Divergence of Ectodermal and Mesodermal Gene Regulatory Network Linkages in Early Development of Sea Urchins

Total Page:16

File Type:pdf, Size:1020Kb

Divergence of Ectodermal and Mesodermal Gene Regulatory Network Linkages in Early Development of Sea Urchins Divergence of ectodermal and mesodermal gene PNAS PLUS regulatory network linkages in early development of sea urchins Eric M. Erkenbracka,1,2 aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved October 5, 2016 (received for review August 3, 2016) Developmental gene regulatory networks (GRNs) are assemblages of to study in sea urchins, whose lineages have undergone multiple gene regulatory interactions that direct ontogeny of animal body changes in life history strategies (8). Importantly, an excellent fossil plans. Studies of GRNs operating in the early development of record affords dating of evolutionary events (9), which has established euechinoid sea urchins have revealed that little appreciable change has that the sister subclasses of sea urchins—cidaroids and euechinoids— occurred since their divergence ∼90 million years ago (mya). These diverged at least 268 million years ago (mya) (10). Differences in observations suggest that strong conservation of GRN architecture the timing of developmental events in embryogenesis of cida- was maintained in early development of the sea urchin lineage. Test- roids and euechinoids have long been a topic of interest, but ing whether this holds for all sea urchins necessitates comparative have become the subject of molecular research only recently analyses of echinoid taxa that diverged deeper in geological time. (11–18). Recent studies highlighted extensive divergence of skeletogenic me- Research on the early development of the euechinoid purple soderm specification in the sister clade of euechinoids, the cidaroids, sea urchin Strongylocentrotus purpuratus (Sp) has brought into suggesting that comparative analyses of cidaroid GRN architecture high resolution the players and molecular logic directing devel- may confer a greater understanding of the evolutionary dynamics of opmental GRNs that specify Sp’s early embryonic domains developmental GRNs. Here I report spatiotemporal patterning of 55 (19–30). Abundant comparative evidence exists for other eue- BIOLOGY regulatory genes and perturbation analyses of key regulatory genes chinoid taxa as well, including Lytechinus variegatus (Lv) (31–37) involved in euechinoid oral–aboral patterning of nonskeletogenic me- and Paracentrotus lividus (Pl)(38–42). Data from these indirect- DEVELOPMENTAL sodermal and ectodermal domains in early development of the cida- developing euechinoids indicate that although these taxa diverged roid Eucidaris tribuloides. These results indicate that developmental from one another ∼90 mya (9, 43), very little appreciable change GRNs directing mesodermal and ectodermal specification have to their developmental GRNs has accrued (44–46). Although undergone marked alterations since the divergence of cidaroids there is evidence of minor alterations to these GRNs, such as a and euechinoids. Notably, statistical and clustering analyses of heterochronic shift in snail expression in Lv and Sp (22), numerous echinoid temporal gene expression datasets indicate that regu- studies have made clear the striking conservation of GRN linkages lation of mesodermal genes has diverged more markedly than in these lineages. Recent studies of early development of the regulation of ectodermal genes. Although research on indirect- distantly related, indirect-developing cidaroid sea urchin Euci- developing euechinoid sea urchins suggests strong conserva- daris tribuloides (Et) have revealed that skeletogenic mesoderm tion of GRN circuitry during early embryogenesis, this study specification in this clade is markedly different from that ob- indicates that since the divergence of cidaroids and euechinoids, served in euechinoids (17, 18, 47). The foregoing observations developmental GRNs have undergone significant, cell type– suggest that comparative analyses of GRN circuitry in early biased alterations. Significance gene regulatory network | echinoderms | sea urchin embryogenesis | embryonic axis specification | echinoids Sea urchins (echinoids) consist of two subclasses, cidaroids and euechinoids. Research on gene regulatory networks (GRNs) in the ntegral to early development of a bilaterian is the development early development of three euechinoids indicates that little ap- Iof the three embryonic tissue-layer domains: endoderm, ecto- preciable change has occurred to their linkages since they di- derm, and mesoderm. Asymmetrically distributed RNA and verged ∼90 million years ago (mya). I asked whether this proteins in the egg provide the initial inputs into this process and conservation extends to all echinoids. I systematically analyzed thereby determine the spatial coordinates of domain formation the spatiotemporal expression and function of regulatory genes (1, 2). In the context of these maternal factors, zygotic tran- segregating euechinoid ectoderm and mesoderm in a cidaroid. I scription of distinct sets of regulatory genes occurs in specific report marked divergence of GRN architecture in early embryonic regions of the embryo, initiating the genomically encoded regu- specification of the oral–aboral axis in echinoids. Although I found latory program and its output of regulatory genes. In this way, evidence for diverged regulation of both mesodermal and ecto- the embryo becomes populated by distinct sets of transcription dermal genes, comparative analyses indicated that, since factors and cell signaling molecules called regulatory states (3). these two clades diverged 268 mya, mesodermal GRNs have un- Providing each cell with its molecularly distinct and functional dergone significantly more alterations than ectodermal GRNs. identity, regulatory states are the spatial readout of developmental gene regulatory networks (GRNs) (4, 5). Author contributions: E.M.E. designed research, performed research, analyzed data, and Sea urchins (class Echinodea) have long served as model sys- wrote the paper. tems for studying the mechanisms of early development and, The author declares no conflict of interest. more recently, to study fundamental aspects of developmental This article is a PNAS Direct Submission. GRNs. Mechanisms of early development can be readily studied 1Present address: Department of Ecology and Evolutionary Biology, Yale University, New in sea urchins owing to invariant cleavage patterns that give rise Haven, CT 06511. to early specification of blastomeres and cell lineages with rela- 2Email: [email protected]. tively clear boundaries of embryonic domains (6, 7). Evolution This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. and mechanisms of developmental programs also lend themselves 1073/pnas.1612820113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1612820113 PNAS Early Edition | 1of10 Downloaded by guest on September 28, 2021 development of cidaroids and euechinoids have the potential Overall, regulatory genes expressed in ectodermal domains ex- to illuminate the tempo and mode of evolution of develop- hibited stronger signals of conservation relative to those expressed mental GRNs. in mesodermal domains. These results suggest that embryonic do- In the present work, I coupled comparative spatiotemporal mains and cell types in early development of sea urchins have gene expression analyses with experimental manipulations of evolved at different rates since the divergence of the two echinoid regulatory genes specifying euechinoid nonskeletogenic me- sister subclasses. Alterations to GRN architecture have occurred sodermal (NSM) and ectodermal domains in the cidaroid Et to frequently throughout the network since their divergence. In addi- reveal how these GRNs have changed since the divergence of tion, these results offer an in-principle explanation for the rapid echinoids. This study focused on oral–aboral (O-A; or dorsal- changes in developmental processes during the convergent evolu- ventral) patterning, which has consequences for both the tion of direct-developing, nonfeeding sea urchins (50–53). ectoderm and mesoderm and is highly conserved in deutero- stomes (46, 48, 49). I present evidence that deployment and in- Results teractions of regulatory genes specifying sea urchin ectoderm Conserved Deployment of Euechinoid Ectodermal Regulatory Genes and mesoderm have diverged substantially in indirect-developing in the Cidaroid Et. In euechinoids, the ectoderm is segregated into echinoids. Importantly, comparative data and analyses suggest a diverse set of regulatory states defined by the future location of that regulatory linkages occurring in ectodermal GRNs have the stomodaeum (46, 54, 55). A critical factor in establishing O-A undergone fewer alterations—and thus are less divergent– (47) polarity in sea urchins is Nodal (35, 38). Nodal ligand, via than those occurring among regulatory genes in mesoder- activation by SMAD signaling, is directly upstream of nodal, not, mal domains. The conclusions are supported by comparative lefty, and chordin in oral ectoderm (OE) (40, 56). In Et, zygotic spatiotemporal data, statistical analyses of timecourse gene transcription of nodal, not, and lefty begins by early blastula stage expression data in three taxa of echinoids, and perturbation (Fig. 1 D and J and SI Appendix,Fig.S1D). In contrast to analyses. euechinoids, transcriptional activation of chordin does not occur Fig. 1. Spatiotemporal dynamics of 11 euechinoid ectodermal and mesodermal regulatory genes in the cidaroid Et. mRNA transcripts were visualized
Recommended publications
  • Download Full Article 1.7MB .Pdf File
    https://doi.org/10.24199/j.mmv.1934.8.08 September 1934 Mem. Nat. Mus. Vict., viii, 1934. THE CAINOZOIG CIDARIDAE OF AUSTRALIA. By Frederick Chapman, A.L.S., F.G.S., Commonwealth Palaeon- tologist, and Francis A. Cudmore, Hon. Palaeontologist, National Museum. Plates XII-XV. Nearly 60 years ago Professor P. M. Duncan described the first Australian Cainozoic cidaroid before the Geological Society of London. During the next 20 years Professors R. Tate and J. W. Gregory published references to our fossil cidaroids, but further descriptive work was not attempted until the present authors undertook to examine the accumulated material in the National Museum, the Tate Collection at Adelaide University Museum, the Commonwealth Palaeontological Collection, and the private collections made by the late Dr. T. S. Hall, F. A. Singleton, the Rev. Geo. Cox and the authors. The classification of the Cidaridae is founded mainly upon living species and it is partly based on structures which are only rarely preserved in fossils. Fossil cidaroid tests are usually imperfect. On abraded tests the conjugation of ambulacral pores is obscure. The apical system is preserved only in one specimen among those examined. The spines are rarely attached to the test and pedicellariae are wanting. Therefore, in dealing with our specimens we have been guided mainly by the appear- ance and structure of ambulacral and interambulacral areas. Certain features used in our classification vary with the growth stage of the test : for instance, the number of coronal plates in vertical series, the number of ambulacral plates adjacent to the largest coronal plate, and sometimes the number of granules on the inner end of ambulacral plates.
    [Show full text]
  • SI Appendix for Hopkins, Melanie J, and Smith, Andrew B
    Hopkins and Smith, SI Appendix SI Appendix for Hopkins, Melanie J, and Smith, Andrew B. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Corrections to character matrix Before running any analyses, we corrected a few errors in the published character matrix of Kroh and Smith (1). Specifically, we removed the three duplicate records of Oligopygus, Haimea, and Conoclypus, and removed characters C51 and C59, which had been excluded from the phylogenetic analysis but mistakenly remain in the matrix that was published in Appendix 2 of (1). We also excluded Anisocidaris, Paurocidaris, Pseudocidaris, Glyphopneustes, Enichaster, and Tiarechinus from the character matrix because these taxa were excluded from the strict consensus tree (1). This left 164 taxa and 303 characters for calculations of rates of evolution and for the principal coordinates analysis. Other tree scaling methods The most basic method for scaling a tree using first appearances of taxa is to make each internal node the age of its oldest descendent ("stand") (2), but this often results in many zero-length branches which are both theoretically questionable and in some cases methodologically problematic (3). Several methods exist for modifying zero-length branches. In the case of the results shown in Figure 1, we assigned a positive length to each zero-length branch by having it share time equally with a preceding, non-zero-length branch (“equal”) (4). However, we compared the results from this method of scaling to several other methods. First, we compared this with rates estimated from trees scaled such that zero-length branches share time proportionally to the amount of character change along the branches (“prop”) (5), a variation which gave almost identical results as the method used for the “equal” method (Fig.
    [Show full text]
  • Testing the Quality of the Fossil Record by Groups and by Major Habitats
    Histo-icalBiology, 1996, Vol 12,pp I 1I-157 © 1996 OPA (Overseas Publishers Association) Reprints available directly from the publisher Amsterdam B V Published in The Netherlands Photocopying available by license only By Harwood Academic Publishers GmbH Printed in Malaysia TESTING THE QUALITY OF THE FOSSIL RECORD BY GROUPS AND BY MAJOR HABITATS MICHAEL J BENTON and REBECCA HITCHIN Department of Geology, University of Bristol, Bristol, B 58 IRJ, United Kingdom (Received February 9 1996; in final form March 25, 1996) The evolution of life is a form of history and, as Karl Popper pointed out, that makes much of palaeontology and evolutionary biology metaphysical and not scientific, since direct testing is not possible: history cannot be re-run However, it is possible to cross-compare three sources of data on phylogeny stratigraphic, cladistic, and molecular Three metrics for comparing cladograms with stratigraphic information allow cross-testing of () the order of branching with the stratigraphic order of fossils, and of (2) the relative amount of cladistically-implied gap in proportion to known fossil record. Results of the metrics, based upon a data set of 376 cladograms, show that there are statistically significant differences in the results for echinoderms, fishes, and tetrapods Matching of rank- order data on stratigraphic age of first appearances and branching points in cladograms, using Spearman Rank Correlation (SRC), is poorer than reported before, with only 148 of the 376 cladograms tested (39 %) showing statistically significant matching Tests of the relative amount of cladistically-implied gap, using the Relative Completeness Index (RCI), indicated excellent results, with 288 of the cladograms tested (77 %) having records more than 50% complete.
    [Show full text]
  • Geoconservation in the Cabeço Da Ladeira Paleontological Site
    geosciences Article Geoconservation in the Cabeço da Ladeira Paleontological Site (Serras de Aire e Candeeiros Nature Park, Portugal): Exquisite Preservation of Animals and Their Behavioral Activities in a Middle Jurassic Carbonate Tidal Flat Susana Machado 1,*, Lia Mergulhão 2, Bruno Claro Pereira 3,4,5 , Pedro Pereira 6,7,8 , Jorge Carvalho 1 , José António Anacleto 1,9, Carlos Neto de Carvalho 8,10 , João Belo 11,12, Ricardo Paredes 13,14 and Andrea Baucon 10,15 1 Laboratório Nacional de Energia e Geologia (LNEG), P-2610 999 Amadora, Portugal; [email protected] (J.C.); [email protected] (J.A.A.) 2 Instituto da Conservação da Natureza e das Florestas (ICNF), P-1050 191 Lisbon, Portugal; [email protected] 3 Museu da Lourinhã, P-2530 158 Lourinhã, Portugal; [email protected] 4 Citation: Machado, S.; Mergulhão, Associação Geoparque Oeste, P-2530 103 Lourinhã, Portugal 5 L.; Pereira, B.C.; Pereira, P.; Carvalho, GeoBioTec, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, J.; Anacleto, J.A.; Neto de Carvalho, P-2829 516 Caparica, Portugal 6 Department of Sciences and Technology, Universidade Aberta, P-1269 001 Lisbon, Portugal; C.; Belo, J.; Paredes, R.; Baucon, A. [email protected] Geoconservation in the Cabeço da 7 Center for Functional Ecology, Universidade de Coimbra, P-3000 456 Coimbra, Portugal Ladeira Paleontological Site (Serras 8 Instituto Dom Luiz, University of Lisbon, P-1749 016 Lisbon, Portugal; [email protected] de Aire e Candeeiros Nature Park, 9 Museu Geológico do LNEG, P-1249 280 Lisbon, Portugal Portugal): Exquisite Preservation of 10 Naturtejo UNESCO Global Geopark.
    [Show full text]
  • Larval Development of the Tropical Deep-Sea Echinoid Aspidodiademajacobyi: Phylogenetic Implications
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2000 Marine Biological Laboratory. The final published version of this manuscript is available at http://www.biolbull.org/. This article may be cited as: Young, C. M., & George, S. B. (2000). Larval development of the tropical deep‐sea echinoid Aspidodiadema jacobyi: phylogenetic implications. The Biological Bulletin, 198(3), 387‐395. Reference: Biol. Bull. 198: 387-395. (June 2000) Larval Development of the Tropical Deep-Sea Echinoid Aspidodiademajacobyi: Phylogenetic Implications CRAIG M. YOUNG* AND SOPHIE B. GEORGEt Division of Marine Science, Harbor Branch Oceanographic Institution, 5600 U.S. Hwy. 1 N., Ft. Pierce, Florida 34946 Abstract. The complete larval development of an echi- Introduction noid in the family Aspidodiadematidaeis described for the first time from in vitro cultures of Aspidodiademajacobyi, Larval developmental mode has been inferredfrom egg a bathyal species from the Bahamian Slope. Over a period size for a large numberof echinodermspecies from the deep of 5 months, embryos grew from small (98-,um) eggs to sea, but only a few of these have been culturedinto the early very large (3071-pum)and complex planktotrophicechino- larval stages (Prouho, 1888; Mortensen, 1921; Young and pluteus larvae. The fully developed larva has five pairs of Cameron, 1989; Young et al., 1989), and no complete red-pigmented arms (preoral, anterolateral,postoral, pos- ontogenetic sequence of larval development has been pub- lished for invertebrate.One of the terodorsal,and posterolateral);fenestrated triangular plates any deep-sea species whose have been described et at the bases of fenestratedpostoral and posterodorsalarms; early stages (Young al., 1989) is a small-bodied sea urchin with a complex dorsal arch; posterodorsalvibratile lobes; a ring Aspidodiademajacobyi, flexible that lives at in the of cilia around the region of the preoral and anterolateral long spines bathyal depths eastern Atlantic 1).
    [Show full text]
  • Download This PDF File
    Acta Geologica Polonica, Vol. 53 (2003), No. 2, pp. 143-165 A monograph of the Polish Oxfordian echinoids; Part 1, Subclass Cidaroidea CLAUS, 1880 URSZULA RADWA¡SKA Institute of Geology, University of Warsaw, Al. ˚wirki i Wigury 93; PL-02-089 Warszawa, Poland. E-mail: [email protected] ABSTRACT: RADWA¡SKA, U. 2003. A monograph of the Polish Oxfordian echinoids; Part 1, Subclass Cidaroidea CLAUS, 1880. Acta Geologica Polonica, 53 (2), 143-165. Warszawa. Cidaroid echinoids (subclass Cidaroidea CLAUS, 1880) from the Oxfordian part of a more than 1 km thick Upper Jurassic carbonate sequence developed over epicontinental areas of Poland (Polish Jura, Holy Cross Mountains, Mid-Polish Anticlinorium) are assigned to 13 taxa of the genera Rhabdocidaris DESOR, 1855, Polycidaris QUENSTEDT, 1858, Plegiocidaris POMEL, 1883, and Paracidaris POMEL, 1883. Their taxonomy is revised and discussed with a spe- cial emphasis on establishing the relationships between species based on bare tests and isolated spines. As former attempts to combine these elements, and to accommodate them into particular genera, have resulted in a very con- fused taxonomy of almost all of the species studied, the synonymies of the Polish species are revised. This offers a new insight into content of the genus Paracidaris POMEL, 1883, to which the species Paracidaris blumenbachi (MÜNSTER in GOLDFUSS, 1826), P. elegans (MÜNSTER in GOLDFUSS, 1826), P. florigemma (PHILLIPS, 1829), P. laeviscu- la (L. AGASSIZ, 1840), P. propinqua (MÜNSTER in GOLDFUSS, 1826) are assigned, and whose relation to the often-con- fused species Paracidaris parandieri (L. AGASSIZ, 1840) and P. filograna (L. AGASSIZ, 1840) is discussed.
    [Show full text]
  • The Complete Devewpment of the Deep-Sea Cidaroid Urchin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Oregon Scholars' Bank THE COMPLETE DEVEWPMENT OF THE DEEP-SEA CIDAROID URCHIN CIDARIS BLAKEI (AGASSIZ, 1878) WITH AN EMPHASIS ON THE HYALINE LAYER by KATHLEEN BENNETT A THESIS Presented to the Department ofBiology and the Graduate School ofthe University ofOregon in partial fulfillment ofthe requirements for the degree of Master ofScience December 2009 11 "The Complete Development ofthe Deep-Sea Cidaroid Urchin Cidaris blakei (Agassiz, 1878) With an Emphasis on the Hyaline Layer," a thesis prepared by Kathleen Bennett in partial fulfillment ofthe requirements for the Master ofScience degree in the Department ofBiology. This thesis has been approved and accepted by: Al 'Sb1ilAld;, C air ofthe Examining Committee Date Committee in Charge: Alan Shanks, Chair Richard Emlet Craig Young Accepted by: Dean ofthe Graduate School III © 2009 Kathleen Bennett IV An Abstract ofthe Thesis of Kathleen Bennett for the degree of Master ofScience in the Department ofBiology to be taken December 2009 Title: THE COMPLETE DEVELOPMENT OF THE DEEP-SEA CIDAROID URCHIN CIDARIS BLAKEI(AGASSIZ, 1878) WITH AN EMPHASIS ON THE HYALINE LAYER Approved: Alan Shanks Living echinoids comprise two major sister clades, the Euechinoidea and the Cidaroidea. Cidaroids first appeared during the lower Permian (~255 mya) and are considered to represent the primitive form ofall other living echinoids. The present study ofCidaris blakei, a deep-sea planktotrophic cidaroid urchin, provides a description ofdevelopment from fertilization through early juvenile stages and is the first report ofa deep-sea organism reared through metamorphosis.
    [Show full text]
  • Echinodermata: Echinoidea) Alexander Ziegler*1, Cornelius Faber2 and Thomas Bartolomaeus3
    Frontiers in Zoology BioMed Central Research Open Access Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea) Alexander Ziegler*1, Cornelius Faber2 and Thomas Bartolomaeus3 Address: 1Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany, 2Institut für Klinische Radiologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität Münster, Waldeyerstraße 1, 48149 Münster, Germany and 3Institut für Evolutionsbiologie und Zooökologie, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, 53121 Bonn, Germany Email: Alexander Ziegler* - [email protected]; Cornelius Faber - [email protected]; Thomas Bartolomaeus - [email protected] * Corresponding author Published: 9 June 2009 Received: 4 December 2008 Accepted: 9 June 2009 Frontiers in Zoology 2009, 6:10 doi:10.1186/1742-9994-6-10 This article is available from: http://www.frontiersinzoology.com/content/6/1/10 © 2009 Ziegler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure.
    [Show full text]
  • Early Development Ofthe Deep-Sea Echinoid Cidaris Blake; (A
    Early Development ofthe Deep-Sea Echinoid Cidaris blake; (A. Aggasiz, 1878) Katie Bennett Introduction The order ofechinoids known as Cidaroida has been relatively well-studied, as an example ofboth shallow and deep-water fauna extending from about looN to the far south ofthe Antarctic Ocean (Emlet 1987). The extant population ofCidaroids is comprised ofat least 27 genera and 148 species and subspecies (Mortensen 1938). In the time since Mortensen's tabulations, a number ofnew Cidaroid species have been described, increasing the known number ofgenera and species (e.g. Holland 1967, Tyler & Gage 1984). Examples ofCidaroids are found in the fossil record as far back as the Cretaceous, and they are widely considered to be living representatives of"primitive" urchins and evolutionary precursors to modem sea urchins, or "euechinoids" (Schroeder 1981). Although the development of Cidaroids in general is well documented, the embryology ofthe deepwater urchin Cidaris blakei (A.Agassiz, 1878) has not been described. In his study ofthe development ofthe shallow-water Cidaroid Eucidaris tribuloides, Schroeder (1981) noted that there were major differences between traditional Euechinoid development and that ofE. tribuloides. Most notably, he cites a lack of primary mesenchyme (which gives rise to the larval skeleton in other echinoids), a virtual absence ofa hyaline layer or apical tuft, and small, irregular numbers ofmicromeres. In a detailed description oflarval form and metamorphosis ofEucidaris thouarsi, Emlet (1988) described differences between rudiment development in Cidaroids and Euechinoids. There is great variation in embryonic development among genera of Cidaroids. Additional descriptions ofCidaroid species will allow us to construct a more complete phylogeny, and therefore better infer relationships between this ancient lineage and the Euechinoids.
    [Show full text]
  • A Phylogenomic Resolution of the Sea Urchin Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A phylogenomic resolution of the sea urchin tree of life Nicolás Mongiardino Koch ([email protected]) – Corresponding author Department of Geology and Geophysics, Yale University, New Haven CT, USA Simon E. Coppard ([email protected]) Department of Biology, Hamilton College, Clinton NY, USA. Smithsonian Tropical Research Institute, Balboa, Panama. Harilaos A. Lessios ([email protected]) Smithsonian Tropical Research Institute, Balboa, Panama. Derek E. G. Briggs ([email protected]) Department of Geology and Geophysics, Yale University, New Haven CT, USA. Peabody Museum of Natural History, Yale University, New Haven CT, USA. Rich Mooi ([email protected]) Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco CA, USA. Greg W. Rouse ([email protected]) Scripps Institution of Oceanography, UC San Diego, La Jolla CA, USA. bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Background: Echinoidea is a clade of marine animals including sea urchins, heart urchins, sand dollars and sea biscuits.
    [Show full text]
  • Antarctic Urchin Ctenocidaris Speciosa Spines: Lessons from the Deep
    Cali. Biol. Mar. (2013) 54 : 649-655 Antarctic urchin Ctenocidaris speciosa spines: lessons from the deep Ana I. CATARINO1, Virginie GUIBOURT1, Claire MOUREAUX1, Chantai DE RIDDER1, Philippe COMPERE2 and Philippe DUBOIS1 H) Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/10; av FD Roosevelt 50; 1050 Brussels, Belgium. Telephone: +32-2-650.29.70, fax: +32-2-650.27.96, E-mail:[email protected] O) Département des Sciences et Gestion de IEnvironnement, Université de Liège, Bât. B6c, allée du 6 Août 10; 4000 Liège, Belgium Abstract: Ocean acidification is leading to changes in the oceanic carbonate system. As a result, calcium carbonate saturation horizon is shallowing, especially at high latitudes. Biogenic high magnesium-calcites could be particularly vulnerable, since their solubility is either similar or greater than that of aragonite. Cidaroid urchins have magnesium-calcite spines covered by a polycrystalline cortex which becomes exposed to seawater when mature (not covered by an epidermis). However, deep species live at low calcium carbonate saturation states, especially at high latitudes. We describe here the morphology and the magnesium content of Ctenocidaris speciosa spines collected at different depths from the Weddell Sea (Antarctica) and relate the features with seawater calcium carbonate saturation. We observed that the spines cortex of C. speciosa presented a thicker inner cortex layer and a lower [Mg2+] below the aragonite saturation horizon. We suggest that the cortex of cidaroid spines is able to resist to low calcium carbonate saturation state. Résumé : Les épines de l ’oursin antarctique Ctenocidaris speciosa : leçons venues des profondeurs. L’acidification des océans apporte des changements dans le système des carbonates de l’eau de mer.
    [Show full text]
  • Océano Profundo 2018: Exploring Deep-Sea Habitats Off Puerto Rico and the U.S. Virgin Islands Cruise Report
    EX-18-11 Expedition Report Océano Profundo 2018: Exploring Deep-Sea Habitats off Puerto Rico and the U.S. Virgin Islands EX-18-11: Puerto Rico and U.S. Virgin Islands (ROV & Mapping) October 30 - November 20, 2018 San Juan, Puerto Rico to San Juan, Puerto Rico Report Contributors: Daniel Wagner, Expedition Coordinator, NOAA Office of Ocean Exploration & Research Derek Sowers, Mapping Lead, NOAA Office of Ocean Exploration & Research Stacey M. Williams, Science Co-Lead, Institute for Socio-Ecological Research Steven Auscavitch, Science Co-Lead, Temple University Debi Blaney, Web Coordinator, NOAA Office of Ocean Exploration & Research Megan Cromwell, Sample Data Manager, NOAA National Centers of Environmental Information 1, 2019 March 2 NOAA Office of Ocean Exploration and Research 1315 East-West Highway, SSMC3 RM 10210 Silver Spring, MD 20910 ` Abstract Between October 30 and November 20, 2018, the Office of Ocean Exploration and Research (OER) of the National Oceanic and Atmospheric Administration (NOAA) and partners conducted a 22-day telepresence-enabled expedition on NOAA Ship Okeanos Explorer to collect critical baseline information about unknown and poorly understood deep-water areas surrounding Puerto Rico and the U.S. Virgin Islands. The goal of the expedition was to use remotely operated vehicle (ROV) dives in combination with mapping operations to increase our understanding of deep-sea ecosystems of this poorly studied region, as well as to provide a foundation of publicly-accessible data to spur further exploration, research, and management activities. Using OER’s dual-body ROV the expedition completed 19 successful dives ranging in depth from 250 to 5,000 meters that explored a wide diversity of habitats and geological features, including deep-sea fish habitats, deep-sea coral and sponge communities, midwater habitats, submarine canyons, submarine landslides, and more.
    [Show full text]