Brain-Computer Interfaces an International Assessment of Research and Development Trends
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Randal Koene Page 3
CRYONICS 4th Quarter 2019 | Vol 40, Issue 4 www.alcor.org Scholar Profile: Randal Koene page 3 Cryonics in China and Australia Cryonics and Public Skepticism: page 19 Meeting The Challenges to Our Credibility page 24 CRYONICS Editorial Board Contents Saul Kent Ralph C. Merkle, Ph.D. R. Michael Perry, Ph.D. 3 Scholar Profile: Randal Koene Accomplished neuroscientist and founder of the only dedicated Editor whole brain emulation nonprofit in existence, Dr. Randal Koene Aschwin de Wolf is no stranger to standing out. Responsible for coining the term Contributing Writers that put this niche but growing field on the map, Koene is working Ben Best hard to make humans more adaptable than ever before. In his Randal Koene R. Michael Perry, Ph.D. vision of the future, minds will be substrate-independent, with Nicole Weinstock full or even enhanced functioning on a limitless and changing Aschwin de Wolf menu of platforms. Copyright 2019 by Alcor Life Extension Foundation 19 Cryonics in China and Australia All rights reserved. Ben Reports on the emerging cryonics industry in China and the plans to create a Reproduction, in whole or part, new cryonics organization in Australia. without permission is prohibited. 24 FOR THE RECORD Cryonics magazine is published Cryonics and Public Skepticism: Meeting the Challenges to Our quarterly. Credibility Cryonics has been viewed with skepticism or hostility by some, including some Please note: If you change your scientists, ever since it started in the 1960s, even though (we like to remind the address less than a month before the naysayers) its intended basis is strictly scientific. -
NIGP Commodity Code List
NIGP Commodity Code List ABRASIVES 005 05 Abrasive Equipment and Tools 005 14 Abrasives, Coated: Cloth, Fiber, Sandpaper, etc. 005 21 Abrasives, Sandblasting, Metal 005 28 Abrasives, Sandblasting (Other than Metal) 005 42 Abrasives, Solid: Wheels, Stones, etc. 005 56 Abrasives, Tumbling (Wheel) 005 63 Grinding and Polishing Compounds: Carborundum, Diamond, etc. (For Valve Grinding Compounds See Class 075) 005 70 Pumice Stone 005 75 Recycled Abrasives Products and Supplies 005 84 Steel Wool, Aluminum Wool, Copper Wool, and Lead Wool ACOUSTICAL TILE, INSULATING MATERIALS, AND SUPPLIES 010 05 Acoustical Tile, All Types (Including Recycled Types) 010 08 Acoustical Tile Accessories: Channels, Grids, Mounting Hardware, Rods, Runners, Suspension Brackets, Tees, Wall Angles, and Wires 010 09 Acoustical Tile Insulation 010 11 Adhesives and Cements, Acoustical Tile 010 14 Adhesives and Cements, Insulation 010 17 Aluminum Foil, etc. 010 30 Bands, Clips, and Wires (For Pipe Insulation) 010 38 Clips, Pins, etc. (For Duct Insulation) 010 41 Cork: Blocks, Boards, Sheets, etc. 010 45 Exterior Insulation and Finish Systems 010 53 Fiberglass: Batts, Blankets and Rolls 010 56 Foam Glass: Blocks, Sheets, etc. 010 57 Foam-in-Place Insulation: Phenolic, Urethane, etc. 010 59 Foam Plastics: Blocks, Boards, Sheets, etc. 010 62 Insulation, Interior 010 63 Insulation, Blown Type 010 64 Insulation, Loose Fill 010 65 Jacketing (For Insulation): Canvas, Osnaburg, etc. 010 70 Magnesia: Blocks, Sheets, etc. 010 72 Mineral Wool: Blankets, Blocks, Boards 010 75 Paints, Primers, Sealers, etc. (For Insulation) 010 76 Paper Type Insulation Material (Cellulose, etc.) 010 78 Pipe and Tubing Insulation, All Types 010 81 Preformed Insulation, All Types (For Ells, Tees, Valves, etc.) 010 83 Recycled Insulation Materials and Supplies, All Types 010 84 Rubber Insulation ADDRESSING, COPYING, MIMEOGRAPH, AND SPIRIT DUPLICATING MACHINE SUPPLIES: CHEMICALS, INKS, PAPER, ETC. -
Design of an Eeg System to Record Tms Evoked Potentials Design of an Electroencephalography System to Record
DESIGN OF AN EEG SYSTEM TO RECORD TMS EVOKED POTENTIALS DESIGN OF AN ELECTROENCEPHALOGRAPHY SYSTEM TO RECORD TRANSCRANIAL MAGNETIC STIMULATION EVOKED POTENTIALS '\.., By MARK ARCHAMBEAULT, B.ENG.M. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Applied Science McMaster University © Copyright by Mark Archambeault, August 2007 M.A.Sc. Thesis - M. Archambeault McMaster University - Electrical and Conymter Engineering Master of Applied Science (2007) McMaster University (Electrical Engineering) Hamilton, Ontario TITLE: Design of an Electroencephalography System to Record Transcranial Magnetic Stimulation Evoked Potentials AUTHOR: Mark Archambeault, B.Eng.M. (McMaster University) SUPERVISOR: Dr. H. de Bruin NUMBEROFPAGES:xv, 106 11 M.A.Sc. Thesis - M. Archambeault McMaster University - Electrical and Conmuter Engineering Abstract The purpose of this thesis was to design, build and test a prototype artifact suppressing electroencephalogram data acquisition system (AS-EEG-DAQ-S) to collect electroencephalogram (EEG) evoked potential (EP) data during repetitive transcranial magnetic stimulation (rTMS) without the EEG signal being masked by transcranial magnetic stimulation (TMS) artifact. A functional AS-EEG-DAQ-S capable of blocking TMS artifact would provide for the first time a quantitative measurement system to assist in optimal TMS coil positioning during the rTMS treatment of depression, an alternative to electroconvulsive therapy (ECT). This thesis provides the details for an AS-EEG DAQ-S. Preliminary TMS EP results on a human subject were collected. Results showed transcallosal conduction times of 12ms to 31ms, which are consistent with those predicted and collected by other researchers in the TMS field. The first portion of this work provides electrode heating data for modem rTMS paradigms for the recording ofEEG during rTMS. -
Roger Sperry “Split-Brain” Experiment on Cats
Thinking about Thought • Introduction • The Brain • Philosophy of Mind • Dreams and • Cognitive Models Emotions • Machine Intelligence • Language • Life and • Modern Physics Organization • Consciousness • Ecology 1 Session Six: The Brain for Piero Scaruffi's class "Thinking about Thought" at UC Berkeley (2014) Roughly These Chapters of My Book “Nature of Consciousness”: 7. Inside the Brain 2 Prelude to the Brain • A word of caution: everything we think about the brain comes from our brain. • When I say something about the brain, it is my brain talking about itself. 3 Prelude to the Brain • What is the brain good at? • Recognizing! 4 Prelude to the Brain • What is the brain good at? Who is younger? 5 Behaviorism vs Cognitivism 6 Behaviorism • William James – The brain is built to ensure survival in the world – Cognitive faculties cannot be abstracted from the environment that they deal with – The brain is organized as an associative network – Associations are governed by a rule of reinforcement 7 Behaviorism • Behaviorism – Ivan Pavlov • Learning through conditioning: if an unconditioned stimulus (e.g., a bowl of meat) that normally causes an unconditioned response (e.g., the dog salivates) is repeatedly associated with a conditioned stimulus (e.g., a bell), the conditioned stimulus (the bell) will eventually cause the unconditioned response (the dog salivates) without any need for the unconditioned stimulus (the bowl of meat) • All forms of learning can be reduced to conditioning phenomena 8 Behaviorism • Behaviorism – Burrhus Skinner (1938) • A person does what she does because she has been "conditioned" to do that, not because her mind decided so. -
THE 11TH WORLD CONGRESS on the Relationship Between Neurobiology and Nano-Electronics Focusing on Artificial Vision
THE 11TH WORLD CONGRESS On the Relationship Between Neurobiology and Nano-Electronics Focusing on Artificial Vision November 10-12, 2019 The Henry, An Autograph Collection Hotel DEPARTMENT OF OPHTHALMOLOGY Detroit Institute of Ophthalmology Thank you to Friends of Vision for your support of the Bartimaeus Dinner The Eye and The Chip 2 DEPARTMENT OF OPHTHALMOLOGY Detroit Institute of Ophthalmology TABLE OF CONTENTS WELCOME LETTER—PAUL A. EDWARDS. M.D. ....................................................... WELCOME LETTER—PHILIP C. HESSBURG, M.D. ..................................................... DETROIT INSTITUTE OF OPHTHALMOLOGY ......................................................... ORGANIZING COMMITTEE/ACCREDITATION STATEMENT ............................................... CONGRESS 3-DAY SCHEDULE ................................................................... PLATFORM SPEAKER LIST ...................................................................... SPEAKER ABSTRACTS .......................................................................... POSTER PRESENTERS’ LIST ..................................................................... POSTER ABSTRACTS ........................................................................... BARTIMAEUS AWARD—PREVIOUS RECIPIENTS ...................................................... SUPPORTING SPONSORS . Audio-Visual Services Provided by Dynasty Media Network http://dynastymedianetwork.com/ The Eye and The Chip Welcome On behalf of the Henry Ford Health System and the Department of Ophthalmology, -
January 1942
V 40 I.* JANUARY 1942 of . eng!rieering and manufacture radio communication, indLstrial applications eectjç. AL U. S. FDREST SERVICE AuToriAtIL: 111.1 STATION OPERATING IN 30-4C M R 'IC IC -1 t 'NAP' - *".4tOk ' V - 7 - . , `1.4 4, rf. 4,0". - - low - 411r..-t 441V- 4 - - 17174 'w,04016 " - , - 4 (7-- 1 s 1.4 ste , 1°' leb doesn the e tbodyngs tell me is an ideal source for transformers to specifications With improvements in materials, structural design, and production methods, UTC is pro- ducing, today, transformers which even a year ago would have been considered impossible. As a typ cal example of such development is a transformer recently supplied to a customer for one cycle operation having the following characteristics: Primary impedance IO ohms. Impedance ratio 75,000 : I. Secondary inductance 250,000 Hys. Self- resonant point above 7 cycles. Weight under 8 pounds. In additicn to t4,ese difficult characteristics, this unit operates at -160 DB signal level and hum shielding was developed to provide negligible hum pick -up to signal ratio. MAY WE ASSIST Y OU IN YOUR PROBLEM? The same design experience and engineering ingenuity shown in the above example can be applied to your application. May we have an opportunity to cooperate? 150 VARICK STREET EXPORT DIVI SiO1`: i00 YARICK STREET NEW YORK, N. Y. S: AR AB" electronics A McCRAW-HILL PUBLICATION CONTENTS-JANUARY, 1942 FOREST SERVICE RADIO Cover A field communication station of the U. S. Forest Service. Extensive use is made of radio in patrolling the forests and fighting Tres 30 -40 MC MOBILE RECEIVER, KEITH HENNEY by H. -
Synaptic Communication Engineering for Future Cognitive Brain-Machine Interfaces Mladen Veletic´ and Ilangko Balasingham, Senior Member, IEEE
PROCEEDINGS OF IEEE 1 Synaptic Communication Engineering for Future Cognitive Brain-machine Interfaces Mladen Veletic´ and Ilangko Balasingham, Senior Member, IEEE Abstract—Disease-affected nervous systems exhibit anatomical with these complications, three classes of brain implants, or physiological impairments that degrade processing, transfer, called brain-machine interfaces (BMIs) or neural implants, storage, and retrieval of neural information leading to physical or are designed for providing clinical means for detection and intellectual disabilities. Brain implants may potentially promote clinical means for detecting and treating neurological symptoms treatment. by establishing direct communication between the nervous and • Sensory BMIs deliver physical stimuli (e.g., sound, sight, artificial systems. Current technology can modify neural function touch, pain, and warmth) to the sensory organs for at the supracellular level as in Parkinson’s disease, epilepsy, and depression. However, recent advances in nanotechnology, the correction of auditory, occipital, and somatosensory nanomaterials, and molecular communications have the potential malfunctions. Examples of sensory BMIs are cochlear to enable brain implants to preserve the neural function at and retinal implants, that translate external auditory and the subcellular level which could increase effectiveness, decrease visual content into sensory firings that could be perceived energy consumption, and make the leadless devices chargeable by patients suffering from deafness and blindness, respec- from outside the body or by utilizing the body’s own energy sources. In this study, we focus on understanding the principles of tively [9]. elemental processes in synapses to enable diagnosis and treatment • Motor BMIs deliver brain signals to the organs or muscles of brain diseases with pathological conditions using biomimetic that have lost functional mobility due to traumatic injury synaptically interactive brain-machine interfaces. -
Artificial Intelligence and the Singularity
Artificial Intelligence and the Singularity piero scaruffi www.scaruffi.com October 2014 - Revised 2016 "The person who says it cannot be done should not interrupt the person doing it" (Chinese proverb) Piero Scaruffi • piero scaruffi [email protected] [email protected] Olivetti AI Center, 1987 Piero Scaruffi • Cultural Historian • Cognitive Scientist • Blogger • Poet • www.scaruffi.com www.scaruffi.com 3 This is Part 5 • See http://www.scaruffi.com/singular for the index of this Powerpoint presentation and links to the other parts 1. Classic A.I. - The Age of Expert Systems 2. The A.I. Winter and the Return of Connectionism 3. Theory: Knowledge-based Systems and Neural Networks 4. Robots 5. Bionics 6. Singularity 7. Critique 8. The Future 9. Applications 10. Machine Art 11. The Age of Deep Learning www.scaruffi.com 4 Bionics Jose Delgado 5 A Brief History of Bionics 1952: Jose Delgado publishes the first paper on implanting electrodes into human brains: "Permanent Implantation of Multi-lead Electrodes in the Brain" 1957: The first electrical implant in an ear (André Djourno and Charles Eyriès) 1961: William House invents the "cochlear implant", an electronic implant that sends signals from the ear directly to the auditory nerve (as opposed to hearing aids that simply amplify the sound in the ear) 6 A Brief History of Bionics 1965 : Jose Delgado controls a bull via a remote device, injecting fear at will into the beast's brain 1969: Jose Delgado’s book "Physical Control of the Mind - Toward a Psychocivilized Society" 1969: Jose Delgado implants devices in the brain of a monkey and then sends signals in response to the brain's activity, thus creating the first bidirectional brain-machine-brain interface. -
Audio/Visual Device Technical Manual
Electrical Geodesics, Inc. Audio/Visual Device Technical Manual Audio/Visual Device Technical Manual Ell ectttrii call Geodesii cs,,, II nc... Riverfront Research Park 1600 Millrace Drive, Suite 307 Eugene, OR 97403 [email protected] www.egi.com Audio/Visual Device Technical Manual S-MAN-200-AV-001 May 7, 2007 Electrical Geodesics makes no warranty or representation, either express or implied, with respect to this manual, its quality, accuracy, merchantability, or fitness for a particular purpose. In no event will Electrical Geodesics be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect or inaccuracy in this manual, even if advised of the possibility of such damage. Copyright 2007 by Electrical Geodesics, Inc. All rights reserved. CONTENTS List of Figures vii List of Tables ix Preface xi Related Manuals . xi About This Manual . xv Troubleshooting and Support . xvi chapter 1 Technical Overview 17 When to Use the AV Device . 17 Overview of AV Device Operations . 18 AV Device Package . 19 AV Device Features . 22 Basic Event Timing Theory . 24 chapter 2 Visual-Stimulus Testing 29 General Considerations . 29 Hardware Configuration . 30 Positioning the Photocell Holder . 33 Verifying AV Device Functionality . 41 Test Instructions . 41 chapter 3 Auditory-Stimulus Testing 45 General Considerations . 45 Hardware Configuration . 46 Software Configuration . 50 Verifying AV Device Functionality . 51 Test Instructions . 52 Audio/Visual Device Technical Manual S-MAN-200-AV-001 • May 7, 2007 v Contents chapter 4 Event Timing Tester 55 Event Timing Tester Interface . 56 Running the Event Timing Tester . 58 Analysis of Results . 59 Text Output . 62 chapter 5 Troubleshooting 63 General Troubleshooting . -
HEALTH-ANNEX 5 Code Description Part-No. Qty. 02-05-00001
HEALTH-ANNEX 5 Code Description Part-no. Qty. EQUIPMENT: ECG (ELECTRO CARDIO 02-05-00001 GRAPHIC ) MODEL: 5403 COMPANY NAME :NIHON COHDEN JAPAN QUINTITY: 78 SITE : ALL GOVERNERATES Heat stylus TLS-100 1004950171B 600 Patient Cable BJ-261D 5570383 300 Limb electrode for a duts 4 Pcs/set 5030003 600 Limb electrode strap for a duts 4Pcs/set 5030021 600 Chest electrode for a duts 6 Pcs/set 5030378 300 Worm wheel Assembly 2144-000103 60 Dc motor for chart LB32-KS 2803-000309 30 Magnetic sensor, chart speed detect PF-2K-02 30 Bush button start, check stop 2124-000808 60 All-Channel sensitivity control unit board . UP-4250 30 Control unit A assembly UP-4065 30 Per Amplifier mother board unit assembly (UP- 4241) 9406713 30 120 Regulator unit Circuit board assembly (UP- 4242) 9424214 30 11.4 Regulator unit cct Maub Amplifier (OL- 501E) 9424319 30 Transport unit cct borard (UP-4252) 9425238 30 Chart speed selection unit (UP-4253) 9425318 30 Pre Amplifier Unit cct (UP-4248) 9424827 30 Input Unit cct board (UP-4247A) 9424738 30 Main Amplifier cct board (UP-4245) 9424524 60 Dc-Dc converter unit cct board(UP-4241) Transformer , 3-293, power 9406713 30 Board Up 4232 30 Warmer Gear A144-008621 30 Bord Up-4244 D.C PC Conr 30 Warm wheel 165 02-05-00002 EQUIPMENT: electrocardiograph machine Model: Cardiofax 5151 COMPANY NAME: NIHON KOHDEN, Japan QUANTITY INSTALLED:300 Stylus 450 Patient Cable 300 Electrode straps 1500 Limb Electrode 1500 Transistor 2SC2270 300 Transistor 2SA11020 300 Transistor 2SD355 750 Transistor 2SB525 750 1mV Switch 225 Run-Stop Switch 225 Chest Electrode 600 Galvanometer 75 Recorder PCB UP-4235 300 Mother PCB UP-4279 150 02-05-00003 EQUIPMENT: Electrocardiograph Machine MODEL:l hp 1504A COMPANY NAME: Hewlett Packard, USA QUANTITY INSTALLED:100 Power Cable. -
Printed and Flexible Systems for Solar Energy Harvesting by Aminy Erin
Printed and Flexible Systems for Solar Energy Harvesting by Aminy Erin Ostfeld A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ana Claudia Arias, Chair Professor Kristofer S.J. Pister Professor Liwei Lin Summer 2016 Printed and Flexible Systems for Solar Energy Harvesting Copyright 2016 by Aminy Erin Ostfeld 1 Abstract Printed and Flexible Systems for Solar Energy Harvesting by Aminy Erin Ostfeld Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Ana Claudia Arias, Chair Emerging wireless and flexible electronic systems such as wearable devices and sensor networks call for a power source that is sustainable, reliable, has high power density, and can be integrated into a flexible package at low cost. These demands can be met using photovoltaic systems, consisting of solar modules for energy harvesting, battery storage to overcome variations in solar module output or load, and often power electronics to regulate voltages and power flows. A great deal of research in recent years has focused on the develop- ment of high-performing materials and architectures for individual components such as solar cells and batteries. However, there remains a need for co-design and integration of these components in order to achieve complete power systems optimized for specific applications. To fabricate these systems, printing techniques are of great interest as they can be performed at low temperatures and high speeds and facilitate customization of the components. -
2011 Warner Catalog Full.Pdf
specialized tools for Electrophysiology & Cell Biology Research Planar Lipid Bilayer Perfusion/Microfluidics Oocyte Clamps Patch Clamps Microinjectors Microincubators Micromanipulators Ussing/Diffusion Systems Live Cell Imaging Chambers Temperature Control Systems Electroporation/Transfection Electro- Call to receive other catalogs of interest physiology & Animal, Behavioral Harvard Electro- Molecular Cell Biology Organ & Cell Research Apparatus poration Sample Research Physiology Pumps & Preparation Electrofusion Welcome to the NEW Electrophysiology & Dear Researcher: Warner Instruments is proud to introduce our new Electrophysiology & Cell Biology Catalog. This catalog contains many new products for cell imaging, biosensing, microinjection, and electrophysiology. NEW Products Featured Include: • PLI-100A Picoliter Microinjector - With three positive and two negative pressure capabilities, the versatile PLI-100A is capable of large injections into capillaries or small injections into mammalian nuclei. • BioStat Multi-channel Potentiostat - The BioStat is a software-driven, multi-mode potentiostat that can be used for measurement of pH, reactive oxygen species, and nitric oxide. • Compact Motorized Micromanipulator - Linear amplifiers, used to drive the stepper motors, eliminate stray electromagnetic radiation; reducing noise and resulting in improved patch clamp and electrophysiology performance. • PFC-1 Proflow Chamber - Computer designed gaskets optimized for well-defined, well-controlled shear-flow. • RC-49FS Perfusion Chamber with