Citrus Tristeza Virus (CTV) Citrus Tristeza Virus Grapefruit Stem Pitting Prevention Monitoring Direct Control

Total Page:16

File Type:pdf, Size:1020Kb

Citrus Tristeza Virus (CTV) Citrus Tristeza Virus Grapefruit Stem Pitting Prevention Monitoring Direct Control PEST MANAGEMENT DECISION GUIDE: GREEN LIST Citrus tristeza virus (CTV) Citrus tristeza virus Grapefruit stem pitting Prevention Monitoring Direct Control l The disease is spread by virus-infected l The following three syndromes and the severity of their symptoms vary l Control strategies for CTV differ budwood or plants; use only disease-free depending on the CTV isolate, environmental conditions and hosts: according to the incidence and propagation material from certified l Stem pitting (mostly grapefruit): it does not kill trees, but causes a thin severity of the isolates in a particular nurseries. Use tolerant scions if available canopy, fewer fruits of reduced size and quality, deep pits in the trunk area and with the cultivars and such as Mandarin and Valencia orange and stem and, in severely affected trees, dieback rootstocks used. No single strategy is applicable to all situations l When using budwood, ensure that they are l Seedling yellowing (inoculated grapefruit, lemon and sour orange Dieback of sweet orange budded onto rootstocks that are resistant/ seedlings): dwarfing and general chlorosis l Remove infected trees immediately to grafted on sour orange (L. tolerant to CTV such as sweet orange, avoid spreading the disease and Navarro, Instituto Valenciano Cleopatra mandarin, rough lemon, Rangpur l Decline (sour orange rootstock): in slow decline, wilting and chlorosis of maintain surveillance de Investigaciones Agrarias, lime and trifoliate orange the canopy, an abnormal crop of small fruits persisting after death of the Bugwood.org) tree and many small conical pits on the face of the bark surface l Chemical control of aphids in the field l It is also spread by several species of (honeycombing). Trees affected by quick decline lack honeycombing, is not recommended as it is an aphids, but the most efficient vector is but frequently show a yellow-brown stain at the bud union unproven strategy for CTV control Toxoptera citricidus, the brown citrus aphid: and insecticides may not act quickly l Roots: necrotic streak or lesions, deterioration l In nurseries, maintain good aphid control enough to prevent infection and keep trees under a screen to help l Remove a patch of bark across the bud union from declining trees to look l There are no treatments available to keep the vector out of the planting for small pits (honeycombing) reverse the decline in affected trees material l Inspect the orchards regularly for symptoms if the area is susceptible or at on sour orange rootstocks l Control weeds under trees and in the risk to the CTV, and more often during high aphid population periods Stem pitting (Florida Division of field to eliminate host plants for the l Plant Industry Archive, Florida CTV can be confused with diseases such as citrus blight (no bud union Department of Agriculture and aphids symptoms) and citrus greening (no stem pitting) Consumer Services, Bugwood.org) Honeycombing on lemon rootstock (S.D. Sawant) Note: Pesticides may be available to control this pest. Please check with the Ministry of Agriculture in your country to find out which pesticides are registered in your country and the local restrictions for their use. CREATED/UPDATED: October 2014 LOSE LESS, FEED MORE PRODUCED BY: Plantwise Plantwise is a CABI-led global initiative www.plantwise.org.
Recommended publications
  • Rangpur Lime X Troyer Citrange, a Hybrid Citrus Rootstock for Closely Spaced Trees
    Proc. Fla. State Hort. Soc. 99:33-35. 1986. RANGPUR LIME X TROYER CITRANGE, A HYBRID CITRUS ROOTSTOCK FOR CLOSELY SPACED TREES W. S. Castle A combination of diseases, repeated freezes, and other University of Florida, IFAS factors has reemphasized the importance of rootstocks in Citrus Research and Education Center Florida. Moreover, the effects of these factors illustrate the 700 Experiment Station Road inherent weaknesses in virtually all citrus rootstocks and Lake Alfred, FL 33850 the need to continually search for new, improved ones. Another recent trend related to rootstocks has been C. O. YOUTSEY the shift toward more closely spaced trees, particularly FDACS, Division of Plant Industry within the row (7,8). Rootstocks well-suited for dense plan Citrus Budwood Registration Bureau tings have not been available although such stocks are 3027 Lake Alfred Road being evaluated and one appears particularly promising Winter Haven, FL 33881 (1, 3, 4, 8). It is a hybrid of Rangpur lime and Troyer D. J. Hutchison citrange (RxT) and has been under study in Florida for 18 United States Department of Agriculture yr. During this period, trees on RxT have demonstrated Agricultural Research Service sufficient commercial potential to justify our presentation 2120 Camden Road in this report of their performance and a description of Orlando, FL 32803 RxT and its characteristics. Additional index words. Blight, tristeza, tree size control. History Dr. J. R. Furr, formerly a plant breeder with the U.S. Abstract. A hybrid of Rangpur lime (Citrus limonia Osb.) and Department of Agriculture (USDA) at Indio, California, Troyer citrange [ C. sinensis (L) Osb.
    [Show full text]
  • Citrus Blight and Other Diseases of Recalcitrant Etiology
    P1: FRK August 1, 2000 18:44 Annual Reviews AR107-09 Annu. Rev. Phytopathol. 2000. 38:181–205 Copyright c 2000 by Annual Reviews. All rights reserved CITRUS BLIGHT AND OTHER DISEASES OF RECALCITRANT ETIOLOGY KS Derrick and LW Timmer University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, Florida 33850-2299; e-mail: [email protected]fl.edu, [email protected]fl.edu Key Words citrus psorosis, citrus variegated chlorosis, lettuce big vein, peach tree short life, replant diseases ■ Abstract Several economically important diseases of unknown or recently de- termined cause are reviewed. Citrus blight (CB), first described over 100 years ago, was shown in 1984 to be transmitted by root-graft inoculations; the cause remains unknown and is controversial. Based on graft transmission, it is considered to be an infectious agent by some; others suggest that the cause of CB is abiotic. Citrus varie- gated chlorosis, although probably long present in Argentina, where it was considered to be a variant of CB, was identified as a specific disease and shown to be caused by a strain of Xylella fastidiosa after if reached epidemic levels in Brazil in 1987. Citrus psorosis, described in 1933 as the first virus disease of citrus, is perhaps one of the last to be characterized. In 1988, it was shown to be caused by a very unusual virus. The cause of lettuce big vein appears to be a viruslike agent that is transmitted by a soilborne fungus. Double-stranded RNAs were associated with the disease, suggesting it may be caused by an unidentified RNA virus.
    [Show full text]
  • Field Diagnosis of Citrus Tristeza Virus1 Stephen H
    HS996 Field Diagnosis of Citrus Tristeza Virus1 Stephen H. Futch and Ronald H. Brlansky2 Citrus tristeza virus (CTV) is one of the most important roots, the roots use up stored starch and begin to decline, pathogens affecting citrus worldwide. Tristeza was first leading to the ultimate death of the tree. Decline-inducing reported in Florida in the 1950s. By the 1980s, it produced strains of the virus may be present in trees on resistant serious losses due to tree decline and death on sour orange rootstocks and may provide a reservoir of virus that aphids and Citrus macrophylla rootstocks. Tree decline continues can spread to susceptible rootstocks. to be a consideration today in groves that have trees grown on sour orange rootstock trees remaining. Citrus tristeza virus strains or isolates may vary from mild to severe, causing little damage to severe decline, especially on trees grafted on sour orange rootstock. In cases of infection with mild isolates in trees grown on susceptible rootstocks, trees may be reduced in size, vigor, and fruit yields. Trees with a severe strain may quickly decline and die, with the first symptoms being leaf wilt (Figure 1) and ultimate tree death in several weeks. Additionally, other strains may cause stem-pitting in limes, grapefruit, and sweet orange. Fortunately, stem pitting strains are not currently a problem in Florida. Figure 1. Citrus tree declining due to citrus tristeza virus. When trees are propagated on susceptible rootstocks and are infected with CTV decline strains, typical symptoms CTV is transmitted by several aphid species with the most include: decline, wilting, dieback, “quick decline,” leaf effective being the brown citrus aphid (Toxoptera citricida), chlorosis and curling, heavy fruit set, honeycombing, bud which was introduced to Florida in the 1990s.
    [Show full text]
  • Trunk Xylem Anatomy of Mature Healthy and Blighted Grapefruit Trees on Several Rootstocks
    J. AMER. SOC. HORT. SCI. 119(2):185–194. 1994. Trunk Xylem Anatomy of Mature Healthy and Blighted Grapefruit Trees on Several Rootstocks Luiz A.B.C. Vasconcellos1 and William S. Castle University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850 Additional index words. vessel element diameter and density, wood hydraulic conductivity, dye movement, Citrus paradisi Abstract. Wood samples were taken from healthy and blighted citrus trees on several rootstocks to describe and compare the xylem anatomy of the healthy trees and to determine if blight altered xylogenesis. Horizontal trunk xylem cores, 6 cm long, were extracted from blighted 18-year-old commercial grapefruit (Citrus paradisi Macf.) trees on rough lemon (RL) (C. jambhiri Lush.), Cleopatra mandarin (CM) (C. reshni Hort. ex Tan.), and Carrizo citrange (CC) [C. sinensis (L). Osb. x Poncirus trifoliata (L.) Raf] and from healthy trees on those rootstocks and sour orange (SO) (C. aurantium L.). Cores were taken from the eastern and western sides of the scion and rootstock of each tree. The cores were divided into 2-cm pieces and cross-sections were prepared for analysis of vessel element (VE) number and diameter in 0.5-cm increments. A sample-size study showed that tree side was not a significant source of variation and that 10 replications were sufficient to detect differences of ≈12% from the overall mean. Among the healthy trees, VE densities and diameters were similar for the trees on CC or RL and larger than those for trees on SO or CM.
    [Show full text]
  • Exotic Diseases of Citrus M.M
    PP264 Exotic Diseases of Citrus M.M. Dewdney, J.D. Yates, M.E. Rogers, T.M. Spann CITRUS VARIEGATED LEprosis Sweet ORAnge CHLOROSIS (CVC) Scab (SOS) Leprosis (early symptoms) Leprosis ( advanced symptoms) CVC (upper side of leaf) Sweet Orange Scab Citrus TristezA Leprosis on fruit Leprosis on mature fruit Leprosis bark scaling CVC (underside of leaf) Citrus Black Spot CVC (small, hard fruit) Healthy fruit Citrus Black Spot (hard spot) Citrus Black Spot Citrus Black Spot (virulent spot) (false melanose) Citrus Tristeza Virus Stem-Pitting For more information, contact the University of Florida / IFAS Citrus Research and Education Center 863-956-1151, www.crec.ifas.ufl.edu, or your local county citrus extension agent: at http://citrusagents.ifas.ufl.edu/citrus_agents_home_page/citrus_agents_home.html 1. This document is PP264, one of a series of the Department of Plant Pathology, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. First published: April 2009. Revised December 2009. 2. Megan M. Dewdney, assistant professor, Department of Plant Pathology, Jamie D. Yates, coordinator for canker and greening extension education, Michael E. Rogers, assistant professor, Department of Entomology, Timothy M. Spann, assistant professor, Department of Horticulture, Citrus REC, Lake Alfred, Florida; Cooperative Extension Service, Institute of Food and Agricultural Sciences; University of Florida; Gainesville, FL 32611. Photo Credits: J.D. Yates, M.M. Dewdney, M.E. Rogers, N.A. Peres, L.W. Timmer,
    [Show full text]
  • 101R to Release Genetically Engineered Citrus Tristeza Virus
    Southern Gardens Citrus Nursery, LLC Permit 17-044- 101r to Release Genetically Engineered Citrus tristeza virus Preliminary Pest Risk Assessment May 2018 Agency Contact Cindy Eck Biotechnology Regulatory Services 4700 River Road USDA, APHIS Riverdale, MD 20737 Fax: (301) 851-3892 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’S TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. This publication reports research involving pesticides. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they
    [Show full text]
  • Citrus Industry Biosecurity Plan 2015
    Industry Biosecurity Plan for the Citrus Industry Version 3.0 July 2015 PLANT HEALTH AUSTRALIA | Citrus Industry Biosecurity Plan 2015 Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2004 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2004) Industry Biosecurity Plan for the Citrus Industry (Version 3.0 – July 2015). Plant Health Australia, Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific and independent professional advice.
    [Show full text]
  • Cross Protection Against Citrus Tristeza Virus - a Review
    UC Riverside International Organization of Citrus Virologists Conference Proceedings (1957-2010) Title Cross Protection Against Citrus tristeza virus - a Review Permalink https://escholarship.org/uc/item/73v0t59c Journal International Organization of Citrus Virologists Conference Proceedings (1957-2010), 17(17) ISSN 2313-5123 Authors Roistacher, C. N. da Graça, J. V. Müller, G. W. Publication Date 2010 DOI 10.5070/C573v0t59c Peer reviewed eScholarship.org Powered by the California Digital Library University of California Proceedings, 17th Conference, 2010 – Citrus Tristeza Virus Cross Protection Against Citrus tristeza virus - a Review C. N. Roistacher1, J. V. da Graça2 and G. W. Müller3 1Department of Plant Pathology, University of California, Riverside CA 92521, USA 2Texas A & M University-Kingsville Citrus Center, Weslaco TX 78596, USA 3Rua Firmino Costa No 250 CEP 13076-625, Campinas, SP, Brazil ABSTRACT. Tristeza, caused by Citrus tristeza virus (CTV) is now in its second century as one of the most destructive and most researched diseases of citrus. This review encompasses the early history of tristeza and its relationship to the 19th century Phytophthora epidemic which caused worldwide destruction of citrus then grown primarily as seedlings. The sour orange then evolved as a highly regarded and popular Phytophthora-tolerant rootstock. However, this combination of sweet orange, mandarin or grapefruit on the sour orange rootstock was susceptible to a new highly destructive vector-transmitted disease aptly named tristeza. There are two primary vectors for CTV: Aphis gossypii and the more efficient Toxoptera citricida. When tristeza enters a country, sour orange ultimately will disappear as the primary rootstock. All attempts at cross protection to salvage sour orange as a rootstock have failed.
    [Show full text]
  • 2020–2021 Florida Citrus Production Guide: Tristeza Decline1 Ozgur Batuman, Amit Levy, Mark E
    PP-181 2020–2021 Florida Citrus Production Guide: Tristeza Decline1 Ozgur Batuman, Amit Levy, Mark E. Hilf, Peggy J. Sieburth, William O. Dawson, and Ronald H. Brlansky2 Citrus tristeza virus (CTV) is a major cause of the decline Citrus tristeza virus is transmitted by aphids. They acquire and eventual death of trees on sour orange rootstocks. it within minutes of feeding on an infected plant and Initially, affected trees have small leaves and twig dieback. transmit it to healthy plants within minutes of picking up Diseased trees often produce very small fruit, and the the virus. The brown citrus aphid (Toxoptera citricida), yield declines. Eventually, large limbs die back and the tree which first appeared in Florida in 1995, is considered the gradually declines. In extreme cases, trees may suffer from most efficient vector of the virus. The cotton or melon quick decline and wilt, dying in a matter of weeks. On sour aphid (Aphis gossypii) is a less efficient but still effective orange rootstock, some isolates of CTV cause an incompat- vector, whereas the green citrus or spirea aphid (Aphis ibility at the bud union, which results in the loss of fibrous spiraecola) and the black citrus aphid (Toxoptera aurantii) roots and reduced ability for water uptake. Bark flaps cut are considered to be less efficient vectors of CTV in Florida. from across the graft union of declining trees often show The establishment of T. citricida in Florida is believed to pitting consisting of small holes (honeycombing) on the have resulted in a more rapid spread of decline-inducing inside face of the bark flap from the rootstock side of the isolates of tristeza.
    [Show full text]
  • Citrus Bacterial Canker Disease and Huanglongbing (Citrus Greening)
    PUBLICATION 8218 Citrus Bacterial Canker Disease and Huanglongbing (Citrus Greening) MARYLOU POLEK, Program Manager and Plant Pathologist, Citrus Tristeza Virus Program, California Department of Food and Agriculture, Tulare; GEORGIOS VIDALAKIS, Director, Citrus Clonal Protection Program (CCPP), Department of Plant Pathology, University of UNIVERSITY OF California, Riverside; and KRIS GODFREY, Senior Environmental Research Scientist, CALIFORNIA Biological Control Program, California Department of Food and Agriculture, Sacramento Division of Agriculture and Natural Resources INTroduCTioN http://anrcatalog.ucdavis.edu Compared with the rest of the world, the California citrus industry is relatively free of diseases that can impact growers’ profits. Unfortunately, exotic plant pathogens may become well established before they are recognized as such. This is primarily because some of the initial symptoms mimic other diseases, mineral deficiencies, or toxicities. In addition, development of disease symptoms caused by some plant pathogenic organisms occurs a long time after initial infection. This long latent period results in significantly delayed disease diagnosis and pathogen detection. Citrus canker (CC) and huanglong- bing (HLB, or citrus greening) are two very serious diseases of citrus that occur in many other areas of the world but are not known to occur in California. However, if the patho- gens causing these diseases are introduced into California, they will create serious prob- lems for the state’s citrus production and nursery industries. CiTrus BACTerial CaNker Disease Citrus bacterial canker disease (CC) is caused by pathotypes or variants of the bacterium Xanthomonas axonopodis (formerly campestris) pv. citri (Xac). This bacterium is a quar- antine pest for many citrus-growing countries and is strictly regulated by international phytosanitary programs.
    [Show full text]
  • The Response of Star Ruby Grapefruit to Different Citrus Tristeza Virus Isolates
    Sixteenth IOCV Conference, 2005—Citrus Tristeza Virus The Response of Star Ruby Grapefruit to Different Citrus tristeza virus Isolates S. P. van Vuuren1 and B. Q. Manicom2 1Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa; 2ARC–Institute for Tropical and Subtropical Crops, Private Bag X11208, Nelspruit 1200, South Africa ABSTRACT. The failure of GFMS 12 (Nartia) as a cross-protecting Citrus tristeza virus (CTV) isolate for Star Ruby grapefruit in South Africa necessitated the use of GFMS 35 as a substitute for the interim. Seven new CTV isolates derived from Star Ruby and Rosé grapefruit trees were evalu- ated and compared to GFMS 12, GFMS 35, to two isolates from mother trees at the Citrus Founda- tion Block that were pre-immunized with GFMS 12, two severe isolates (GFSS 1and GFSS 5), and to trees that were planted virus-free. Trees pre-immunized with isolates GFMS 35 and GFMS 78 had the best production over a 5-yr period. These trees produced significantly better than trees that were planted virus-free, trees with mild isolates GFMS 12, GFMS 67, and those with the two severe isolates. The crop value (fruit size coupled with market prices) of trees with GFMS 35 was 5% better than that of trees with GFMS 78. Trees with GFMS 12a were third best and were 16% lower than those with GFMS 35. The latter isolate was collected from a good parent tree at the Cit- rus Foundation Block that was pre-immunized with GFMS 12. The results show that CTV isolate GFMS 35, which is the present pre-immunizing isolate for red grapefruit, together with isolate GFMS 78, are superior to the other isolates.
    [Show full text]
  • Distribution of Citrus Tristeza Virus in Grapefruit and Sweet Orange in Florida and South Africa*, ** R
    Distribution of Citrus Tristeza Virus in Grapefruit and Sweet Orange in Florida and South Africa*, ** R. F. Lee, S. M. Garnsey, L. J. Marais, J. N. Moll, and C. 0. Youtsey ABSTRACT. The distribution of citrus tristeza virus (CTV) in field trees was determined by enzyme-linked immunosorbent assay on individual flushes collected from citrus trees in Florida and South Africa. In Florida, most CTV isolates were unevenly distributed in grapefruit trees, especially in late summer. However, one mild isolate with some cross-protecting ability (T26) was consistently distributed throughout the trees regardless of season. Citrus tristeza virus was more evenly distri- buted in sweet orange trees in Florida, but occasionally very young flush tissue was found CTV-free. In South Africa, CTV was found evenly distributed throughout both grapefruit and sweet orange trees. South African isolates were highly invasive in recently inoculated plants. The even distribution of CTV within trees is a trait which may be important for effective cross protection by mild CTV strains. Index words. ELISA, cross protection, stem pitting. Citrus tristeza virus (CTV), a of effective cross protection. Selection member of the closterovirus group, is of cross-protecting CTV strains has the most economically important cit- thus far been an empirical process. rus virus worldwide (1). There are The distribution of the mild strain of many strains of CTV which differ in virus within the plant host may play their biological activity (1, 3). Quick an important role in its ability to cross decline of trees on sour orange protect the host against subsequent rootstock induced by CTV has killed challenge by severe isolates (9).
    [Show full text]