Toxic Effects of Drimia Maritima (Asparagaceae) Ethanolic Extracts

Total Page:16

File Type:pdf, Size:1020Kb

Toxic Effects of Drimia Maritima (Asparagaceae) Ethanolic Extracts RESEARCH ARTICLE Published Online: September 22, 2020 https://doi.org/10.31893/jabb.21002 Toxic effects of Drimia maritima (Asparagaceae) ethanolic extracts on the mortality, development, sexual behaviour and oviposition behaviour of Drosophila melanogaster (Diptera: Drosophilidae) Fatma Zohra Saadanea* | Wafa Habbachia | Sarra Habbachia | Nour El Imene Boublataa | Abderachid Slimanib | Abdelkrim Tahraouia aApplied Neuroendocrinology Laboratory. Department of Biology, Faculty of Sciences, University Badji Mokhtar Annaba 23000, Algeria. bDepartment of Biology, Faculty of Science, University Badji Mokhtar BP 12, 23000 Annaba, Algeria. *Corresponding author: [email protected] Abstract Drimia maritima is a toxic Mediterranean plant and is considered a commercially important drug by its medicinal values and pharmacological properties. In this work, we seek to evaluate the direct and delayed effects of the ethanol extracts of this plant on vinegar fly (Drosophila melanogaster), an excellent laboratory model. The treatment was carried out by ingestion on second-stage larvae (L2) and then we evaluated the impact of this treatment on mortality, development, sexual behaviour, on female's oviposition choice, fecundity, and fertility of adults. The results showed that mortality rates can reach 100% after 15 days of treatment as we recorded an acceleration of the flies' development. After treatment, we observed incomplete nuptial courtship and a significant decrease in eggs laid number and larvae number of the first generation treated. This study indicates that D. maritima ethanolic extract has a neurotoxic property, our results confirmed the presence of toxic secondary metabolites in the extract studied. Keywords fruit fly, mating, Mediterranean plant, reproduction, toxicity 1. Introduction this aspect, and more particularly on the use of spontaneous species in traditional medicine (Hammiche and Gueyouche In recent years, natural products have drawn the 1988). researchers’ attention to find new solutions alternatives Our study is based on the medicinal plant Drimia where the aims are to reduce the excessive use of synthetic maritima which is very widespread in the Mediterranean pesticides. Among these alternatives in nature, products of region, Africa and India their medicinal part is mainly plant origin are, in particular, more interesting because they composed of fresh or dried bulbs (Ghahreman 1997; Zargari are less toxic, biodegradable, and target-specific (Dua et al 1996). The oldest writings on these plants date back to 1500 2010; Subramaniam et al 2012). B.C. and mention the medicinal Drimia properties (Stoll Recently, the plant extracts with insecticidal 1954). To date, many studies have been conducted to identify properties have continued to develop and some non- the chemical constituents and to understand the European countries have regulatory requirements for pharmacological properties of this species. extracts and essential oils use (Isman 2019). Plants are rich in It is a Mediterranean plant, perennial by an enormous bioactive secondary chemical metabolites and have proven bulb whose diameter reaches, 20 to 30 cm and weight their insecticidal activity by killing or repelling insects between 5 to 7 kg (measures of Algerian species). It’s formed (Sukumar et al 1991; Ghosh et al 2012). of nested scales that are also called tunics or scales, whitish Medicinal plants are valuable resources for the color called Scille d'Italie or Scille "female" or reddish Scille majority of rural and urban populations in Africa and are the d'Espagne or Scille "male", depending on the variety. The main means by which people treat themselves (Badiaga external scales are plain and membranous, the medium 2011). Several species are known for their remarkable scales are thick and fleshy (Hammiche et al 2013). The therapeutic properties (Quezel 1978). Algeria, by the richness flowering stem (about 1 m) bears at its end a cluster of small and diversity of its flora, constitutes a real phylogenetic white flowers with a star-shaped corolla (Joly 2010). reservoir, with about 4000 species and subspecies of vascular This work purpose to test the direct and indirect toxic plants (Dobignard and Chatelain 2013). The study of effects of D. maritima ethanolic extract on fruit fly, traditional medicine and herbal treatment is therefore of Drosophila melanogaster, especially, the effects on the particular interest because little research has been done on mortality, development, sexual, and oviposition behaviour. J Anim Behav Biometeorol (2021) 9:2102 Received: August 09, 2020 | Accepted: August 29, 2020 www.jabbnet.com Saadane et al. (2021) 2 D. melanogaster, the world's most widely distributed species, 2.5. Effect of the plant extract on sexual behaviour is considered a dreaded nuisance both for the inconvenience caused by the parasitic diseases it can inoculate (Jolivet 1980; Sexual parade in fruit flies is an eventful behavior Joly 2006; Habbachi et al 2013). It is also an important vector (Clynen et al 2011; Chardonnet 2013), goes through six essential, predetermined and invariable steps (Terhzaz 2003; for various infectious microorganisms, including Dickson 2008; Revadi et al 2015) and requires many sensory phytopathogenic yeasts and bacteria that attack not only vegetable and fruit crops but also cereal and sunflower crops signals, of which chemical signals (cubic hydrocarbon (Kloepper et al 1979; Corby-Harris et al 2007; Nadarasah and pheromones) play an important role (Greenspan and Ferveur Stavrinides 2011; Becher et al 2012). 2000; Sokolowski 2001). The male first walks up to a potential female and taps her on the cuticle with his front legs; if the 2. Materials and Methods female moves, the male follows and vibrates a wing. Then, when the female stops, the male runs in circles around her, 2.1. Elevage des insects lick her genitals with his proboscis, and tries to hang her up until mating (Revadi et al 2015). Drosophila melanogaster was described by Johann In this work, we treated the larvae group with the Wihelm Meigen in 1830. Its reproduction is very fast. Its life sublethal concentration of D. maritima extract (0.12 µg/ml) cycle is very short and includes three larval instars and a and then recovered the adults as soon as they emerged. 48 pupal stage from which an adult emerges that can fly and hours after emergence, these adults were used for sexual reproduce. A wild strain harvested from rotten apples in behaviour tests where we note the time and number of Annaba region (Algeria), was used. The culture was carried contacts, the time and number of wing vibrations, the time out in vials (250 ml) capped with a foam pad and containing and number of licks, the time and number of mating attempts an agar-based nutrient medium of cornmeal and brewer's as well as the time and duration of mating if successful. These yeast. The culture was maintained at 25±1 °C, a humidity of tests are carried out according to four types of crossings: 70 to 80%, and a 12-hour scotophase. control male X control female, treated male X treated female, 2.2. Drimia maritima (Asparagaceae) control male X treated female and treated male X control female. It is a bulbous plant, which grows in the Mediterranean region. The main properties of this plant 2.6. Effect of the plant extract on oviposition behaviour and considered in traditional medicine are dropsy, cough and reproduction: respiratory diseases, jaundice, skin problems, leprosy, To the purpose of determining the egg-laying site baldness, gastric disorders, cancer, epilepsy, joint pain, and choice, we observed mated females and we noted the site use as an antidote (Stannard 1974; Aliotta et al 2004). The D. eggs hatching, as well as eggs and larval numbers. maritima bulbs had significant insecticidal activity against several species (Pascual-Villalobos and Fernandez 1999; 2.7. Data analysis Metin and Burun 2010). For the present study the plant is collected in the region of Seraïdi (Annaba, Algeria) The toxicological parameters (LC50%, LC90%, LT50%, and LT90%) were calculated according to Finney's (36°54'27.02" north latitude, 7°39'49.95" east longitude). mathematical methods (Finney 1971). Regarding sexual and 2.3. Preparation of the ethanolic extract of D.maritima oviposition behavior tests, results were analyzed statistically by descriptive metric methods then an analysis of variance For the extract, we macerated the dry bulb powder (ANOVA) was performed on XLSTAT 2009 software (300g) in ethanol (250 ml at 70%) for 24 hours in laboratory (Addinsoft, New York, NY). conditions and on the shade. After filtration using Whatman filter paper, the liquid obtained was evaporated using a 3. Results magnetic stirrer heated to 45 °C to remove ethanol. The 10g leg recovered was stored at 4 °C until use. 3.1. Effect on mortality and development 2.4. Treatment of larvae with D. maritima extract The results showed that D.maritima ethanol extracts act on the duration of larval development and larval mortality We prepared three different concentrations 0.12 depending on the concentration applied. The three µg/ml, 0.25 µg/ml, and 0.5 µg/ml. The treatment is done by concentrations used showed high larvicidal activity at the end ingestion; each concentration is mixed with food (40g) which of mortality monitoring (15 days after treatment) (Table 1); will be distributed in four different tubes. In these tubes, 20- and 100% of the population was killed after 15 days of second instar larvae (L2) from the mass rearing are placed. In treatment
Recommended publications
  • Pharmacognosy 1
    PHARMACOGNOSY 1 Dr. Dima MUHAMMAD 0 References: 1. Trease and Evans Pharmacognosy, William C. Evans, Saunders Elsevier, 2009, sixteenth ed., ISBN 978-0 -7020 -2934 9 2. textbook of pharmacognosy & phytochemistry, Biren Shah & A.K. Seth, Elsevier, 2010, 1st ed, ISBN: 978-81-312-2298-0 3. Medicinal Natural Products: A Biosynthetic Approach. Paul M Dewick, John Wiley & Sons, 2009,3rd Edition, ISBN 978-0-470-74168-9. 4. Martins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Marine Drugs, 12(2) 1 1. MEANING OF PHARMACOGNOSY Pharmacognosy, known initially as materia medica, may be defined as the study of crude drugs obtained from plants, animals and mineral kingdom and their constituents. There is a historical misinformation about who created the term pharmacognosy. According to some sources, it was C. A. Seydler, a medical student at Halle, Germany, in 1815; he wrote his doctoral thesis titled Analectica Pharmacognostica. However, recent historical research has found an earlier usage of this term. The physician J. A. Schmidt (Vienna) used that one in his Lehrbuch der materia medica in 1811, to describe the study of medicinal plants and their properties. The word pharmacognosy is derived from two Latin words pharmakon, ‘a drug,’ and gignoso, ‘to acquire knowledge of’. It means ‘knowledge or science of drugs. Crude drugs are plants or animals, or their parts which after collection are subjected only to drying or making them into transverse or longitudinal slices or peeling them in some cases. Most of the crude drugs used in medicine are obtained from plants, and only a small number comes from animal and mineral kingdoms.
    [Show full text]
  • Drimia Edwardsii (Asparagaceae, Scilloideae), a New Urgineoid Species from the Mkhomazi River Valley of Eastern South Africa
    Phytotaxa 195 (2): 135–144 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.195.2.2 Drimia edwardsii (Asparagaceae, Scilloideae), a new urgineoid species from the Mkhomazi River Valley of eastern South Africa NEIL R. CROUCH1,2* & MARIO MARTÍNEZ-AZORÍN3,4 1Biodiversity Research, Monitoring and Assessment, South African National Biodiversity Institute, P.O. Box 52099, Berea Road 4007, South Africa; Email: [email protected] 2School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa 3Institute of Plant Science, NAWI Graz, Karl-Franzens University Graz, Holteigasse 6, A-8010 Graz, Austria. 4CIBIO (Instituto Universitario de la Biodiversidad) & dCARN, Universidad de Alicante, PO Box 99, E-03080 Alicante, Spain; E-Mail: [email protected] *author for correspondence Abstract A new species endemic to South Africa, Drimia edwardsii, is described and illustrated, with data provided on its morphol- ogy, ecology and distribution. The species appears to be closely related to Drimia delagoensis and Urginea lydenburgensis, and whereas all are synanthous and produce small, pale-brownish campanulate flowers, several leaf and bulb features clearly distinguish the new species. Key words: Drimia, Hyacinthaceae, Sekanama, South Africa, taxonomy, Urginea, Urgineoideae Introduction Hyacinthaceae sensu APG (2003) comprises ca. 700–1000 species of bulbous plants mostly occurring in Africa, Europe and Asia, with a single genus, Oziroë Rafinesque (1837: 53), present in South America (Speta 1998a, b, APG 2003, Martínez-Azorín et al. 2014). Four subfamilies are accepted in Hyacinthaceae (Hyacinthoideae, Ornithogaloideae, Oziroëoideae and Urgineoideae) corresponding to monophyletic clades (Speta 1998b, Pfosser & Speta 1999, Manning et al.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • TAXON:Schizobasis Intricata SCORE:1.0 RATING:Low Risk
    TAXON: Schizobasis intricata SCORE: 1.0 RATING: Low Risk Taxon: Schizobasis intricata Family: Hyacinthaceae Common Name(s): climbing onion Synonym(s): Anthericum intricatum Baker losbol Drimia intricata (Baker) J.C.Manning Schizobasis& Goldblatt dinteri K.Krause Schizobasis macowanii Baker Assessor: Chuck Chimera Status: Assessor Approved End Date: 26 Jun 2015 WRA Score: 1.0 Designation: L Rating: Low Risk Keywords: Geophyte, Bulb-forming, Self-fertile, Seed Producing, Atelechorous Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 ? outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y =
    [Show full text]
  • Asparagaceae Subfam. Scilloideae) with Comments on Contrasting Taxonomic Treatments
    Phytotaxa 397 (4): 291–299 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.397.4.3 New combinations in the tribe Urgineeae (Asparagaceae subfam. Scilloideae) with comments on contrasting taxonomic treatments MARIO MARTÍNEZ-AZORÍN1*, MANUEL B. CRESPO1, MARÍA Á. ALONSO-VARGAS1, ANTHONY P. DOLD2, NEIL R. CROUCH3,4, MARTIN PFOSSER5, LADISLAV MUCINA6,7, MICHAEL PINTER8 & WOLFGANG WETSCHNIG8 1Depto. de Ciencias Ambientales y Recursos Naturales (dCARN), Universidad de Alicante, P. O. Box 99, E-03080 Alicante, Spain; e- mail: [email protected] 2Selmar Schonland Herbarium, Department of Botany, Rhodes University, Grahamstown 6140, South Africa 3Biodiversity Research, Assessment & Monitoring, South African National Biodiversity Institute, P.O. Box 52099, Berea Road 4007, South Africa 4School of Chemistry and Physics, University of KwaZulu-Natal, 4041 South Africa 5Biocenter Linz, J.-W.-Klein-Str. 73, A-4040 Linz, Austria 6Iluka Chair in Vegetation Science & Biogeography, Harry Butler Institute, Murdoch University, Murdoch WA 6150, Perth, Australia 7Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa 8Institute of Biology, Division Plant Science, NAWI Graz, Karl-Franzens University Graz, Holteigasse 6, A-8010 Graz, Austria *author for correspondence Abstract As part of a taxonomic revision of tribe Urgineeae, and informed by morphological and phylogenetic evidence obtained in the last decade, we present 17 new combinations in Austronea, Indurgia, Schizobasis, Tenicroa, Thuranthos, Urgineopsis, and Vera-duthiea. These are for taxa recently described in Drimia sensu latissimo or otherwise named during the past cen- tury.
    [Show full text]
  • Volume 2 Book with NUMBER 1-402
    FLORA OF KARNATAKA A Checklist Volume - 2 : Gymnosperms & Angiosperms CITATION Karnataka Biodiversity Board, 2019. FLORA OF KARNATAKA, A Checklist, Volume – 2: Gymnosperms and Angiosperms. 1 - 1002 (Published by Karnataka Biodiversity Board) Published: December, 2019. ISBN - 978-81-939228-1-1 © Karnataka Biodiversity Board, 2019 ALL RIGHTS RESERVED • No part of this book, or plates therein, may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher’s consent, in any form of binding or cover other than that in which it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. DISCLAIMER • THE CONTENTS INCLUDING TEXT, PLATES AND OTHER INFORMATION GIVEN IN THE BOOK ARE SOLELY THE AUTHOR’S RESPONSIBILITY AND BOARD DOES NOT HOLD ANY LIABILITY. PRICE: ` 2000/- (Two thousand rupees only). Printed by : Peacock Advertising India Pvt Ltd. # 158 & 159, 3rd Main, 7th Cross, Chamarajpet, Bengaluru – 560 018 | Ph: 080 - 2662 0566 Web: www.peacockgroup.in FOREWORD About 60% of the Western Ghats is present in Karnataka State, with this large part of the peninsular green cover coupled with inland forest plateau enriched by the seven river systems, the State of Karnataka showcases a wider floral wealth harboring highest number of apex predators all of which is conserved by a framework of various statutes.
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • Aloes and Lilies of Ethiopia and Eritrea
    Aloes and Lilies of Ethiopia and Eritrea Sebsebe Demissew Inger Nordal Aloes and Lilies of Ethiopia and Eritrea Sebsebe Demissew Inger Nordal <PUBLISHER> <COLOPHON PAGE> Front cover: Aloe steudneri Back cover: Kniphofia foliosa Contents Preface 4 Acknowledgements 5 Introduction 7 Key to the families 40 Aloaceae 42 Asphodelaceae 110 Anthericaceae 127 Amaryllidaceae 162 Hyacinthaceae 183 Alliaceae 206 Colchicaceae 210 Iridaceae 223 Hypoxidaceae 260 Eriospermaceae 271 Dracaenaceae 274 Asparagaceae 289 Dioscoreaceae 305 Taccaceae 319 Smilacaceae 321 Velloziaceae 325 List of botanical terms 330 Literature 334 4 ALOES AND LILIES OF ETHIOPIA Preface The publication of a modern Flora of Ethiopia and Eritrea is now completed. One of the major achievements of the Flora is having a complete account of all the Mono­ cotyledons. These are found in Volumes 6 (1997 – all monocots except the grasses) and 7 (1995 – the grasses) of the Flora. One of the main aims of publishing the Flora of Ethiopia and Eritrea was to stimulate further research in the region. This challenge was taken by the authors (with important input also from Odd E. Stabbetorp) in 2003 when the first edition of ‘Flowers of Ethiopia and Eritrea: Aloes and other Lilies’ was published (a book now out of print). The project was supported through the NUFU (Norwegian Council for Higher Education’s Programme for Development Research and Education) funded Project of the University of Oslo, Department of Biology, and Addis Ababa University, National Herbarium in the Biology Department. What you have at hand is a second updated version of ‘Flowers of Ethiopia and Eritrea: Aloes and other Lilies’.
    [Show full text]
  • Drimia Polyantha1
    Sponsored by Department of Science and Technology,New Delhi. Haritarium Family Code: 558 Species code: 10 - 3A Naoroji Godrej Centre for Plant Research Drimia polyantha(Blatt. &McCann)Stearn Botanical name: Drimia polyantha (Blatt. & McCann) Stearn (=Urginea polyantha Blatt.&McC.) Vernacular name: Pachankanda. Family : Hyacinthaceae Threatened category: Data deficient (Gaikwad & Yadav, 2004). Key characters: Underground perennial stems large in proportion to roots, tunicated bulb; annual scape simple, naked, Leaves radical, Pedicel longer than bracts, bracts persistant, flowers recemose, Perianth campanulate, 6-partite, Seeds flattened. Description: Herbs, scapigerous; bulbs globose-ovoid, tunicte, Leaves shining green, elliptic oblong, 30-40 X 1.5 -4.0 cm, lorate. Scapes 45 cm long. Inflorescence of racemes dense or lax, 20 cm long. Flowers up to 40, brownish-purple, open during day time between 6am -2pm., pedicellate. Capsules truncate, trilocular. Seeds broadly elliptic. Flowering and fruiting: March- July. Distribution: India: Endemic to Peninsular India Reported Localities: Nasik, Kolhapur, Pune and Satara districts. Ecology: Common. Prefers open slopes and plateaux. Altitude ranges between 300-1200m above sea level. Association: No specific plant association is observed.. Sponsored by Department of Science and Technology,New Delhi. Haritarium Family Code: 558 Species code: 10 - 3B Naoroji Godrej Centre for Plant Research Drimia polyantha(Blatt. &McCann)Stearn 4 5 1 2 3 6 7 1 8 9 8 10 11 12 13 14 15 1.Habit, 2.Inflorescence, 3.Fruiting scape, 4,5,6. Flower variation, 7. Dissected flower, 6.Perianth,7. Anther with perianth, 8. Gynoecium, 9.&10. Anther 11. Bulb, 12&13 Pod,14. Seeds. Sponsored by Department of Science and Technology,New Delhi.
    [Show full text]
  • Herbal Medicinal Effectiveness: Potential Risks and Health Gained Without Collateral Damage: a Review of Drimia Maritime
    Acta Scientific MEDICAL SCIENCES (ISSN: 2582-0931) Volume 5 Issue 4 April 2021 Mini Review Herbal Medicinal Effectiveness: Potential Risks and Health Gained without Collateral Damage: A Review of Drimia maritime Salem Mohamed Edrah* Received: February 16, 2021 Professor, Chemistry Department, Sciences College, El-Mergib University, Al-Khums, Published: March 19, 2021 Libya © All rights are reserved by Salem Mohamed *Corresponding Author: Salem Mohamed Edrah, Professor, Chemistry Edrah. Department, Sciences College, El-Mergib University, Al-Khums, Libya. Abstract Drimia maritima outer scales of which are thin and papery, red or orange-brown. It is one of the plants that grow in North Africa and the Mediterranean (L) is a perennial plant, with fibrous roots proceeding from the base of a large, tunicate, nearly globular bulb, the Basin. The plant owns a large bulb which can be about 20 cm wide and weigh may reach to 1 kg, leaves are dark green in colour and used in treating diseases, combating agricultural pests, and killing rats to preserve crops. The plant has toxicity may lead to death leathery in texture, flowers are white and may reach 2 m in height, and approximately1.5 cm wide. From ancient time, this plant is when it is used excessively and without paying attention to the dosages needed for treatment, It is of great importance due to the fact that it contains many very effective biochemical composites such as Bufadienolides.. Keywords: Drimia maritima (L); Chemical Constituents; Toxicity; Bufadienolides Compounds Abbreviation Drimia genus includes ninety-nine species [3]. This species is also known by several common names, including squill, sea squill, sea D.
    [Show full text]
  • Journal of American Science 2013;9(5)
    Journal of American Science 2013;9(5) http://www.jofamericanscience.org Life forms and rangeland for many habitats of Jarjar oma in Al- Jabal Al- Akhdar on Mediterranean sea Abusaief, H. M. A. Agron. Fac. Agric., Omar Al-Mukhtar Univ. [email protected] Abstract: The present study was carried out during 2010 to 2011 to determine the important plants of in Jarjar oma in Al- Jabal Al- Akhdar-Libya, which includes about 179 species belonging to 51 families and 144 genera. They are represented by 75 perennial, 101 annual and 3 biennial species. Most characteristic families are Asteraceae containing 28 species, the dominance of Asteraceae indicates the range deterioration and dominance of unpalatable species. Fabaceae represented by 22 species, Poaceae including 18 species, Asparagaceae by 7 species, Brassicaceae by 6 species, Caryophyllaceae by 6 species, Euphorbiaceae by 6 species saline and rocky. Apiaceae, Lamiaceae and Polygonaceae including 5 species. Noticed that 56.2 % of species was annuals and 42.1 % was perennials and 1.7 % was biennials. Whereas autumn and summer increase perennials to reach 100 % more than spring and winter wherein increase annuals species to attain 55 %, to display disappear biennial in autumn and summer seasons in all habitat except rocky habitat in autumn. Out of the surveyed, Kinds of Forbs gave 109 species followed shrubs by 38 species, Grass 26 species, Trees 6 species. Of the most dominant species was broad-leaved (Forbs) plant species found in the region. According to palatability 107 species were palatable and 72 species were unpalatable. For annuals, 61 species were palatable and 40 species were unpalatable, while perennial, 44 species were palatable and 31 species were unpalatable.
    [Show full text]
  • Toxicological Effects of Urginea Maritima (L.) Against the Red Flour
    Journal of Entomology and Zoology Studies 2016; 4(1): 17-20 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Toxicological effects of Urginea maritima (L.) JEZS 2016; 4(1): 17-20 © 2016 JEZS against the red flour beetle (Coleoptera: Received: 07-11-2015 Accepted: 09-12-2015 Tenebrionidae) Amel Ben Hamouda a) University of Sousse, Amel Ben Hamouda, Ikbal Chaieb, Lanja Zouari, Khaoula Zarrad, Asma UR13AGR09, Regional Centre of Research on Horticulture and Laarif Organic Agriculture, 4042 Chott Mariem, Sousse, Tunisia. Abstract b) Institute of the Olive Tree Present study was analyzed to determine the toxicological effects of Urginea maritime at different station of Sousse, 40, Rue Ibn concentrations (0.1, 1 and 10%) against larvae and adults of Tribolium castaneum. In the present study it Khouldoun 4061 Sousse, Tunisia. was observed that by tropical application, leaf extract shows highest toxicity to larvae as compared to adults. LC50 value and LC90 value was found to be 27.8g/L and 55.1g/L respectively in probit analysis of Ikbal Chaieb leaf extract for the larvae. However the bulb extract was found to be more toxic, LC50 and LC90 values University of Sousse, were much lesser with 16.6 and 34.4g/L respectively. The present study also determined the in vivo UR13AGR09, Regional Centre of Research on Horticulture and toxicity of leaf as well as bulb extracts on larvae and the LC50 value was found to be 92 and 19.3g/L Organic Agriculture, 4042 Chott respectively. Similarly in residual film toxicity, LC50 and LC90 were found to be 87.9 and 495.4g/L, Mariem, Sousse, Tunisia.
    [Show full text]