CBD and Potential Drug Interactions

Total Page:16

File Type:pdf, Size:1020Kb

CBD and Potential Drug Interactions CBD and Potential Drug Interactions Certain substances such as (CBD, THC, grapefruit, St. John’s Wort, watercress, etc.) can affect drug metabolism, making certain drugs metabolize faster or slower than they would on their own. Cannabidiol (CBD) can temporarily inhibit the one of the most common metabolism pathways (CYP450) ability to metabolize certain drugs leading to an increase (or decrease) in blood levels, unwanted side effects, and sometimes, an overdose. Some pharmaceuticals, called “prodrugs” (tamoxifen,5-FU, Simvastatin, Levodopa, Enalapril) don’t become functional until they are metabolized into an active component. If CBD or THC slow the metabolism of a pro-drug, it can adversely affect final levels of the desired active drug. If you have been hospitalized resulting from CBD use or taking any of the below drugs consult with your doctor prior to registering. Drug by Class Pain Management Blood Glucose Antibiotics/Antivirals Opioid Pain Relievers Insulin - Zithromax - Codeine Oral hypoglycemic agents - Erythromycin - Oxycodone Sulfonylureas - HIV Antivirals - NSAIDS CNS Other Cardiovascular Antiepileptics/anticonvulsants PPIs Statins (some) Benzodiazepines Antihistamines Antiarrhythmics - Alprazolam - Zyrtec Beta Blockers - Clonazepam - Diphenhydramine Calcium Channel Blockers - Diazepam - Allegra - Cardizem Antidepressants including SSRIs Anti-Nausea agents - Norvasc - Amitriptyline Steroids Anticoagulants - Amoxapine Chemotherapeutics - Desipramine - Tofranil - Pamelor - Vivactil Antipsychotics ADD/ADHD stimulants Drug by Name Adderall Eliquis (apixaban) pimozide (Orap) Aliskiren (Tekturna) Erythromycin ranolazine (Ranexa) Allegra (fexofenadine) Etoposide saquinavir (Invirase, Fortovase) Alprazolam (Xanax) Fentanyl Seldane (terbinafine) Ambien (zolpidem) flibanserin (Addyi) Seroquel (Quetiapine fumarate) amiodarone (Pacerone) indinavir (Crixivan) sildenafil (Revatio, Viagra) Anafranil (clomipramine) Lexapro (escitalopram oxalate) Sporonox (itraconazole) atorvastatin (Lipitor) loratadine (Claritin) tadalafil (Adcirca, Cialis) Azithromycin losartan (Cozaar) Taxol Biaxin (clarithromycin) Lovastatin vardenafil (Levitra, Staxyn) carbamazepine (Tegretol) Methotrexate verapamil (Calan, Calan SR) cilostazol (Pletal) naloxegol (Movantik) Viagra (sildenafil) Citalopram nilotinib (Tasigna) Vyvanse (lisdexamfetamine Codeine Nizoral (ketoconazole) dimesylate) colchicine NSAIDs (aspirin, naproxen, diclofenac, Warfarin Concerta ketoprofen, ibuprofen, etc) Wellbutrin (Bupropion) cyclosporine (Gengraf, Neoral) Oxycodone Xarelto (Rivaroxaban) Cymbalta (duloxetine) palbociclib (Ibrance) Zocor (simvastatin) dronedarone (Multaq) pazopanib (Votrient) Zofran (ondansetron) Effexor (venlafaxine) Zyprexa (olanzapine) .
Recommended publications
  • Drug Class Review Beta Adrenergic Blockers
    Drug Class Review Beta Adrenergic Blockers Final Report Update 4 July 2009 Update 3: September 2007 Update 2: May 2005 Update 1: September 2004 Original Report: September 2003 The literature on this topic is scanned periodically. The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use, or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Mark Helfand, MD, MPH Kim Peterson, MS Vivian Christensen, PhD Tracy Dana, MLS Sujata Thakurta, MPA:HA Drug Effectiveness Review Project Marian McDonagh, PharmD, Principal Investigator Oregon Evidence-based Practice Center Mark Helfand, MD, MPH, Director Oregon Health & Science University Copyright © 2009 by Oregon Health & Science University Portland, Oregon 97239. All rights reserved. Final Report Update 4 Drug Effectiveness Review Project TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... 6 Purpose and Limitations of Evidence Reports........................................................................................ 8 Scope and Key Questions .................................................................................................................... 10 METHODS.................................................................................................................................
    [Show full text]
  • The Postmortem Distribution of Vardenafil (Levitra | in an Aviation
    Journal of Analytical Toxicology, Vol. 31, July/August 2007 The Postmortem Distribution of Vardenafil (Levitra| in an Aviation Accident Victim with an Unusually High Blood Concentration* Robert D. Johnson ~, Russell J. Lewis, and Mike K. Angler Downloaded from https://academic.oup.com/jat/article/31/6/328/682815 by guest on 27 September 2021 Civil Aerospace Medical Institute, Federal Aviation Administration, Analytical Toxicology and Accident Research Laboratory, AAM-610, CAMI Building, 6500 S. MacArthur Blvd., Oklahoma City, Oklahoma 73169-6901 I Abstract phodiesterase type 5 enzyme (PDE5) found predominantly in the penile corpus cavernosum (2-7). Vardenafil (tevitra) is one of the most widely prescribed Vardenafil undergoes hepatic metabolism, producing the treatments for erectile dysfunction. This report presents a active desethyl metabolite M1. M1 contributes to the ob- rapid and reliable method for the identification and quantification served pharmacological effects provided by vardenafil, as M1 of vardenafil in postmortem fluids and tissues, applies this method exhibits approximately 30% of the potency of the parent to a postmortem case, and describes the distribution of vardenafil in various fluids and tissues.This procedure utilizes sildenafil-d8, drug (1). Under steady-state conditions, the plasma concen- which is structurally closely related to vardenafil, as an tration of M1 is approximately 26% of that seen for vardenafil internal standard for more accurate and reliable quantitation. (1). After oral administration of vardenafil, peak plasma con- The method incorporates solid-phaseextraction and liquid centrations are obtained within 30-60 min (1). Vardenafil chromatography-tandem mass spectrometry (MS) and and its active metabolite have a terminal half-life of approx- MS-MS-MS utilizing an atmospheric pressure chemical imately 4-5 h (1).
    [Show full text]
  • Inhibitory Effect of Eslicarbazepine Acetate and S-Licarbazepine on 2 Nav1.5 Channels
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.24.059188; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Inhibitory effect of eslicarbazepine acetate and S-licarbazepine on 2 Nav1.5 channels 3 Theresa K. Leslie1, Lotte Brückner 1, Sangeeta Chawla1,2, William J. Brackenbury1,2* 4 1Department of Biology, University of York, Heslington, York, YO10 5DD, UK 5 2York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK 6 * Correspondence: Dr William J. Brackenbury, Department of Biology and York Biomedical 7 Research Institute, University of York, Wentworth Way, Heslington, York YO10 5DD, UK. Email: 8 [email protected]. Tel: +44 1904 328284. 9 Keywords: Anticonvulsant, cancer, epilepsy, eslicarbazepine acetate, Nav1.5, S-licarbazepine, 10 voltage-gated Na+ channel. 11 Abstract 12 Eslicarbazepine acetate (ESL) is a dibenzazepine anticonvulsant approved as adjunctive treatment for 13 partial-onset epileptic seizures. Following first pass hydrolysis of ESL, S-licarbazepine (S-Lic) 14 represents around 95 % of circulating active metabolites. S-Lic is the main enantiomer responsible 15 for anticonvulsant activity and this is proposed to be through the blockade of voltage-gated Na+ 16 channels (VGSCs). ESL and S-Lic both have a voltage-dependent inhibitory effect on the Na+ current 17 in N1E-115 neuroblastoma cells expressing neuronal VGSC subtypes including Nav1.1, Nav1.2, 18 Nav1.3, Nav1.6 and Nav1.7.
    [Show full text]
  • Vardenafil Better Choice for Premature Ejaculation
    August 15, 2005 • www.familypracticenews.com Men’s Health 47 Vardenafil Better Choice for Premature Ejaculation BY ROBERT FINN (24%) of the men and was secondary (in On a self-rating scale of 0-8, where 0 Center but is now at the University of San Francisco Bureau most cases to erectile dysfunction) in the means PE almost never, 4 means PE about Hamburg. remaining 26 men (77%). half the time, and 8 means PE almost al- Self-ratings of sexual satisfaction, on a 0- S AN A NTONIO — Vardenafil improved After a 4-week run-in period, 17 men ways, the mean score was 6.14 at baseline, 5 scale, where 0 means not at all satisfied premature ejaculation more than sertra- were given 10-mg vardenafil 10 minutes 4.28 with sertraline, and 3.2 with varde- and 5 means extremely satisfied, averaged line, Frank Sommer, M.D., reported at the before intercourse for 6 weeks. The other nafil. 1.4 at baseline, 3.2 with sertraline, and 4.2 annual meeting of the American Urolog- 17 received 50 mg of sertraline 4 hours be- IVELT, as measured by a stopwatch, with vardenafil. In addition, the partners’ ical Association. fore intercourse. averaged 0.54 minutes at baseline, 2.87 sexual satisfaction showed significant in- Both vardenafil (Levitra), a phosphodi- After a 1-week washout period, the men minutes with sertraline, and 5.23 minutes creases for sertraline and even more so for esterase-5 inhibitor, and sertraline (Zoloft), who had been receiving sertraline with vardenafil, reported Dr. Sommer, vardenafil.
    [Show full text]
  • LEVITRA (Vardenafil Hcl) Tablets
    LEVITRA (vardenafil HCl) Tablets DESCRIPTION LEVITRA® is an oral therapy for the treatment of erectile dysfunction. This monohydrochloride salt of vardenafil is a selective inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5 (PDE5). Vardenafil HCl is designated chemically as piperazine, 1-[[3-(1,4-dihydro-5- methyl-4-oxo-7-propylimidazo[5,1-f][1,2,4]triazin-2-yl)-4- ethoxyphenyl]sulfonyl]-4-ethyl-, monohydrochloride and has the following structural formula: O O HN N x HCl x 3H2O N N O S O N N Vardenafil HCl is a nearly colorless, solid substance with a molecular weight of 579.1 g/mol and a solubility of 0.11 mg/mL in water. LEVITRA is formulated as orange, round, film-coated tablets with "BAYER" cross debossed on one side and "2.5", "5", "10", and "20" on the other side corresponding to 2.5 mg, 5 mg, 10 mg, and 20 mg of vardenafil, respectively. In addition to the active ingredient, vardenafil HCl, each tablet contains microcrystalline cellulose, crospovidone, colloidal silicon dioxide, magnesium stearate, hypromellose, polyethylene glycol, titanium dioxide, yellow ferric oxide, and red ferric oxide. CLINICAL PHARMACOLOGY Mechanism of Action Penile erection is a hemodynamic process initiated by the relaxation of smooth muscle in the corpus cavernosum and its associated arterioles. During sexual stimulation, nitric oxide is released from nerve endings and endothelial cells in the corpus cavernosum. Nitric oxide activates the enzyme guanylate cyclase resulting in increased synthesis of cyclic guanosine monophosphate (cGMP) in the smooth muscle cells of the corpus cavernosum. The cGMP in turn triggers smooth muscle relaxation, allowing increased blood flow into the penis, resulting in erection.
    [Show full text]
  • Guideline for Preoperative Medication Management
    Guideline: Preoperative Medication Management Guideline for Preoperative Medication Management Purpose of Guideline: To provide guidance to physicians, advanced practice providers (APPs), pharmacists, and nurses regarding medication management in the preoperative setting. Background: Appropriate perioperative medication management is essential to ensure positive surgical outcomes and prevent medication misadventures.1 Results from a prospective analysis of 1,025 patients admitted to a general surgical unit concluded that patients on at least one medication for a chronic disease are 2.7 times more likely to experience surgical complications compared with those not taking any medications. As the aging population requires more medication use and the availability of various nonprescription medications continues to increase, so does the risk of polypharmacy and the need for perioperative medication guidance.2 There are no well-designed trials to support evidence-based recommendations for perioperative medication management; however, general principles and best practice approaches are available. General considerations for perioperative medication management include a thorough medication history, understanding of the medication pharmacokinetics and potential for withdrawal symptoms, understanding the risks associated with the surgical procedure and the risks of medication discontinuation based on the intended indication. Clinical judgement must be exercised, especially if medication pharmacokinetics are not predictable or there are significant risks associated with inappropriate medication withdrawal (eg, tolerance) or continuation (eg, postsurgical infection).2 Clinical Assessment: Prior to instructing the patient on preoperative medication management, completion of a thorough medication history is recommended – including all information on prescription medications, over-the-counter medications, “as needed” medications, vitamins, supplements, and herbal medications. Allergies should also be verified and documented.
    [Show full text]
  • Formulation and Evaluation of Ranolazine Extended Release Tablets: Influence of Polymers
    Formulation and evaluation of ranolazine extended release tablets: Influence of polymers Murthy TEGK, Bala Vishnu Priya Mukkala, Suresh Babu VV1 Department of Pharmaceutics, Bapatla College of Pharmacy, Bapatla, Guntur, Andhra Pradesh, 1Natco Pharma Limited, Kothur, Hyderabad, Andhra Pradesh, India n extended release tablet provides prolonged periods of drug in plasma levels thereby reduce dosing frequency, Aimprove patient compliance and reduce the dose-related side effects. Ranolazine is indicated for the chronic treatment of angina in patients who have not achieved an adequate response with other anti-anginal agents. The present investigation was undertaken to design extended release tablets of Ranolazine employing hypromellose phthalate grade HP-55, ethocel standard 7FP premium ethyl cellulose, Surelease E-7-19040, Klucel HF pharm and Natrosol Type 250 HHX as matrix forming RESEARCH ARTICLE agents using wet granulation method. Formulated tablets were evaluated for uniformity of weight, assay, water content, in vitro drug release studies and stability studies. The drug release followed first order kinetics with both erosion and diffusion as the release mechanism. It is concluded that the desired drug release pattern can be obtained by using natrosol type 250 HHX compared to other polymers. The similarity factor (f2) was calculated to select best formulation by comparing in vitro dissolution data of the commercial formulation Ranexa®. The formulated tablets fulfilled the compendia requirements. The formulated Ranolazine Extended release tablets were found to be stable. Key words: Ehocel, extended release tablets, hypromellose phthalate, klucel HF pharm and natrosol, ranolazine, surelease INTRODUCTION MATERIALS AND METHODS Extended release drug delivery technology can provide Ranolazine was procured from the Natco Pharma smooth plasma levels of drug over longer periods of Ltd, Hyderabad.
    [Show full text]
  • Drug-Facilitated Sexual Assault Panel, Blood
    DRUG-FACILITATED SEXUAL ASSAULT PANEL, BLOOD Blood Specimens (Order Code 70500) Alcohols Analgesics, cont. Anticonvulsants, cont. Antihistamines, cont. Ethanol Phenylbutazone Phenytoin Cyclizine Amphetamines Piroxicam Pregabalin Diphenhydramine Amphetamine Salicylic Acid* Primidone Doxylamine BDB Sulindac* Topiramate Fexofenadine Benzphetamine Tapentadol Zonisamide Guaifenesin Ephedrine Tizanidine Antidepressants Hydroxyzine MDA Tolmetin Amitriptyline Loratadine MDMA Tramadol Amoxapine Oxymetazoline* Mescaline* Anesthetics Bupropion Pyrilamine Methcathinone Benzocaine Citalopram Tetrahydrozoline Methamphetamine Bupivacaine Clomipramine Triprolidine Phentermine Etomidate Desipramine Antipsychotics PMA Ketamine Desmethylclomipramine 9-hydroxyrisperidone Phenylpropanolamine Lidocaine Dosulepin Aripiprazole Pseudoephedrine Mepivacaine Doxepin Buspirone Analgesics Methoxetamine Duloxetine Chlorpromazine Acetaminophen Midazolam Fluoxetine Clozapine Baclofen Norketamine Fluvoxamine Fluphenazine Buprenorphine Pramoxine* Imipramine Haloperidol Carisoprodol Procaine 1,3-chlorophenylpiperazine (mCPP) Mesoridazine Cyclobenzaprine Rocuronium Mianserin* Norclozapine Diclofenac Ropivacaine Mirtazapine Olanzapine Etodolac Antibiotics Nefazodone Perphenazine Fenoprofen Azithromycin* Nordoxepin Pimozide Hydroxychloroquine Chloramphenicol* Norfluoxetine Prochlorperazine Ibuprofen Ciprofloxacin* Norsertraline Quetiapine Ketoprofen Clindamycin* Nortriptyline Risperidone Ketorolac Erythromycin* Norvenlafaxine Thioridazine Meclofenamic Acid* Levofloxacin* Paroxetine
    [Show full text]
  • Ranexa, INN:Ranolazine
    European Medicines Agency Doc. Ref.: EMEA/CHMP/643056/2009 EMEA/H/C/805 Ranexa1 ranolazine EPAR summary for the public This document is a summary of the European Public Assessment Report (EPAR). It explains how the Committee for Medicinal Products for Human Use (CHMP) assessed the studies performed, to reach their recommendations on how to use the medicine. If you need more information about your medical condition or your treatment, read the Package Leaflet (also part of the EPAR) or contact your doctor or pharmacist. If you want more information on the basis of the CHMP recommendations, read the Scientific Discussion (also part of the EPAR). What is Ranexa? Ranexa is a medicine that contains the active substance ranolazine. It is available as oval prolonged- release tablets (blue: 375 mg; orange: 500 mg; green: 750 mg). ‘Prolonged release’ means that ranolazine is released slowly from the tablet over a few hours. What is Ranexa used for? Ranexa is used to treat the symptoms of stable angina pectoris (chest pain caused by reduced blood flow to the heart). It is used as an add-on to existing treatment in patients whose disease is not adequately controlled by other medicines for angina pectoris, such as beta-blockers or calcium antagonists, or in patients who cannot take these medicines. The medicine can only be obtained with a prescription. How is Ranexa used? The recommended starting dose of Ranexa is 375 mg twice a day. After two to four weeks, the dose should be increased to 500 mg twice a day, and then to 750 mg twice a day, depending on the patient’s response.
    [Show full text]
  • Medcompgx Med List
    For more info, go to: MedCompGx.com Medications Conditions / Uses Other Uses CYP2C19 Anticonvulsants Lacosamide (Vimpat) Epilepsy, Seizures Phenobarbital (Luminal) Epilepsy, Seizures Barbituates, Anxiety, Sedation, Withdrawl Primidone (Mysoline) Epilepsy, Seizures Zonisamide (Zonegran) Epilepsy, Seizures Antifungals Voriconazole (Vfend) Yeast Infections, Candidiasis, Aspergillosis, Candida, Aspergillus Antidepressants Escitalopram (Lexapro) SSRI, Depression, Anxiety Citalopram (Celexa) SSRI, Depression, Anxiety OCD Sertraline (Zoloft) SSRI, Depression, Anxiety OCD, PTSD Doxepin (Silenor) Tricyclic Antidepressant, Depression Bipolar, Insomnia Imipramine (Tofranil) Tricyclic Antidepressant, Depression Trimipramine (Surmontil) Tricyclic Antidepressant, Depression Amitriptyline (Elavil) Tricyclic Antidepressant, Depression Clomipramine (Anafranil) Tricyclic Antidepressant, Depression OCD Benzodiazepines Clobazam (Onfi) Seizures Diazepam (Valium) Seizures, Muscle Spasms, Anxiety, Alcohol Withdrawl Beta Blockers Labetalol (Normodyne, Trandate) High Blood Pressure, Hypertension Immunomodulators Leflunomide (Arava) Rheumatoid Arthritis Tofacitinib (Xeljanz) Rheumatoid Arthritis Muscle Relaxants Carisoprodol (Soma) Muscle Pain, Muscle Spasms Opioids Meperidine (Demerol) Pain, Severe Pain, Narcotic, Opiate Proton Pump Inhibitors Dexlansoprazole (Dexilant) GERD, Acid Reflux, Gastric Esophageal Reflux, Ulcers, Heartburn, Zollinger-Ellison Syndrome Esomeprazole (Nexium) GERD, Acid Reflux, Gastric Esophageal Reflux, Ulcers, Heartburn, Zollinger-Ellison
    [Show full text]
  • Mechanism of Drug-Induced Qt Interval Prolongation
    ABSTRACT Torsades de pointes (TdP) is a polymorphic ventricular tachycardia characterized by a distinctive pattern of undulating QRS complexes that twist around the isoelectric line. TdP is usually self-terminating or can subsequently degenerate into ventricular fibrillation, syncope, and sudden death. TdP has been associated with QT interval prolongation of the electrocardiogram; therefore, the QT interval has come to be recognized as a surrogate marker for the risk of TdP. International guidelines have been developed to harmonize both the preclinical and clinical studies for the evaluation of drug-induced TdP. However, currently preclinical in vitro and in vivo methods as well as biomarkers for proarrhythmias have been imperfect in predicting drug-induced TdP in humans. It is clear that relevant biomarkers together with appropriate models are needed to assess the arrhythmic risk of new chemical entities. The goal of the present dissertation is to create rabbit with myocardial failing heart as an in vivo animal model to predict TdP in humans and to determine mechanism(s) underlying TdP in this model. Electrocardiograms were recorded from bipolar transthoracic leads in 7 conscious healthy rabbits previously trained to rest quietly in slings. The RR and QT relationship, ii QT=2.4RR0.72 (r2=0.79, p < 0.001) was obtained by slowed the heart rate with 2.0 mg/kg zatebradine, and the algorithm for removing effect of heart rate on QT is QTc = QT/(RR)0.72. QTc lengthened significantly in all conscious rabbits given intravenous cisapride, dofetilide or haloperidol (p < 0.05), and QTc did not change with DMSO (vehicle control), propranolol or enalaprilat.
    [Show full text]
  • Ranolazine Doesn't Need BP Reduction to Work
    March 2007 • www.ecardiologynews.com Acute Coronary Syndromes 17 Ranolazine Doesn’t Need BP Reduction to Work BY BETSY BATES thought to block the late sodium current lates into important clinical information, severe renal impairment, ranolazine did in- Los Angeles Bureau that results from a decreased oxygen sup- because its antianginal and anti-ischemic crease blood pressure by 10-15 mm Hg, so ply to the heart, thereby reducing the effects do not depend on reductions in “you need to be careful” and monitor S NOWMASS, COLO. — A year-old drug sodium-dependent calcium overload that heart rate or blood pressure. blood pressure regularly. believed to inhibit ischemia through a nov- acts as a key player in the development of “All of the other drugs do,” said Dr. Dr. Conti said the “important trial that el mechanism may prove useful for angina ischemia, explained Dr. Conti at the meet- Conti, eminent scholar and professor of everyone knows about” was the Combi- patients whose symptoms are not relieved ing, which was cosponsored by the Amer- cardiology at the University of Florida, nation Assessment of Ranolazine in Stable by revascularization or other agents, Dr. C. ican Academy of Cardiology. Gainesville. Angina (CARISA), in which ranolazine Richard Conti said at a conference spon- It is the first major advance in antian- In clinical trials, patients experienced significantly improved exercise duration sored by the Society for Cardiovascular ginal therapy since calcium channel block- minimal changes in mean heart rate (less and angina onset at trough and peak dose, Angiography and Interventions. ers, he noted.
    [Show full text]