ABSTRACT YOKUS, MURAT A. Multiplexed Biochemical And

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT YOKUS, MURAT A. Multiplexed Biochemical And ABSTRACT YOKUS, MURAT A. Multiplexed Biochemical and Biophysical Sensing Systems for Monitoring Human Physiology. (Under the direction of Dr. Michael A. Daniele and Dr. Tushar Ghosh). Noninvasive access to biochemical biomarkers of human physiology is one of the most challenging tasks in digital health. Today, measurement of the biomarkers of health, wellness, or even diseases requires frequent lab visits for routine blood or urine test panels for full-body screening. Treatment or medical prescription is usually provided based on the measured metrics and patient’s recall of symptoms. However, some of these test panels are still deemed invasive, painful, or inconvenient, and most importantly, they do not offer real-time measurement physiological data. Thus, addressing these challenges requires the development of multiplexed wearable systems that converge biochemical and biophysical sensing functionalities into a single platform and provide real-time measurement of biomarkers of human physiology in daily settings. In this dissertation, we provide wireless, wearable health monitoring systems that can noninvasively and continuously measure the biomarkers of human physiology. The developed systems can measure metabolites (glucose, lactate), pH, and other physical signals (skin temperature, heart rate, and tissue oxygenation) via electrochemical sweat analysis and optical methods. The dissertation introduces the fabrication of flexible sensing arrays, fabrication and characterization of biosensors, design and validation of the wearable electronic systems, and off- body multiplexed analysis of artificial and collected real sweat samples. The developed wearable systems provide multimodal, noninvasive analysis of biomarkers of metabolism and respiration, extending its applications from diet management and performance monitoring to the prolonged assessment of overall health and wellness in ambulatory settings. © Copyright 2020 by Murat Abdurrahim Yokus All Rights Reserved Multiplexed Biochemical and Biophysical Sensing Systems for Monitoring Human Physiology by Murat A. Yokus A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Electrical Engineering & Fiber and Polymer Science Raleigh, North Carolina 2020 APPROVED BY: _______________________________ _______________________________ Dr. Michael A. Daniele Dr. Tushar Ghosh Committee Co-Chair Committee Co-Chair _______________________________ _______________________________ Dr. Alper Bozkurt Dr. Veena Misra DEDICATION To my family for their endless support ii BIOGRAPHY Murat Yokus received a B.Sc. degree in Textile Engineering (summa cum laude) with a minor in Industrial Engineering in 2011 from Uludag Univesity in Turkey. He completed the last year of his bachelor’s degree at Polytechnic University of Valencia (Spain) and the University of Manchester (England). Later that year, he received Fulbright Scholarship from the U.S. Department of State's Bureau of Educational and Cultural Affairs to pursue his M.Sc. degree in Textile Engineering at North Carolina State University. Then, he pursued a Ph.D. program at North Carolina State University, majoring in Electrical Engineering and co-majoring in Fiber and Polymer Science. He initially worked in NEXT Research Group on wearable electronic textiles. Afterward, he joined BioInterface Lab under the direction of Dr. Michael Daniele. His research interests include wearable and implantable electronics, biosensors, and integrated circuit design for biomedical applications. iii ACKNOWLEDGMENTS First, I would like to thank my advisor and a close friend, Dr. Michael Daniele. Four and half years ago, you gave me the opportunity to join the BioInterface Lab and supported my ideas and research interest. I am very thankful for your help and guidance throughout my graduate studies. I am very grateful for your time and effort in transitioning me to an independent researcher. I also would like to thank the rest of my advisory committee members for their guidance and support: Dr. Alper Bozkurt, Dr. Tushar Ghosh, Dr. Veena Misra, and Dr. Brendan O’Connor. Specifically, I would like to thank Dr. Ghosh for being my dissertation co-chair and Dr. Bozkurt for the helpful research discussions throughout my Ph.D. This research has been possible with funding from the NSF Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST). I would like to thank everyone in the ASSIST Center, Veena, Mehmet, Tom, Casey, Elena, Roy, Jason, Scott, Clay, for providing the students with the resources for professional and personal development. Special thanks to Dr. Rajinder Khosla and Dr. Mehmet Ozturk for the pleasant talks. To staff and individuals of the NNF, AIF, ECE department, BME department, and College of Textiles, thank you for providing assistance and training for the tools and equipment. Your expertise allowed me to learn the required skills needed for the research in this dissertation. I would like to extend my sincere thanks to my research collaborators, Talha Agcayazi, Tanner Songkakul, and Tamoghna Saha, for their great friendship and significant contribution to the work presented in this dissertation. I would like to thank the undergraduates who afforded me the chance to mentor them (Kristi, Nathan, Rachel, Grace, Cheyanne, Kendal, and Matt). Special thanks to Rachel Foote for her excitement and contribution to the research on stretchable printed interconnects. iv To all of the BioInterface Lab, iBionics Lab, and NEXT Research Lab members, thanks for making the labs an exciting place to learn and explore. Your friendship and useful research discussions will not be forgotten. Special thanks to Ashlyn Young, Vladimir Pozdin, Parthiban Rajan, James Dieffenderfer, Talha Agcayazi, Tanner Songkakul, Peter Sotory, Evan Williams, Parvez Ahmmed, Tahmid Latif, Michael McKnight, Ryan Hodges, Halil Akyildiz, and Jonathan Halbur. All the students from the ASSIST Center, Francisco, Michael Lim, Abhishek, Tim, Saba, Amanda, Namita, Jose, Rita, Akhilesh, Xiao Zhang, Marzana, Michael Wilkins, Rafael Silva…. and everyone else, thanks for the enjoyable moments and great memories. I also would like to thank to the Turkish community and friends, Alper, Safak, Rana, Halil, Ozkan, Emrah, Ramiz, Serdar, Mehmet, Nihat, Musab, Tugrul, Elif, and Cemile, for their friendship and great memories. My concluding statement of the most profound gratitude is for my family. Thank you, dad, thank you, mom, and thank you, my dear sisters. I couldn’t be here where I am today without your help, support, and guidance throughout my life. Thank you. v TABLE OF CONTENTS LIST OF TABLES ..................................................................................................................... viii LIST OF FIGURES ..................................................................................................................... ix CHAPTER 1: Introduction ........................................................................................................ 1 1.1. Objective ............................................................................................................................. 1 1.2. Dissertation Outline ............................................................................................................ 4 CHAPTER 2: Literature Review ............................................................................................... 7 2.1. Introduction ........................................................................................................................ 7 2.2. Wearable Biochemical Sensors ........................................................................................ 12 2.2.1. Sweat Extraction and Sampling Methods in Wearable Sensors ................................ 12 2.2.2. Biochemical Sensing in Current Wearable Devices .................................................. 18 2.2.2.1. Metabolites ......................................................................................................... 18 2.2.2.2. pH and Electrolytes ............................................................................................ 24 2.2.2.3. Oxygen ............................................................................................................... 28 2.2.2.4. Other Chemical Biomarkers ............................................................................... 33 2.3. Wearable Biophysical Sensors ......................................................................................... 35 2.3.1. Sweat Rate ................................................................................................................. 35 2.3.2. Temperature ............................................................................................................... 40 2.4. Wearable Systems with Multimodal Sensing ................................................................... 42 2.5. Summary and Outlook ...................................................................................................... 46 2.6. References ........................................................................................................................ 50 CHAPTER 3: Wearable Multiplexed Biosensor System Toward Continuous Monitoring of Metabolites ...................................................................................................... 61 3.1. Abstract ............................................................................................................................
Recommended publications
  • NIGP Commodity Code List
    NIGP Commodity Code List ABRASIVES 005 05 Abrasive Equipment and Tools 005 14 Abrasives, Coated: Cloth, Fiber, Sandpaper, etc. 005 21 Abrasives, Sandblasting, Metal 005 28 Abrasives, Sandblasting (Other than Metal) 005 42 Abrasives, Solid: Wheels, Stones, etc. 005 56 Abrasives, Tumbling (Wheel) 005 63 Grinding and Polishing Compounds: Carborundum, Diamond, etc. (For Valve Grinding Compounds See Class 075) 005 70 Pumice Stone 005 75 Recycled Abrasives Products and Supplies 005 84 Steel Wool, Aluminum Wool, Copper Wool, and Lead Wool ACOUSTICAL TILE, INSULATING MATERIALS, AND SUPPLIES 010 05 Acoustical Tile, All Types (Including Recycled Types) 010 08 Acoustical Tile Accessories: Channels, Grids, Mounting Hardware, Rods, Runners, Suspension Brackets, Tees, Wall Angles, and Wires 010 09 Acoustical Tile Insulation 010 11 Adhesives and Cements, Acoustical Tile 010 14 Adhesives and Cements, Insulation 010 17 Aluminum Foil, etc. 010 30 Bands, Clips, and Wires (For Pipe Insulation) 010 38 Clips, Pins, etc. (For Duct Insulation) 010 41 Cork: Blocks, Boards, Sheets, etc. 010 45 Exterior Insulation and Finish Systems 010 53 Fiberglass: Batts, Blankets and Rolls 010 56 Foam Glass: Blocks, Sheets, etc. 010 57 Foam-in-Place Insulation: Phenolic, Urethane, etc. 010 59 Foam Plastics: Blocks, Boards, Sheets, etc. 010 62 Insulation, Interior 010 63 Insulation, Blown Type 010 64 Insulation, Loose Fill 010 65 Jacketing (For Insulation): Canvas, Osnaburg, etc. 010 70 Magnesia: Blocks, Sheets, etc. 010 72 Mineral Wool: Blankets, Blocks, Boards 010 75 Paints, Primers, Sealers, etc. (For Insulation) 010 76 Paper Type Insulation Material (Cellulose, etc.) 010 78 Pipe and Tubing Insulation, All Types 010 81 Preformed Insulation, All Types (For Ells, Tees, Valves, etc.) 010 83 Recycled Insulation Materials and Supplies, All Types 010 84 Rubber Insulation ADDRESSING, COPYING, MIMEOGRAPH, AND SPIRIT DUPLICATING MACHINE SUPPLIES: CHEMICALS, INKS, PAPER, ETC.
    [Show full text]
  • Design of an Eeg System to Record Tms Evoked Potentials Design of an Electroencephalography System to Record
    DESIGN OF AN EEG SYSTEM TO RECORD TMS EVOKED POTENTIALS DESIGN OF AN ELECTROENCEPHALOGRAPHY SYSTEM TO RECORD TRANSCRANIAL MAGNETIC STIMULATION EVOKED POTENTIALS '\.., By MARK ARCHAMBEAULT, B.ENG.M. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Applied Science McMaster University © Copyright by Mark Archambeault, August 2007 M.A.Sc. Thesis - M. Archambeault McMaster University - Electrical and Conymter Engineering Master of Applied Science (2007) McMaster University (Electrical Engineering) Hamilton, Ontario TITLE: Design of an Electroencephalography System to Record Transcranial Magnetic Stimulation Evoked Potentials AUTHOR: Mark Archambeault, B.Eng.M. (McMaster University) SUPERVISOR: Dr. H. de Bruin NUMBEROFPAGES:xv, 106 11 M.A.Sc. Thesis - M. Archambeault McMaster University - Electrical and Conmuter Engineering Abstract The purpose of this thesis was to design, build and test a prototype artifact suppressing electroencephalogram data acquisition system (AS-EEG-DAQ-S) to collect electroencephalogram (EEG) evoked potential (EP) data during repetitive transcranial magnetic stimulation (rTMS) without the EEG signal being masked by transcranial magnetic stimulation (TMS) artifact. A functional AS-EEG-DAQ-S capable of blocking TMS artifact would provide for the first time a quantitative measurement system to assist in optimal TMS coil positioning during the rTMS treatment of depression, an alternative to electroconvulsive therapy (ECT). This thesis provides the details for an AS-EEG­ DAQ-S. Preliminary TMS EP results on a human subject were collected. Results showed transcallosal conduction times of 12ms to 31ms, which are consistent with those predicted and collected by other researchers in the TMS field. The first portion of this work provides electrode heating data for modem rTMS paradigms for the recording ofEEG during rTMS.
    [Show full text]
  • January 1942
    V 40 I.* JANUARY 1942 of . eng!rieering and manufacture radio communication, indLstrial applications eectjç. AL U. S. FDREST SERVICE AuToriAtIL: 111.1 STATION OPERATING IN 30-4C M R 'IC IC -1 t 'NAP' - *".4tOk ' V - 7 - . , `1.4 4, rf. 4,0". - - low - 411r..-t 441V- 4 - - 17174 'w,04016 " - , - 4 (7-- 1 s 1.4 ste , 1°' leb doesn the e tbodyngs tell me is an ideal source for transformers to specifications With improvements in materials, structural design, and production methods, UTC is pro- ducing, today, transformers which even a year ago would have been considered impossible. As a typ cal example of such development is a transformer recently supplied to a customer for one cycle operation having the following characteristics: Primary impedance IO ohms. Impedance ratio 75,000 : I. Secondary inductance 250,000 Hys. Self- resonant point above 7 cycles. Weight under 8 pounds. In additicn to t4,ese difficult characteristics, this unit operates at -160 DB signal level and hum shielding was developed to provide negligible hum pick -up to signal ratio. MAY WE ASSIST Y OU IN YOUR PROBLEM? The same design experience and engineering ingenuity shown in the above example can be applied to your application. May we have an opportunity to cooperate? 150 VARICK STREET EXPORT DIVI SiO1`: i00 YARICK STREET NEW YORK, N. Y. S: AR AB" electronics A McCRAW-HILL PUBLICATION CONTENTS-JANUARY, 1942 FOREST SERVICE RADIO Cover A field communication station of the U. S. Forest Service. Extensive use is made of radio in patrolling the forests and fighting Tres 30 -40 MC MOBILE RECEIVER, KEITH HENNEY by H.
    [Show full text]
  • Audio/Visual Device Technical Manual
    Electrical Geodesics, Inc. Audio/Visual Device Technical Manual Audio/Visual Device Technical Manual Ell ectttrii call Geodesii cs,,, II nc... Riverfront Research Park 1600 Millrace Drive, Suite 307 Eugene, OR 97403 [email protected] www.egi.com Audio/Visual Device Technical Manual S-MAN-200-AV-001 May 7, 2007 Electrical Geodesics makes no warranty or representation, either express or implied, with respect to this manual, its quality, accuracy, merchantability, or fitness for a particular purpose. In no event will Electrical Geodesics be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect or inaccuracy in this manual, even if advised of the possibility of such damage. Copyright 2007 by Electrical Geodesics, Inc. All rights reserved. CONTENTS List of Figures vii List of Tables ix Preface xi Related Manuals . xi About This Manual . xv Troubleshooting and Support . xvi chapter 1 Technical Overview 17 When to Use the AV Device . 17 Overview of AV Device Operations . 18 AV Device Package . 19 AV Device Features . 22 Basic Event Timing Theory . 24 chapter 2 Visual-Stimulus Testing 29 General Considerations . 29 Hardware Configuration . 30 Positioning the Photocell Holder . 33 Verifying AV Device Functionality . 41 Test Instructions . 41 chapter 3 Auditory-Stimulus Testing 45 General Considerations . 45 Hardware Configuration . 46 Software Configuration . 50 Verifying AV Device Functionality . 51 Test Instructions . 52 Audio/Visual Device Technical Manual S-MAN-200-AV-001 • May 7, 2007 v Contents chapter 4 Event Timing Tester 55 Event Timing Tester Interface . 56 Running the Event Timing Tester . 58 Analysis of Results . 59 Text Output . 62 chapter 5 Troubleshooting 63 General Troubleshooting .
    [Show full text]
  • HEALTH-ANNEX 5 Code Description Part-No. Qty. 02-05-00001
    HEALTH-ANNEX 5 Code Description Part-no. Qty. EQUIPMENT: ECG (ELECTRO CARDIO 02-05-00001 GRAPHIC ) MODEL: 5403 COMPANY NAME :NIHON COHDEN JAPAN QUINTITY: 78 SITE : ALL GOVERNERATES Heat stylus TLS-100 1004950171B 600 Patient Cable BJ-261D 5570383 300 Limb electrode for a duts 4 Pcs/set 5030003 600 Limb electrode strap for a duts 4Pcs/set 5030021 600 Chest electrode for a duts 6 Pcs/set 5030378 300 Worm wheel Assembly 2144-000103 60 Dc motor for chart LB32-KS 2803-000309 30 Magnetic sensor, chart speed detect PF-2K-02 30 Bush button start, check stop 2124-000808 60 All-Channel sensitivity control unit board . UP-4250 30 Control unit A assembly UP-4065 30 Per Amplifier mother board unit assembly (UP- 4241) 9406713 30 120 Regulator unit Circuit board assembly (UP- 4242) 9424214 30 11.4 Regulator unit cct Maub Amplifier (OL- 501E) 9424319 30 Transport unit cct borard (UP-4252) 9425238 30 Chart speed selection unit (UP-4253) 9425318 30 Pre Amplifier Unit cct (UP-4248) 9424827 30 Input Unit cct board (UP-4247A) 9424738 30 Main Amplifier cct board (UP-4245) 9424524 60 Dc-Dc converter unit cct board(UP-4241) Transformer , 3-293, power 9406713 30 Board Up 4232 30 Warmer Gear A144-008621 30 Bord Up-4244 D.C PC Conr 30 Warm wheel 165 02-05-00002 EQUIPMENT: electrocardiograph machine Model: Cardiofax 5151 COMPANY NAME: NIHON KOHDEN, Japan QUANTITY INSTALLED:300 Stylus 450 Patient Cable 300 Electrode straps 1500 Limb Electrode 1500 Transistor 2SC2270 300 Transistor 2SA11020 300 Transistor 2SD355 750 Transistor 2SB525 750 1mV Switch 225 Run-Stop Switch 225 Chest Electrode 600 Galvanometer 75 Recorder PCB UP-4235 300 Mother PCB UP-4279 150 02-05-00003 EQUIPMENT: Electrocardiograph Machine MODEL:l hp 1504A COMPANY NAME: Hewlett Packard, USA QUANTITY INSTALLED:100 Power Cable.
    [Show full text]
  • Printed and Flexible Systems for Solar Energy Harvesting by Aminy Erin
    Printed and Flexible Systems for Solar Energy Harvesting by Aminy Erin Ostfeld A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ana Claudia Arias, Chair Professor Kristofer S.J. Pister Professor Liwei Lin Summer 2016 Printed and Flexible Systems for Solar Energy Harvesting Copyright 2016 by Aminy Erin Ostfeld 1 Abstract Printed and Flexible Systems for Solar Energy Harvesting by Aminy Erin Ostfeld Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Ana Claudia Arias, Chair Emerging wireless and flexible electronic systems such as wearable devices and sensor networks call for a power source that is sustainable, reliable, has high power density, and can be integrated into a flexible package at low cost. These demands can be met using photovoltaic systems, consisting of solar modules for energy harvesting, battery storage to overcome variations in solar module output or load, and often power electronics to regulate voltages and power flows. A great deal of research in recent years has focused on the develop- ment of high-performing materials and architectures for individual components such as solar cells and batteries. However, there remains a need for co-design and integration of these components in order to achieve complete power systems optimized for specific applications. To fabricate these systems, printing techniques are of great interest as they can be performed at low temperatures and high speeds and facilitate customization of the components.
    [Show full text]
  • 2011 Warner Catalog Full.Pdf
    specialized tools for Electrophysiology & Cell Biology Research Planar Lipid Bilayer Perfusion/Microfluidics Oocyte Clamps Patch Clamps Microinjectors Microincubators Micromanipulators Ussing/Diffusion Systems Live Cell Imaging Chambers Temperature Control Systems Electroporation/Transfection Electro- Call to receive other catalogs of interest physiology & Animal, Behavioral Harvard Electro- Molecular Cell Biology Organ & Cell Research Apparatus poration Sample Research Physiology Pumps & Preparation Electrofusion Welcome to the NEW Electrophysiology & Dear Researcher: Warner Instruments is proud to introduce our new Electrophysiology & Cell Biology Catalog. This catalog contains many new products for cell imaging, biosensing, microinjection, and electrophysiology. NEW Products Featured Include: • PLI-100A Picoliter Microinjector - With three positive and two negative pressure capabilities, the versatile PLI-100A is capable of large injections into capillaries or small injections into mammalian nuclei. • BioStat Multi-channel Potentiostat - The BioStat is a software-driven, multi-mode potentiostat that can be used for measurement of pH, reactive oxygen species, and nitric oxide. • Compact Motorized Micromanipulator - Linear amplifiers, used to drive the stepper motors, eliminate stray electromagnetic radiation; reducing noise and resulting in improved patch clamp and electrophysiology performance. • PFC-1 Proflow Chamber - Computer designed gaskets optimized for well-defined, well-controlled shear-flow. • RC-49FS Perfusion Chamber with
    [Show full text]
  • 2020 Supplies and Accessories Product Catalog
    supplies and accessories Helping you help others product catalog WWW.ESTORE.CADWELL.COM 1-800-245-3001 SUPPLIES, Neurodiagnostic and Monitoring Solutions Cadwell designs and supplies leading-edge medical equipment, electrodes, supplies, and accessories. Cadwell has strategic distribution relationships with leading suppliers to provide you with best-in-class products that you use every day. John Cadwell, BSEE, MD designed the first microprocessor-controlled EMG instrument during his medical school residency. In 1979, John and his brother, Carl Cadwell, DDS, formed Cadwell and began selling their device. Since then, Cadwell has been a leader in the development and manufacturing of innovative and reliable instruments for neurophysiology. Cadwell is proud to provide competitive pricing, incredible customer service, same-day shipping options, and www.estore.cadwell.com for your 24/7 shopping convenience. Thank you for choosing Cadwell. 2 www.estore.cadwell.com | phone: 1-800-245-3001 | fax: 844-364-1283 emg 04 Needle & Surface Electrodes 04 17 EMG Accessories 20 Evoked Potential Accessories 22 Electrical Stimulators 24 Ultrasound Accessories IONM 25 Cascade IOMAX Accessories 25 27 Cascade PRO Accessories 30 IONM Accessories, Electrodes & Probes eeg 42 Arc EEG Accessories 42 43 Easy EEG Accessories 46 EEG Electrodes Ambulatory eeg & psg 48 psg 51 PSG Accessories 51 61 PSG Electrodes 63 ApneaTrak® Accessories PREP SUPPLIES 67 VIDEO, POWER, STORAGE, & ACESSORIES 72 Index 78 electrode care 80 Ordering Information 81 www.estore.cadwell.com | phone: 1-800-245-3001 | fax: 844-364-1283 3 EMG | Needle Electrodes Ambu® Neuroline Disposable Monopolar Needle Electrodes with Attached Lead Wires Attached, color-coded 76cm (30 in.) lead wires.
    [Show full text]
  • The Experimental Portable EEG/EMG Amplifier
    University of Victoria Faculty of Engineering ELEC 499A Report The Experimental Portable EEG/EMG Amplifier Submitted to Dr Peter Driessen Date: August 1, 2003 From Group 11- EPEEGAG Manj Benning Stephen Boyd Adam Cochrane Derek Uddenberg In partial fulfillment of the requirements of the UVic. B.Eng. degree requirements Dr. Peter F. Driessen Associate Professor Department of Electrical and Computer Engineering University of Victoria Victoria, British Columbia Aug. 1, 2003 Dear Dr. Driessen, Please accept the accompanying ELEC 499A project report entitled “The Experimental Portable EEG/EMG Amplifier”. This report is the result of the ELEC 499A project that was completed in the summer of 2003. Our project group consists of Manj Benning, Stephen Boyd, Adam Cochrane, and Derek Uddenberg. We are all 4th year electrical engineering students at the University of Victoria. During this term, we worked together to design and prototype an inexpensive EEG/EMG amplifier system to be used in research as our ELEC 499A design project. A lot of our project time was spent learning about EEG/EMG signals and technologies. And still more time was spent designing and implementing a prototype module that was eventually presented at the 499A term presentations. The following report will detail the research we performed, the design specifications we implemented, and any future recommendations we have for this project. Upon completion of this project, we feel we have gained valuable skills in signal amplification, noise reduction, circuit synthesis, and project management. These skills are essential in today’s field of electrical engineering. We would like to thank Dr. P. Driessen for offering his supervision and the group advisor, Phil Zeman for being an invaluable source of information and inspiration.
    [Show full text]
  • Analog Front-End Circuits for Massive Parallel 3-D Neural Microsystems
    ANALOG FRONT-END CIRCUITS FOR MASSIVE PARALLEL 3-D NEURAL MICROSYSTEMS by Khaled M. Alashmouny A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2013 Doctoral Committee: Professor Euisik Yoon, Chair Associate Professor Joshua Berke Professor Khalil Najafi Assistant Professor David Wentzloff Professor Kensall Wise © Khaled M. Alashmouny _______________________________ All rights reserved 2013 All Praise belongs to Allah the Lord of mankind. To my father Mohamed, my mother Laila, and my lovely wife Manar. You always inspire me. ii ACKNOWLEDGMENTS First and foremost, it was a pleasure to work with my research advisor, Professor Euisik Yoon. It was a great experience as I learned and enjoyed a lot his challenges and guidance throughout my Ph.D. I still remember the joy I had when I started working with Prof. Yoon in deeply understanding the basic electrical definition of a ground and trying to predict the behavior of signal transmission within the brain. What I learned the most from him was the exploration of the different aspects in a microsystem design although I end up focusing more onto circuit design. Prof. Yoon always encouraged me to be a proactive person and this has reflected into a lot of the contributions and volunteering activities I decided to make for our lab, the University, and the society. I would like to thank my committee members Dr. Kensall Wise, Dr. Khalil Najafi, Dr. Joshua Berke, and Dr. David Wentzloff for their time and their great suggestions and feedback. Special thanks to Dr.
    [Show full text]
  • Biomedical Equipment Maintenance Technician
    CATALOGUE No. 34-B BIOMEDICAL EQUIPMENT MAINTENANCE TECHNICIAN CATALOGUE N. 34-B BIOMEDICAL EQUIPMENT MAINTENANCE TECHNICIAN Biomedical Equipment Maintenance Technician [email protected] www.elettronicaveneta.com 34B-E Rel. I16 BIOMEDICAL EQUIPMENT MAINTENANCE TECHNICIAN INDEX CATALOGUE N. 34-B GENERAL INTRODUCTION 1 PRESENTATION 2 INTERACTIVE PRACTICAL LABORATORY FOR STUDYING GENERAL AND BIOMEDICAL ELECTRONICS - I.P.E.S. SYSTEM PL INTRODUCTION PL 3 I.P.E.S. INTERACTIVE WORKSTATION PL 4 INFRASTRUCTURE POWER SUPPLY MOD. PS1-PSU/EV PL 9 MODULE HOLDER BOX MOD. BOX/EV PL 9 BIOMEDICAL SIGNAL GENERATOR/ACQUISITION AND FAULT INSERTION UNIT MOD. GAU/EV PL 10 C.B.T. INTERACTIVE MULTIMEDIA SOFTWARE MOD. SW-D-MCMXX/EV MOD. SWBB-BX/EV PL 12 LOCAL NETWORK PL 13 AUDIO-VIDEO-KEYBOARD-MOUSE EXCHANGE SOFTWARE PL 13 CLASS CONTROL SOFTWARE MOD. SW-X/EV PL 15 EL.VE. EDUCATIONAL AUTHOR SOFTWARE PL 16 INDEX ELECTRICITY, MICROPROCESSORS AND MICROCONTROLLERS EXPERIMENT BOARDS DC CIRCUITS AND SYSTEMS MOD. MCM1/EV PL 19 AC CIRCUITS AND SYSTEMS PLMOD. MCM2/EV PL 20 THREE-PHASE CIRCUITS AND SYSTEMS MOD. MCM2T/EV PL 21 ELECTROMAGNETISM MOD. MCM2A/EV PL 22 SEMI-CONDUCTORS MOD. MCM3/EV PL 23 FEATURES AND BIASING OF TRANSISTORS MOD. MCM4/EV PL 24 VOLTAGE AND POWER AMPLIFIER CIRCUITS MOD. MCM5/EV PL 25 OSCILLATOR CIRCUITS MOD. MCM6/EV PL 26 OPERATIONAL AMPLIFIERS MOD. MCM7/EV PL 27 SEQUENTIAL AND COMBINATIONAL LOGIC MOD. MCM8/EV PL 28 ADVANCED LOGIC AND APPLICATIONS MOD. MCM9/EV PL 29 INDUSTRIAL ELECTRONICS MOD. MCM10/EV PL 30 8-BIT MICROPROCESSORS MOD. Z1/EV PL 31 MODULES FOR THE STUDY OF BIOMEDICAL EQUIPMENT TESTING MODULE FOR ACQUISITION AND PROCESSING OF BIOMEDICAL SIGNALS MOD.
    [Show full text]
  • Fabrication of Neurophysiological Monitoring Systems
    NASA CONTRACTOR NASA CR-2416 REPORT FABRICATION OF NEUROPHYSIOLOGICAL MONITORING SYSTEMS by James D. Frost, Jr. Prepared by THE METHODIST HOSPITAL Houston, Texas 77025 for Lyndon B. Johnson Space Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JUNE 1974 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA CR-2416 4. Title -and Subtitle 5. Report Date 1 FABRICATION OF NEUROPHYSIOLOGICAL MONITORING SYSTEMS June 197 * 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. James 0. Frost, Jr., M.D. 10. Work Unit No. 9. Performing Organization Name and Address The Methodist Hospital 961-50-50-89-DB 6515 Bertner Blvd. 11. Contract or Grant No. Houston, TX 77025 NAS 9-13065 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Contractor Report - Final National Aeronautics and Space Administration Washington, D.C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract This report describes a system designed to collect electroencephalographic (EEC), electro-oculo- graphic (EOG), electromyographic (EMG), and head motion data. The portable instrumentation provides a rapid and simple means by which neurophysiological data can be obtained by the patient in his home and the taped data returned to the laboratory for analysis. The system was designed primarily for the study of sleep. :••'••'•-.•/'"' I 17. Key Words (Suggested by Author(s)) 18. Distribution Statement . Data Acquisition . Electro-oculography STAR SUBJECT CATEGORY - 05 . Neurophysiology . Electroencephalography . Sleep . Electromyography . Fabrication . Tape Recorders . Data Processing 19. Security Classif. (of this report) . 20. Security Classif. (of this page) 21 . No. of Pages 22.
    [Show full text]