MR Evaluation of Developmental Venous Anomalies: Medullary Venous Anatomy of Venous Angiomas

Total Page:16

File Type:pdf, Size:1020Kb

MR Evaluation of Developmental Venous Anomalies: Medullary Venous Anatomy of Venous Angiomas MR Evaluation of Developmental Venous Anomalies: Medullary Venous Anatomy of Venous Angiomas Charles Lee, Michael A. Pennington, and Charles M. Kenney III PURPOSE: To present characteristic MR findings of developmental venous anomalies (DVAs) in terms of location of caput and draining veins, to correlate these findings with normal medullary venous anatomy, and to suggest an approach to the evaluation of DVAs by means of MR imaging. METHODS: We reviewed the contrast-enhanced MR examinations of 61 patients with DVA, which were selected from 4624 consecutive cranial MR examinations. Site of the DVA and size and direction of draining veins were recorded. RESULTS: Seventy-two DVAs with 78 draining veins were located: 18 were juxtacortical, 13 were subcortical, and 41 were periventricular or deep. Twenty-six of the DVA caputs were frontal, 16 were parietal, 13 were in the brachium pontis/ dentate, seven were in the temporal lobe, three were in the cerebellar hemisphere, three were in the occipital lobe, three were in the basal ganglia, and one was in the pons. The draining veins were superficial in 29 cases and deep in 49. Of the 36 supratentorial deep draining veins, 16 were in the trigone/occipital horn, 11 were in the mid-body of the lateral ventricle, seven were in the frontal horn, and two were in the temporal horn. Among the 14 infratentorial deep draining veins, five were in the lateral recess of the fourth ventricle, four were anterior transpontine veins, three were lateral transpontine veins, and two were precentral cerebellar veins. CONCLUSION: The DVA caputs and their draining veins occurred in typical locations that could be predicted from the normal medullary venous anatomy, with the frontal, parietal, and brachium pontis/dentate being the most common locations. Drainage can occur in superficial cortical veins or sinuses or in deep ventricular veins or in both, no matter where the caput is located. Whether drainage was superficial or deep could not be predicted on the basis of the site of the DVA caput. Contrast-enhanced T1-weighted MR images showed the DVAs best, but diagnosis could be made from T2-weighted MR images. Index terms: Angioma; Brain, anatomy; Brain, magnetic resonance; Veins, abnormalities and anomalies AJNR Am J Neuroradiol 17:61–70, January 1996 Developmental venous anomalies (DVAs), DVAs (1). Contrast-enhanced computed to- also known as venous angiomas, are becoming mography (CT), which is no doubt responsible the most commonly encountered intracranial for the recent increase in the number of reported vascular lesion in central nervous system imag- cases of DVA, is yielding to the far superior ing (1). Most DVAs are asymptomatic or un- imaging ability of magnetic resonance (MR) as complicated, and surgery is no longer consid- it becomes routinely available. MR imaging is ered necessary. Although cerebral angiography thus becoming the primary study of choice and is the definitive study of choice, it, too, is no the means by which diagnosis of DVA is veri- longer judged necessary with uncomplicated fied. Although the exact pathogenesis of DVA is unknown, there appears to be a congenital ba- Received February 10, 1995; accepted after revision July 7. sis (2–4). DVAs can be found in children in From the Department of Radiology, University of Kentucky Medical whom absence of normal draining veins are Center, Lexington. Address reprint requests to Charles Lee, MD, Department of Radiology, seen in the region of the DVA verified by au- University of Kentucky Medical Center, 800 Rose St, HX-3150, Lexington, topsy, surgery, or angiography. The DVA and KY 40536. its draining vein become a compensatory ve- AJNR 17:61–70, Jan 1996 0195-6108/96/1701–0061 nous drainage system (5). Because no angioma q American Society of Neuroradiology or malformation is present with DVA, Lasjau- 61 62 LEE AJNR: 17, January 1996 nias et al proposed the name be changed from views beyond the standard, routine cerebral study were not venous angioma to developmental venous obtained. anomalies (6). These authors believed that DVA DVAs were defined as vascular lesions with multiple represented nonpathologic variations of venous enlarged vessels converging on a single (sometimes mul- tiple) dilated parenchymal vessel. Without cerebral an- drainage. giography it was difficult to determine whether the en- Currently, DVA is thought to represent a pri- larged vessel was arterial or venous; however, the location mary dysplasia of capillaries and small transce- of the vessels and their proximity to and junction with rebral veins (7) or a compensatory mechanism known venous structures suggested that they were indeed caused by an intrauterine accident resulting in venous structures, and probably medullary veins. The thrombosis of normal venous pathways (8). Be- classical fan-shaped caput medusae was not always ap- cause dilated medullary veins can be found with parent in each case, with the multiple vessels appearing as glioblastomas, Huang et al proposed that these linear, curvilinear, or dotlike structures, depending on the vessels may arise from reactivation of embry- orientation of the vessel with respect to the plane of imag- onic or fetal vascular remnants in response to ing. an increase in vascularity supplying the tumor The DVAs were also classified by location as juxtacor- tical, subcortical, and deep, according to Valavanis et al or in response to hypoplasia or aplasia of the (2). Juxtacortical (or superficial) was defined as within the normal venous structures caused by a throm- gray matter or at the gray-white junction. Subcortical was botic intrauterine event (3). defined as below the juxtacortical region but not adjacent The purpose of this article is to present our to the ventricular wall. Deep (or periventricular) was de- findings with MR imaging of DVA and to com- fined as adjacent to the lateral, third, or fourth ventricle or pare our experience with that of others. We dis- within the center of the structure, such as the pons. Su- cuss the normal medullary venous anatomy of pratentorial deep DVAs were defined as being adjacent to the cerebrum and cerebellum as it relates to the frontal horn, the mid-body of the lateral ventricle, the DVA and present the characteristic locations of temporal horn, the trigone, or the occipital horn. Infraten- the caput medusae and draining veins. Because torial deep DVAs were those adjacent to the fourth ventri- most DVAs are uncomplicated and MR is usu- cle within the brachium pontis or dentate nucleus. The terminal or draining vein to which the caput medu- ally the imaging technique of choice, we also sae joins was classified as either a deep or superficial suggest a diagnostic approach using MR imag- draining vein. In the supratentorial compartment, superfi- ing. cial draining veins were identified as those that joined either a cortical vein or the sagittal sinus. Deep draining veins were identified as those that joined the subependy- Materials and Methods mal veins of the lateral ventricles and ultimately the vein of We reviewed and recorded the MR findings in 61 pa- Galen. In the infratentorial compartment, superficial drain- tients with DVA culled from 4624 consecutive contrast- ing veins were identified as those that joined the cerebellar enhanced cerebral MR examinations performed on a 1.5-T hemispheric veins, superior and inferior vermian veins, MR unit. Either 0.1 mmol/kg gadopentetate dimeglumine transverse or sigmoid sinus, and torcula. Deep draining or 0.1 mmol/kg or 0.3 mmol/kg gadoteridol was given to veins were those that joined the subependymal veins of the each patient. Standard T1- and T2-weighted spin-echo fourth ventricle and thus either the anterior or lateral tran- pulse sequences were used. First-order-motion compen- spontine veins, or laterally and inferiorly to the veins of the sation or gradient-moment nulling was routinely used for lateral recess of the fourth ventricle, or superiorly to the all MR images. Of the 61 patients, 28 had coronal images precentral cerebellar vein. in addition to the usual transaxial images. Another 14 patients had two-dimensional time-of-flight MR angiogra- Results phy done for reasons other than verifying the DVA. Con- trast-enhanced CT scans were obtained in 18 of the 61 Sixty-one patients had a total of 72 DVAs and patients and cerebral angiograms were obtained in six 78 draining veins. Twenty-nine patients were patients for reasons other than verifying the presence of male and 32 were female; ages ranged from 4 DVA. months to 71 years (mean age, 37 years). All cases of DVA were identified retrospectively from Seven were children younger than 10 years old dictated reports. A second review was conducted to elim- and six were teenagers. Fifty-one patients had inate questionable DVA and other anomalies that did not fit the diagnostic criteria for DVA. Therefore, a true preva- single DVAs, nine patients had two DVAs, and lence figure may not be valid, because some of the DVAs one patient had three DVAs. Fifty-four DVAs may not have been reported initially and thus may have were supratentorial and 18 were infratentorial. been missed in the retrospective review. Because the ma- Thirty-five were on the right side, 31 on the left jority of the DVAs were incidental findings, additional side, and three were bilateral. AJNR: 17, January 1996 DEVELOPMENTAL VENOUS ANOMALIES 63 There were 18 juxtacortical, 13 subcortical, face or deep into the subependymal veins in the and 41 periventricular or deep DVAs, located in walls of the ventricles. the frontal (n 5 26), parietal (n 5 16), brachium In 1968 Constans et al (10) provided radio- pontis/dentate (n 5 13), temporal (n 5 7), cer- logic description of two cases of DVA. Since ebellar hemisphere (n 5 3), occipital (n 5 3), then, numerous radiographic studies of DVA basal ganglia (n 5 3), and pontine (n 5 1) have been reported (1, 2, 6–8, 10–15).
Recommended publications
  • Dural Venous Channels: Hidden in Plain Sight–Reassessment of an Under-Recognized Entity
    Published July 16, 2020 as 10.3174/ajnr.A6647 ORIGINAL RESEARCH INTERVENTIONAL Dural Venous Channels: Hidden in Plain Sight–Reassessment of an Under-Recognized Entity M. Shapiro, K. Srivatanakul, E. Raz, M. Litao, E. Nossek, and P.K. Nelson ABSTRACT BACKGROUND AND PURPOSE: Tentorial sinus venous channels within the tentorium cerebelli connecting various cerebellar and su- pratentorial veins, as well as the basal vein, to adjacent venous sinuses are a well-recognized entity. Also well-known are “dural lakes” at the vertex. However, the presence of similar channels in the supratentorial dura, serving as recipients of the Labbe, super- ficial temporal, and lateral and medial parieto-occipital veins, among others, appears to be underappreciated. Also under-recog- nized is the possible role of these channels in the angioarchitecture of certain high-grade dural fistulas. MATERIALS AND METHODS: A retrospective review of 100 consecutive angiographic studies was performed following identification of index cases to gather data on the angiographic and cross-sectional appearance, location, length, and other features. A review of 100 consecutive dural fistulas was also performed to identify those not directly involving a venous sinus. RESULTS: Supratentorial dural venous channels were found in 26% of angiograms. They have the same appearance as those in the tentorium cerebelli, a flattened, ovalized morphology owing to their course between 2 layers of the dura, in contradistinction to a rounded cross-section of cortical and bridging veins. They are best appreciated on angiography and volumetric postcontrast T1- weighted images. Ten dural fistulas not directly involving a venous sinus were identified, 6 tentorium cerebelli and 4 supratentorial.
    [Show full text]
  • Cerebellar Disease in the Dog and Cat
    CEREBELLAR DISEASE IN THE DOG AND CAT: A LITERATURE REVIEW AND CLINICAL CASE STUDY (1996-1998) b y Diane Dali-An Lu BVetMed A thesis submitted for the degree of Master of Veterinary Medicine (M.V.M.) In the Faculty of Veterinary Medicine University of Glasgow Department of Veterinary Clinical Studies Division of Small Animal Clinical Studies University of Glasgow Veterinary School A p ril 1 9 9 9 © Diane Dali-An Lu 1999 ProQuest Number: 13815577 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13815577 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY lib ra ry ll5X C C ^ Summary SUMMARY________________________________ The aim of this thesis is to detail the history, clinical findings, ancillary investigations and, in some cases, pathological findings in 25 cases of cerebellar disease in dogs and cats which were presented to Glasgow University Veterinary School and Hospital during the period October 1996 to June 1998. Clinical findings were usually characteristic, although the signs could range from mild tremor and ataxia to severe generalised ataxia causing frequent falling over and difficulty in locomotion.
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • High-Yield Neuroanatomy, FOURTH EDITION
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • Special Report Vein of Galen Aneurysms
    Special Report Vein of Galen Aneurysms: A Review and Current Perspective Michael Bruce Horowitz, Charles A. Jungreis, Ronald G. Quisling, and lan Pollack The term vein of Galen aneurysm encom­ the internal cerebral vein to form the vein of passes a diverse group of vascular anomalies Galen (4). sharing a common feature, dilatation of the vein Differentiation of the venous sinuses occurs of Galen. The name, therefore, is a misnomer. concurrently with development of arterial and Although some investigators speculate that vein venous drainage systems. By week 4, a primi­ of Galen aneurysms comprise up to 33% of gi­ tive capillary network is drained by anterior, ant arteriovenous malformations in infancy and middle, and posterior meningeal plexi (3, 4). childhood ( 1), the true incidence of this a nom­ Each plexus has a stem that drains into one of aly remains uncertain. A review of the literature the paired longitudinal head sinuses, which in reveals fewer than 300 reported cases since turn drain into the jugular veins ( 3, 4). Atresia of Jaeger et al 's clinical description in 1937 (2). the longitudinal sinuses leads to the develop­ As we will outline below, our understanding of ment of the transverse and sigmoid sinuses by the embryology, anatomy, clinical presentation, week 7 (3, 4). At birth only the superior and and management of these difficult vascular inferior sagittal, straight, transverse, occipital, malformations has progressed significantly and sigmoid sinuses remain, along with a still over the past 50 years. plexiform torcula (3, 4). On occasion, a tran­ sient falcine sinus extending from the vein of Embryology and Vascular Anatomy of the Galen to the superior sagittal sinus is seen ( 4).
    [Show full text]
  • 27. Veins of the Head and Neck
    GUIDELINES Students’ independent work during preparation to practical lesson Academic discipline HUMAN ANATOMY Topic VEINS OF THE HEAD AND NECK 1. The relevance of the topic: Knowledge of the anatomy of the veins of head and neck is a base of clinical thinking and differential diagnosis for the doctor of any specialty, but, above all, dentists, neurologists and surgeons who operate in areas of the neck or head. 2. Specific objectives - demonstrate superior vena cava, right and left brachiocephalic, subclavian, internal and external jugular, anterior jugular veins and venous angles. - demonstrate dural sinuses, veins of the brain. - demonstrate pterygoid plexus, retromandibular, facial veins and other tributaries of extracranial part of internal jugular vein. - demonstrate external jugular vein. - identify and demonstrate anastomoses on the head and neck. 3. Basic level of preparation Student should know and be able to: 1. To demonstrate the structural features of the cervical vertebrae. 2. To demonstrate the anatomical lesions of external and internal base of the skull. 3. To demonstrate the muscles of the head and neck. 4. To demonstrate the divisions of the brain. 4. Tasks for independent work during preparation for practical lessons 4.1. A list of the main terms, parameters, characteristics that need to be learned by student during the preparation for the lesson Term Definition JUGULAR VEINS Veins that take deoxygenated blood from the head to the heart via the superior vena cava. INTERNAL JUGULAR VEIN Starts from the sigmoid sinus of the dura mater and receives the blood from common facial vein. The internal jugular vein runs with the common carotid artery and vagus nerve inside the carotid sheath.
    [Show full text]
  • Controversies in the Assessment of Bodily Injury. Institute of Legal Medicine of Catalonia
    Controversies in the assessment of bodily injury. Institute of Legal Medicine of Catalonia Centre d’Estudis Jurídics i Formació Especialitzada Institut de Medicina Legal de Catalunya Acknowledgement As ever the contribution of senior management at the Centre for Legal Studies and Specialised Training and the highly professional staff at the Centre’s Legal and Forensic Training Unit has been essen- tial and made it possible to publish the papers about the controversial issues presented below. I would also like to express my appreciation for the enthusiastic collaboration of all the authors referred to in their relevant sections and the computer support provided by Mr. Gabriel Martí Agustí, a psychologist in the Barcelona Forensic Medicine Clin- ic Service, which has made it possible to unify the work of the various authors. All of this has been done at the Institute of Legal Medicine of Catalonia under the supervision of Dr. Jordi Medallo Muñiz who has encouraged, supported and taken part in this project. Finally I would like to mention in particular the ongoing assistance of Dr. Amadeu Pu- jol Robinat, Head of the Forensic Medicine Clinic Service of IMLC. My sincere thanks go to all of them. Dr. Lluïsa Puig Coordinator CONTROVERSIES IN THE ASSESSMENT OF BODILY INJURY. INSTITUTE OF LEGAL MEDICINE OF CATALONIA COORDINATION: DRA. LLUÏSA PUIG BAUSILI Centre d’Estudis Jurídics i Formació Especialitzada Institut de Medicina Legal de Catalunya CONTROVERSIES IN THE ASSESSMENT OF BODILY INJURY. INSTITUTE OF LEGAL MEDICINE OF CATALONIA Centre d’Estudis Jurídics i Formació Especialitzada Institut de Medicina Legal de Catalunya 5 © Generalitat de Catalunya Centre d’Estudis Jurídics i Formació Especialitzada Disclaimer: The contents of this work are licensed under a Attribution-NonCommercial- NoDerivs 3.0 Creative Commons.
    [Show full text]
  • Cerebellar Arteriovenous Malformations: Anatomic Subtypes, Surgical Results, and Increased Predictive Accuracy of the Supplementary Grading System
    RESEARCH—HUMAN—CLINICAL STUDIES TOPIC RESEARCH—HUMAN—CLINICAL STUDIES Cerebellar Arteriovenous Malformations: Anatomic Subtypes, Surgical Results, and Increased Predictive Accuracy of the Supplementary Grading System BACKGROUND: Anatomic diversity among cerebellar arteriovenous malformations Ana Rodrı´guez-Herna´ndez, (AVMs) calls for a classification that is intuitive and surgically informative. Selection tools MD* like the Spetzler-Martin grading system are designed to work best with cerebral AVMs Helen Kim, MPH, PhD‡§¶ but have shortcomings with cerebellar AVMs. Tony Pourmohamad, MA‡¶ OBJECTIVE: To define subtypes of cerebellar AVMs that clarify anatomy and surgical William L. Young, MD*‡¶k management, to determine results according to subtypes, and to compare predictive Michael T. Lawton, MD*¶ accuracies of the Spetzler-Martin and supplementary systems. METHODS: From a consecutive surgical series of 500 patients, 60 had cerebellar AVMs, for the University of California, 39 had brainstem AVMs and were excluded, and 401 had cerebral AVMs. San Francisco Arteriovenous RESULTS: Cerebellar AVM subtypes were as follows: 18 vermian, 13 suboccipital, Malformation Study Project 12 tentorial, 12 petrosal, and 5 tonsillar. Patients with tonsillar and tentorial AVMs fared , *Department of Neurological Surgery; ‡De- best. Cerebellar AVMs presented with hemorrhage more than cerebral AVMs (P .001). partments of Anesthesia and Perioperative Cerebellar AVMs were more likely to drain deep (P = .04) and less likely to be eloquent Care; §Department of Epidemiology and (P , .001). The predictive accuracy of the supplementary grade was better than that of Biostatistics; ¶Center for Cerebrovascular Research; kDepartment of Neurology, Uni- the Spetzler-Martin grade with cerebellar AVMs (areas under the receiver-operating versity of California, San Francisco, San characteristic curve, 0.74 and 0.59, respectively).
    [Show full text]
  • 7. Internal Jugular Vein the Internal Jugular Vein Is a Large Vein That Receives Blood from the Brain, Face, and Neck
    د.احمد فاضل Lecture 16 Anatomy The Root of the Neck The root of the neck can be defined as the area of the neck immediately above the inlet into the thorax. Muscles of the Root of the Neck Scalenus Anterior Muscle Scalenus Medius Muscle The Thoracic Duct The thoracic duct begins in the abdomen at the upper end of the cisterna chyli. It enters the thorax through the aortic opening in the diaphragm and ascends upward, inclining gradually to the left. On reaching the superior mediastinum, it is found passing upward along the left margin of the esophagus. At the root of the neck, it continues to ascend along the left margin of the esophagus until it reaches the level of the transverse process of the seventh cervical vertebra. Here, it bends laterally behind the carotid sheath. On reaching the medial border of the scalenus anterior, it turns 1 downward and drains into the beginning of the left brachiocephalic vein. It may, however, end in the terminal part of the subclavian or internal jugular veins. Main Nerves of the Neck Cervical Plexus Brachial Plexus The brachial plexus is formed in the posterior triangle of the neck by the union of the anterior rami of the 5th, 6th, 7th, and 8th cervical and the first thoracic spinal nerves. This plexus is divided into roots, trunks, divisions, and cords. The roots of C5 and 6 unite to form the upper trunk, the root of C7 continues as the middle trunk, and the roots of C8 and T1 unite to form the lower trunk.
    [Show full text]
  • Powerpoint Handout: Lab 1, Part B: Dural Folds, Dural Sinuses, and Arterial Supply to Head and Neck
    PowerPoint Handout: Lab 1, Part B: Dural Folds, Dural Sinuses, and Arterial Supply to Head and Neck Slide Title Slide Number Slide Title Slide Number Arterial Blood Supply to the Head: Aortic Arch Branches Slide 2 Innervation of Dura Slide 14 Arterial Blood Supply to the Head: Carotid Arteries Slide 3 Emissary Veins & Diploic Veins Slide 15 Arterial Blood Supply to the Head: Internal Carotid Artery Slide4 Cerebral & Cerebellar Veins Slide 16 Blood Supply Review from MSI: Subclavian Artery & Named Dural Folds Slide 5 Slide 17 Thyrocervical Trunk Dural Venous Sinuses Slide 18 Vertebral Artery Slide 6 Dural Venous Sinuses (Continued) Slide 19 Subclavian Steal Syndrome Slide 7 Osseous Grooves formed by Dural Sinuses Slide 20 Thyrocervical Trunk Slide 8 Venous Drainage of Head: Cavernous Sinuses Slide 21 Review: Suprascapular Artery Slide 9 Head & Neck Venous Drainage Slide 22 Review: Transverse Cervical Artery Slide 10 Intracranial Versus EXtracranial Venous Drainage Slide 23 Middle Meningeal Artery Slide 11 Meningeal Layers & Spaces Slide 12 Cranial Dura, Dural Folds, & Dural Venous Sinuses Slide 13 Arterial Blood Supply to the Head: Aortic Arch Branches The head and neck receive their blood supply from https://3d4medic.al/PXGmbxEt branches of the right and left common carotid and right and left subclavian arteries. • On the right side, the subclavian and common carotid arteries arise from the brachiocephalic trunk. • On the left side, these two arteries originate from the arch of the aorta. Arterial Blood Supply to the Head: Carotid Arteries On each side of the neck, the common carotid arteries ascend in the neck to the upper border of the thyroid cartilage (vertebral level C3/C4) where they divide into eXternal and internal carotid arteries at the carotid bifurcation.
    [Show full text]
  • The Cerebral Circulation Second Edition Ii
    The Cerebral Circulation Second Edition ii Colloquium Digital Library of Life Sciences The Colloquium Digital Library of Life Sciences is an innovative information resource for researchers, instructors, and students in the biomedical life science community, including clinicians. Each PDF e-book available in the Colloquium Digital Library is an accessible overview of a fast-moving basic science research topic, authored by a prominent expert in the field. They are intended as time-saving pedagogical resources for scientists exploring new areas outside of their specialty. They are also excellent tools for keeping current with advances in related fields, as well as refreshing one’s under- standing of core topics in biomedical science. For the full list of available titles, please visit: colloquium.morganclaypool.com Each book is available on our website as a PDF download. Access is free for readers at institutions that license the Colloquium Digital Library. Please e-mail [email protected] for more information. iii Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease Editors D. Neil Granger, Louisiana State University Health Sciences Center Joey P. Granger, University of Mississippi Medical Center Physiology is a scientific discipline devoted to understanding the functions of the body. It addresses function at multiple levels, including molecular, cellular, organ, and system. An appreciation of the processes that occur at each level is necessary to understand function in health and the dysfunc- tion associated with disease. Homeostasis and integration are fundamental principles of physiology that account for the relative constancy of organ processes and bodily function even in the face of substantial environmental changes.
    [Show full text]
  • Functional Venous Anatomy of the Brain for Neurosurgeons
    特集 手術のための血管解剖を極める Functional Venous Anatomy of the Brain for Neurosurgeons Masaki Komiyama, M.D. Department of Neuro‒Intervention, Osaka City General Hospital A thorough knowledge of the functional vascular anatomy of the brain is becoming increasingly required in neuro‒interventional procedures. Similarly, this knowledge is also required in neurosurgery, especially when a particular artery or vein is to be sacrificed during surgery. Permanent occlusion of a major artery can be challenged by a balloon occlusion test, but for venous sacrifice, such a procedure is practically not applicable. Up to now, reliable methods to judge the safety of such destructive procedures were lacking. Knowledge of the basic angioarchitecture of the cerebral veins, in other words, the“func- tional anatomy of the cerebral veins”may help us to better understand the safety or risk of sacrificing cerebral veins. Today, 3D‒CT angiography, digital subtraction angiography and cone‒beam CT provide detailed information on the precise cerebral venous anatomy to help us understand the functional venous anatomy and to make informed decisions. (Received December 19, 2016;accepted January 17, 2017) Key words: functional venous anatomy, collateral circulation, ischemic complication, neurosurgery, occlu- sion of cerebral veins Jpn J Neurosurg(Tokyo)26:488‒495, 2017 arterial anatomy, indicating apparent or dormant anastomo- Introduction ses between the external carotid system, and the internal The intentional occlusion of a particular cerebral vein carotid system and/or vertebra‒basilar system. Represen- is sometimes required during neurosurgical procedures. tative dangerous anastomoses include the cavernous branch However, the safety of such venous sacrifice is not ade- of the middle meningeal artery connecting to the inferolat- quately appreciated.
    [Show full text]