡Department of Ecology and Evolutionary Biology, Princeton University §Department of Biology, University of Massachusetts at Amherst (Received 27 April 2000; initial acceptance 24 July 2000; final acceptance 19 April 2001; MS. number: A8776) Closely related species of songbirds often show large differences in song syntax, suggesting that major innovations in syntax must sometimes arise and spread. Here we examine the response of male and female swamp sparrows, Melospiza georgiana, to an innovation in song syntax produced by males of this species. Young male swamp sparrows that have been exposed to tutor songs with experimentally increased trill rates reproduce these songs with periodic silent gaps (Podos 1996, Animal Behaviour, 51, 1061–1070). This novel temporal pattern, termed ‘broken syntax’, has been demonstrated to transmit across generations (Podos et al. 1999, Animal Behaviour, 58, 93–103). We show here that adult male swamp sparrows respond more strongly in territorial playback tests to songs with broken syntax than to heterospecific songs, and equally strongly to conspecific songs with normal and broken syntax. In tests using the solicitation display assay, adult female swamp sparrows respond more to broken syntax than to heterospecific songs, although they respond significantly less to conspecific songs with broken syntax than to those with normal syntax. -
Dioscorides De Materia Medica Pdf
Dioscorides de materia medica pdf Continue Herbal written in Greek Discorides in the first century This article is about the book Dioscorides. For body medical knowledge, see Materia Medica. De materia medica Cover of an early printed version of De materia medica. Lyon, 1554AuthorPediaus Dioscorides Strange plants RomeSubjectMedicinal, DrugsPublication date50-70 (50-70)Pages5 volumesTextDe materia medica in Wikisource De materia medica (Latin name for Greek work Περὶ ὕλης ἰατρικῆς, Peri hul's iatrik's, both means about medical material) is a pharmacopeia of medicinal plants and medicines that can be obtained from them. The five-volume work was written between 50 and 70 CE by Pedanius Dioscorides, a Greek physician in the Roman army. It was widely read for more than 1,500 years until it supplanted the revised herbs during the Renaissance, making it one of the longest of all natural history books. The paper describes many drugs that are known to be effective, including aconite, aloe, coloxinth, colocum, genban, opium and squirt. In all, about 600 plants are covered, along with some animals and minerals, and about 1000 medicines of them. De materia medica was distributed as illustrated manuscripts, copied by hand, in Greek, Latin and Arabic throughout the media period. From the sixteenth century, the text of the Dioscopide was translated into Italian, German, Spanish and French, and in 1655 into English. It formed the basis of herbs in these languages by such people as Leonhart Fuchs, Valery Cordus, Lobelius, Rembert Dodoens, Carolus Klusius, John Gerard and William Turner. Gradually these herbs included more and more direct observations, complementing and eventually displacing the classic text. -
The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review
Biogeosciences, 4, 219–232, 2007 www.biogeosciences.net/4/219/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review W. E. G. Muller¨ 1, Jinhe Li2, H. C. Schroder¨ 1, Li Qiao3, and Xiaohong Wang4 1Institut fur¨ Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Duesbergweg 6, 55099 Mainz, Germany 2Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, P. R. China 3Department of Materials Science and Technology, Tsinghua University, 100084 Beijing, P. R. China 4National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, 100037 Beijing, P. R. China Received: 8 January 2007 – Published in Biogeosciences Discuss.: 6 February 2007 Revised: 10 April 2007 – Accepted: 20 April 2007 – Published: 3 May 2007 Abstract. Sponges (phylum Porifera) had been considered an axial filament which harbors the silicatein. After intracel- as an enigmatic phylum, prior to the analysis of their genetic lular formation of the first lamella around the channel and repertoire/tool kit. Already with the isolation of the first ad- the subsequent extracellular apposition of further lamellae hesion molecule, galectin, it became clear that the sequences the spicules are completed in a net formed of collagen fibers. of sponge cell surface receptors and of molecules forming the The data summarized here substantiate that with the find- intracellular signal transduction pathways triggered by them, ing of silicatein a new aera in the field of bio/inorganic chem- share high similarity with those identified in other metazoan istry started. -
Robert Hooke's Micrographia of 1665 and 1667
J R Coll Physicians Edinb 2010; 40:374–6 Ex libris doi:10.4997/JRCPE.2010.420 © 2010 Royal College of Physicians of Edinburgh Robert Hooke’s Micrographia of 1665 and 1667 Until recently Robert Hooke’s name more important than Hooke’s own was not widely known to the public. observations using microscopy. Later, When he was remembered it was Hooke himself learned Dutch so that usually in connection with memories, he could read Leeuwenhoek’s letters. often vague, of ‘Hooke’s Law’ (the extension of an elastic body is However, while Leeuwenhoek’s proportional to the force applied to descriptions of his findings were extend it). However, little or nothing lively and detailed, the sketches he was remembered of Hooke’s connec- provided were fairly crude. Hooke, tions with Robert Boyle, Christopher on the other hand, devised a method Wren and, later, Isaac Newton and of looking at a sheet of paper with others of that exalted circle, particularly one eye while observing through John Wilkins who probably introduced the microscope with the other so him into it, of his long service to the that he could trace the outlines of Royal Society’s regular programme of the virtual image seen by the demonstrations, of his contributions to microscope eye on the paper. He the theories of light and, indeed, of describes doing this to allow him to gravitation, of his surveying of London measure the magnification achieved after the Great Fire of 1666 and his ex libris RCPE by his instruments. He then worked overseeing of much of its reconstruction. -
Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide
EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide BASAL METAZOANS Dirk Erpenbeck Ludwig-Maximilians Universität München, Germany Simion Paul and Michaël Manuel Université Pierre et Marie Curie in Paris, France. Paulyn Cartwright University of Kansas USA. Oliver Voigt and Gert Wörheide Ludwig-Maximilians Universität München, Germany Keywords: Metazoa, Porifera, sponges, Placozoa, Cnidaria, anthozoans, jellyfishes, Ctenophora, comb jellies Contents 1. Introduction on ―Basal Metazoans‖ 2. Phylogenetic relationships among non-bilaterian Metazoa 3. Porifera (Sponges) 4. Placozoa 5. Ctenophora (Comb-jellies) 6. Cnidaria 7. Cultural impact and relevance to human welfare Glossary Bibliography Biographical Sketch Summary Basal metazoans comprise the four non-bilaterian animal phyla Porifera (sponges), Cnidaria (anthozoans and jellyfishes), Placozoa (Trichoplax) and Ctenophora (comb jellies). The phylogenetic position of these taxa in the animal tree is pivotal for our understanding of the last common metazoan ancestor and the character evolution all Metazoa,UNESCO-EOLSS but is much debated. Morphological, evolutionary, internal and external phylogenetic aspects of the four phyla are highlighted and discussed. SAMPLE CHAPTERS 1. Introduction on “Basal Metazoans” In many textbooks the term ―lower metazoans‖ still refers to an undefined assemblage of invertebrate phyla, whose phylogenetic relationships were rather undefined. This assemblage may contain both bilaterian and non-bilaterian taxa. Currently, ―Basal Metazoa‖ refers to non-bilaterian animals only, four phyla that lack obvious bilateral symmetry, Porifera, Placozoa, Cnidaria and Ctenophora. ©Encyclopedia of Life Support Systems (EOLSS) EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide These four phyla have classically been known as ―diploblastic‖ Metazoa. -
EMPHASIS in EVOLUTION and SYSTEMATICS Emphasis Adviser: Dr
CHECK LIST FOR THE B.S. DEGREE IN BIOLOGY EMPHASIS IN EVOLUTION AND SYSTEMATICS Emphasis Adviser: Dr. Tod Reeder (LS-264), 2008-09 Catalog (Use this as a worksheet. Refer to your catalog for official requirements.) Systematicists and evolutionary biologists study patterns of evolutionary relationships among species and evolutionary processes underlying these patterns. Systematics involves detailed study of a group of organisms to determine its evolutionary relationships (phylogeny), clarify its classification, and assess trends in ecology, biogeography, and evolutionary processes. Evolutionary biology explores mechanisms of evolutionary change, including studies of natural selection, migration, mating systems, and genetic drift. Specific studies in systematics or evolutionary biology may encompass anatomy, behavior, biogeography, development, ecology, genetics, and molecular biology of both living and fossil organisms. Graduates can work in universities, museums, botanical gardens, and zoos or with federal, state, and private agencies. Positions may include basic or applied research, such as assessment of biodiversity or environmental quality. Acquisition of laboratory skills, such as electron microscopy or nucleotide sequencing, are required for careers in evolutionary biology. Students should make a particular effort to gain research experience through Undergraduate Research or Special Studies. PREPARATION FOR THE MAJOR (39 units of lower division courses) Biol 201A Principles of Cell & Molecular Biol. 4 ____ Math 121 Calculus for the Life Sciences I 3 ____ Biol 201B Principles of Organismal Biology 4 ____ Math 122 Calculus for the Life Sciences II 3 ____ Biol 215 Biostatistics 3 ____ Phys 180A Fundamentals of Physics 3 ____ Chem 200 General Chemistry 5 ____ Phys 182A Physical Measurements 1 ____ Chem 201 General Chemistry 5 ____ Phys 180B Fundamentals of Physics 3 ____ Chem 231 Organic Chemistry (or 232 and 232L) 4 ____ Phys 182B Physical Measurements 1 ____ The Biology and Microbiology majors are designated as impacted majors.