Advanced Applications of MRI in Human Brain Science

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Applications of MRI in Human Brain Science REVIEW Advanced Applications of MRI in Human Brain Science Verne S. Caviness, Jr.,1 Nikos Makris,1 Nicholas T. Lange,2 Martha Herbert1 and David N. Kennedy1,3 Departments of 1Neurology, Massachusetts General Hospital, 2Department of Psychiatry, McLean Hospital, and 3 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (Received for publication on December 14, 1999) Abstract. Magnetic resonance imaging of the brain is now generally indispensable to state of art clinical medicine. Robust, high resolution imaging systems are currently available worldwide. The availability of MRI has, in little more than a decade, revolutionized the certainty and efficiency of clinical diagnosis and management. As a dividend of this revolution, clinicians and radiologists who are expert in the many and varied applications of MRI methods are able to relate this expertise to a con fident mastery of the topographic anatomy of the brain as revealed in magnetic resonance images. Whereas the yield to clinical objectives has been massive, the clinician as yet draws upon a relatively limited sampling of the potential informational harvest from this technology which in theory could further enrich both clinical concerns and those of fundamental neuroscience. Here we will review early explorations into these other offerings with the expectation that the coming decade will see them established comfortably with current uses. We will also consider potential offerings of the extended applications of brain MRI to the characterization and insights into biological origins of certain obscure developmental disorders. (Keio J Med 49 (2): 66-73, June 2000) Key words: MRI, brain morphometry, neural systems, developmental disorders Three Stages of Application shape of the principal cerebral, brain stem and cere bellar regions and the gray scale compartments of MR represents the brain as a range of gray scale these regions match or do not match those of the images which may be formatted in any or all three of standard of normal brain. This level of application is the cardinal coronal, axial or sagittal planes. Planes may ufficient to those requirements needed to judge many be sampled only selectively from the brain with variable developmental malformations as abnormal.1 It is suffi plane thickness and interplane gaps or the image set cient for the recognition of stroke or tumor. may be fully 3 dimensional. The imaged set is an alge braic transform of the imaged brain. Respecting these Knowledge-based electively obtained properties of an image data set, we consider three potential stages of analytic operation. Here the observer, drawing upon a base of knowl These stages build, one upon the other, a systematic edge of the structure, organization and development of interpretation and view of the human brain as imaged the normal brain, looks beyond the raw gray scale and by the MRI system. shape presentation of the brain and makes inferences in these domains from the image presentation of pattern Pattern recognition (Fig. 1b). The interpretations of image pattern provided by the skilled radiologist and clinician will be richly By pattern recognition we intend judgements made reinforced by such knowledge. Conceptual frameworks practically with reference only to the gray-white pat and technologies only now beginning to mature will terns as viewed in the images (Fig. 1a). That is, the soon contribute much more at this level of analysis. judgement is made as to whether the gray scale and The critical issue here is the relationship of neural Presented at the 1140th Meeting of The Keio Medical Society in Tokyo, November 9, 1999. Reprint requests to: Dr. V. S. Caviness, Jr., Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston , MA 02114, USA, e-mail: [email protected] 66 Keio J Med 2000; 49 (2): 66-73 67 Fig. 1 MRI image of the brain. a) A coronal Tl-weighted MRI image at the level of the head of the caudate. b) Results of anatomic segmentation of this image are demonstrated. Unique anatomic regions are color coded and labeled. Abbreviations: Fl, first frontal gyrus; F2, second frontal gyrus; Cga, anterior cingulate gyrus; PAC, paracingulate gyrus; PRG, precentral gyrus; TP, temporal pole; INS, insula; CO, central operculum; FOC, frontoorbital cortex; Aput, anterior putamen; CauH, head of caudate; NA, nuculeus accumbens; V, ventricle. structure and of neural systems organization to what is gyri, the nuclear masses according to approximate actually visible in the gray scale MR images. For ex nuclear groups and the white matter into strata which ample the continuous cortical gray compartment at the distinguish the principal fascicular groupings.9-12 For surface of the cerebral hemisphere includes neocortex, each gray and white matter parcellation unit, generally archicortex and paleocortex.2 The extent of each of each only a few percent or less of the total volume of these structures is revealed by reliable topographic the hemisphere, we have formulated an atlas of systems landmarks, principally with reference to hemispheric related structural components. For each gray matter location and the local course and intersections of fis parcellation unit, whether cortical or subcortical, we sures. The neocortex is thrown into convolutions which have developed a reasoned atlas of principal con in the normal brain conform to a canonical pattern, nectivity, based upon dissection and, by extrapolation, though with substantial variations in the details of this upon hodologic experiment in primates. For each par pattern among individuals.3 The neocortex internally is cellation unit of white matter there is a companion atlas composed of several dozen architectonic fields, each of traversing principal fascicles given both in terms of with its specific role in the systems operation of the provenance and destination (Fig. 2). Standard anatomic forebrain. To a substantial extent there is good corre images may be complemented to this end by explicit 3 lation between specific gyrus and the location of archi dimensional demonstration of specific fiber tracts by tectonic field.4-6 Central gray masses, similarly, are di diffusion tensor imaging (Fig. 3).13 Finally, this presen visible into nuclei by local topographic landmarks.7 tation may be complemented by spectroscopy, EEG or Finally, the white matter is subcompartmentalized re MEG where the overlays from these additional tech specting the course and quality of principal associative, nologies may be registered computationally with those projection and commissural axon fascicles, and the of the basic 3 dimensional anatomic image sets (Fig . course of specific fascicles is systematically and reliably 4)14.15 positioned with respect to the three dimensional con Applications in general will apply to any analysis formation of the white matter stratification.8 where the objective is to deduce inferences about sys The extensive knowledge base which correlates top tems organization from the pattern data set. In the case ographic anatomy of the human brain with gray scale of lesion analysis in cognitive neuroscience , for exam MR images may be tapped only after extensive proc ple, the method first characterizes the lesion itself in essing of the topographic anatomy. We illustrate here in terms of the underlying gray and white matter struc outline an approach that has usefully allowed such cor tures destroyed where characterization extends to the relations. In brief, we work from a computer assisted domains of localization and size.16,17 In the domain of system of analysis that allows us first of all to segment connectivity, an estimate of interrupted connectivity apart, the gray, white and CSF compartments and to may be inferred from the mapping of destroyed gray partition the neocortex according to the principal set of and white matter parcellation units with reference to 68 Caviness VS, et al: MRI and the Human Brain Fig. 2 Maps of anatomic connectivity. a) The cortical connections of the commissural systems, including the corpus callosum, anterior commissure (ac) and dorsal hippocampal commissure (dhc) are shown. The color coding of the cortical regions corresponds to the color coding of the commissural regions. b) This figure shows the map of cortical anatomic connectivity (MAC) for the cingulum bundle (CB). Abbrevia tions: AG: angular gyrus; CALC: intracalcarine cortex; CGa: cingulate gyrus, anterior; CGp: cingulate gyrus, posterior; CN: cuneal cortex; CO: central operculum; F1: superior frontal gyrus; F2: middle frontal gyrus; F3o: inferior frontal gyrus, pars opercularis; F3t: inferior frontal gyrus, pars triangularis; FMC: frontal medial cortex; FO: frontal operculum; FOC: frontal orbital cortex; FP: frontal pole; Hl: Heschl's gyrus; INS: insula; JPL: juxtaparacentral cortex; LG: lingual gyrus; OP: occipital pole; OF: occipital fusi form gyrus; OLi: lateral occipital cortex, inferior; OLs: lateral occipital cortex, superior; PAC: para cingulate cortex; PCN: precuneus; PHa: parahippocampal gyrus, anterior; PHp: parahippocampal gyrus, posterior; PO: parietal operculum; POG: postcentral gyrus; PP: planum polare; PRG: precentral gyrus; PT: planum temporale; SC: subcallosal cortex; SCLC: supracalcarine cortex; SGa: supramarginal gyrus, ante rior; SGp: supramarginal gyrus, posterior; SPL: superior parietal lobule; T1a: superior temporal gyrus, anterior; Tip: superior temporal gyrus, posterior; T2a: middle temporal gyrus, anterior; T2p: middle temporal gyrus, posterior;
Recommended publications
  • Advanced Morphometric Techniques Applied to The
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN ADVANCED MORPHOMETRIC TECHNIQUES APPLIED TO THE STUDY OF HUMAN BRAIN ANATOMY TESIS DOCTORAL Yasser Alemán Gómez Ingeniero en Tecnologías Nucleares y Energéticas Máster en Neurociencias Madrid, 2015 DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN PHD THESIS ADVANCED MORPHOMETRIC TECHNIQUES APPLIED TO THE STUDY OF HUMAN BRAIN ANATOMY AUTHOR Yasser Alemán Gómez Ing. en Tecnologías Nucleares y Energéticas MSc en Neurociencias ADVISOR Manuel Desco Menéndez, MScE, MD, PhD Madrid, 2015 Departamento de Ingeniería Electrónica Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad Politécnica de Madrid Ph.D. Thesis Advanced morphometric techniques applied to the study of human brain anatomy Tesis doctoral Técnicas avanzadas de morfometría aplicadas al estudio de la anatomía cerebral humana Author: Yasser Alemán Gómez Advisor: Manuel Desco Menéndez Committee: Andrés Santos Lleó Universidad Politécnica de Madrid, Madrid, Spain Javier Pascau Gonzalez-Garzón Universidad Carlos III de Madrid, Madrid, Spain Raymond Salvador Civil FIDMAG – Germanes Hospitalàries, Barcelona, Spain Pablo Campo Martínez-Lage Universidad Autónoma de Madrid, Madrid, Spain Juan Domingo Gispert López Universidad Pompeu Fabra, Barcelona, Spain María Jesús Ledesma Carbayo Universidad Politécnica de Madrid, Madrid, Spain Juan José Vaquero López Universidad Carlos III de Madrid, Madrid, Spain Esta Tesis ha sido desarrollada en el Laboratorio de Imagen Médica de la Unidad de Medicina y Cirugía Experimental del Instituto de Investigación Sanitaria Gregorio Marañón y en colaboración con el Servicio de Psiquiatría del Niño y del Adolescente del Departamento de Psiquiatría del Hospital General Universitario Gregorio Marañón de Madrid, España. Tribunal nombrado por el Sr.
    [Show full text]
  • Tool-Use and the Chimpanzee Brain: an Investigation of Gray and White Matter, and a Focused Study of Inferior Parietal Microstructure
    Tool-use and the Chimpanzee Brain: An Investigation of Gray and White Matter, and a Focused Study of Inferior Parietal Microstructure by Laura Denise Reyes A.B. in Psychology, June 2008, Dartmouth College M.A. in Anthropology, May 2011, New Mexico State University M.Phil in Hominid Paleobiology, June 2013, The George Washington University A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2017 Chet C. Sherwood Professor of Anthropology The Columbian College of Arts and Sciences of The George Washington University certifies that Laura D. Reyes has passed the Final Examination for the degree of Doctor of Philosophy as of May 3, 2017. This is the final and approved form of the dissertation. Tool-use and the Chimpanzee Brain: An Investigation of Gray and White Matter, and a Focused Study of Inferior Parietal Microstructure Laura Denise Reyes Dissertation Research Committee: Chet C. Sherwood, Professor of Anthropology, Dissertation Director Kimberley Phillips, Professor of Psychology, Trinity University, Committee Member Scott Mackey, Assistant Professor of Psychiatry, University of Vermont, Committee Member ii © Copyright 2017 by Laura Denise Reyes All rights reserved. iii Acknowledgments The author would like to thank her parents, Loretta and Francisco Reyes; her grandparents, Celia and Ralph Lopez and Paula and Francisco Reyes; and all of her family and friends who offered support during the course of her education, especially Amelia Villaseñor and Chrisandra Kufeldt. The author acknowledges the dissertation committee, Brenda Bradley (Chair), Chet Sherwood (Advisor), David Braun, Scott Mackey, Kimberley Phillips, and Sarah Shomstein, as well as the following funding sources: National Science Foundation Doctoral Dissertation Research Improvement Grant BCS-1455629 and GWU Provost’s Fellowship.
    [Show full text]
  • S41598-019-48446-0[1]
    Edinburgh Research Explorer Network analysis of canine brain morphometry links tumour risk to oestrogen deficiency and accelerated brain ageing Citation for published version: Rzechorzek, N, Saunders, O, Hiscox, L, Schwarz, T, Marioni-Henry, K, Argyle, D, Schoenebeck, J & Freeman, T 2019, 'Network analysis of canine brain morphometry links tumour risk to oestrogen deficiency and accelerated brain ageing', Scientific Reports. https://doi.org/10.1038/s41598-019-48446-0 Digital Object Identifier (DOI): 10.1038/s41598-019-48446-0 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Scientific Reports Publisher Rights Statement: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.
    [Show full text]
  • Features of the Cerebral Vascular Pattern That Predict Vulnerability to Perfusion Or Oxygenation Deficiency: an Anatomic Study
    431 Features of the Cerebral Vascular Pattern That Predict Vulnerability to Perfusion or Oxygenation Deficiency: An Anatomic Study D. M. Moody1 In an ongoing study of brain microvasculature in humans at autopsy, we had the 1 2 M.A. Bell · opportunity to analyze the overall scheme of this vascular supply. The native endothelial V. R. Challa3 membrane enzyme, alkaline phosphatase, is used to precipitate black lead sulfide salt in the vessel wall, rendering the brain microvasculature visible by both light microscopy and microradiography. There are six distinct patterns of intraparenchymal afferent blood supply to the supratentorial brain: short arterioles from a single source (e.g., those in the cortex); short- to intermediate-length arterioles, single source (anterior two-thirds of the corpus callosum); short- to intermediate-length arterioles and arteries, dual source (subcortical U fibers); intermediate-length arterioles and arteries, triple source (extreme/ external capsule and claustrum); long arteries and arterioles, single source (centrum semiovale); and large, long muscular arteries, single source (thalamus and basal ganglia). The nature of this arrangement offers some protection to certain regions of the cerebrum from circulatory challenges such as hypotension, while leaving other areas vulnerable. The distal arterioles supplying two of these protected regions, the U-fiber area and the extreme/external capsule and claustrum area, also exhibit the feature of interdigitation, which can offer additional collateral potential from one arteriolar territory to the next. Aging, hypertension, diabetes mellitus, and atherosclerosis can have a significant impact on brain microcirculation. The way in which vascular patterns dictate the distribution of these effects is discussed. The ability to stain the cerebral microvessels and demonstrate the finer points of their patterns in sections and microradiographs has enabled us to resolve some long-standing questions about vascular connections and directions.
    [Show full text]
  • Changes in Cerebral Morphology Consequent to Peripheral Autonomic Denervation
    NeuroImage 18 (2003) 908–916 www.elsevier.com/locate/ynimg Changes in cerebral morphology consequent to peripheral autonomic denervation Hugo D. Critchley,a,b,* Catriona D. Good,a John Ashburner,a Richard S. Frackowiak,a Christopher J. Mathias,b,c and Raymond J. Dolana a Wellcome Department of Imaging Neuroscience, Institute of Neurology, UCL, 12 Queen Square, London WC1N 3BG, UK b Autonomic Unit, National Hospital for Neurology & Neurosurgery and Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK c Neurovascular Medicine Unit, St. Mary’s Hospital, ICSM, London W2 1NY, UK Received 14 June 2002; accepted 12 November 2002 Abstract Pure autonomic failure (PAF) is characterized by an acquired, selective, peripheral denervation of the autonomic nervous system. Patients with PAF fail to generate bodily states of arousal via the autonomic nervous system in response to physical or cognitive effort. We used voxel-based morphometry to test the hypothesis that changes in the morphology of brain regions involved in autonomic control would arise as a consequence to the longstanding absence of peripheral autonomic responses in PAF patients. Optimized voxel-based morphometry of structural magnetic resonance scans was used to test for regional differences in grey and white matter in 15 PAF patients and matched controls. There were no group differences observed in global measures of grey matter, white matter, or cerebrospinal fluid (CSF). We identified morphometric differences reflecting regional decreases in grey matter volume and concentration in anterior cingulate and insular cortices in PAF patients relative to controls. Morphometric differences in brainstem and subcortical regions did not reach statistical significance.
    [Show full text]
  • Two Fiber Pathways Connecting Amygdala and Prefrontal Cortex in Humans and Monkeys
    bioRxiv preprint doi: https://doi.org/10.1101/561811; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Two fiber pathways connecting amygdala and prefrontal cortex in humans and monkeys Davide Folloni1,2*, Jérôme Sallet1,2, Alexandre A. Khrapitchev3, Nicola R. Sibson3, Lennart Verhagen1,2†, Rogier B. Mars2,4† 1Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom 2Wellcome Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom 3Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom 4Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands †Authors contributed equally to the work *To whom correspondence should be addressed: Address: Davide Folloni, Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/561811; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The interactions between amygdala and prefrontal cortex are pivotal to many neural processes involved in learning, decision-making, emotion, and social regulation.
    [Show full text]
  • Brain Morphometry in 22Q11.2 Deletion Syndrome: an Exploration of Diferences in Cortical Thickness, Surface Area, and Their Contribution to Cortical Volume M
    www.nature.com/scientificreports OPEN Brain morphometry in 22q11.2 deletion syndrome: an exploration of diferences in cortical thickness, surface area, and their contribution to cortical volume M. Gudbrandsen1, E. Daly1, C. M. Murphy1,2, C. E. Blackmore1,2, M. Rogdaki3,4, C. Mann5, A. Bletsch5, L. Kushan6, C. E. Bearden6,7, D. G. M. Murphy1, M. C. Craig1,8 & Christine Ecker1,5* 22q11.2 Deletion Syndrome (22q11.2DS) is the most common microdeletion in humans, with a heterogenous clinical presentation including medical, behavioural and psychiatric conditions. Previous neuroimaging studies examining the neuroanatomical underpinnings of 22q11.2DS show alterations in cortical volume (CV), cortical thickness (CT) and surface area (SA). The aim of this study was to identify (1) the spatially distributed networks of diferences in CT and SA in 22q11.2DS compared to controls, (2) their unique and spatial overlap, as well as (3) their relative contribution to observed diferences in CV. Structural MRI scans were obtained from 62 individuals with 22q11.2DS and 57 age- and-gender-matched controls (aged 6–31). Using FreeSurfer, we examined diferences in vertex-wise estimates of CV, CT and SA at each vertex, and compared the frequencies of vertices with a unique or overlapping diference for each morphometric feature. Our fndings indicate that CT and SA make both common and unique contributions to volumetric diferences in 22q11.2DS, and in some areas, their strong opposite efects mask diferences in CV. By identifying the neuroanatomic variability in 22q11.2DS, and the separate contributions of CT and SA, we can start exploring the shared and distinct mechanisms that mediate neuropsychiatric symptoms across disorders, e.g.
    [Show full text]
  • Morphometric Analysis of Brain in Newborn with Congenital Diaphragmatic Hernia
    brain sciences Article Morphometric Analysis of Brain in Newborn with Congenital Diaphragmatic Hernia Martina Lucignani 1, Daniela Longo 2, Elena Fontana 2, Maria Camilla Rossi-Espagnet 2,3, Giulia Lucignani 2, Sara Savelli 4, Stefano Bascetta 4, Stefania Sgrò 5, Francesco Morini 6, Paola Giliberti 6 and Antonio Napolitano 1,* 1 Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; [email protected] 2 Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; [email protected] (D.L.); [email protected] (E.F.); [email protected] (M.C.R.-E.); [email protected] (G.L.) 3 NESMOS Department, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy 4 Imaging Department, Bambino Gesù Children’s Hospital and Research Institute, 00165 Rome, Italy; [email protected] (S.S.); [email protected] (S.B.) 5 Department of Anesthesia and Critical Care, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; [email protected] 6 Department of Medical and Surgical Neonatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; [email protected] (F.M.); [email protected] (P.G.) * Correspondence: [email protected]; Tel.: +39-333-3214614 Abstract: Congenital diaphragmatic hernia (CDH) is a severe pediatric disorder with herniation of abdominal viscera into the thoracic cavity. Since neurodevelopmental impairment constitutes a common outcome, we performed morphometric magnetic resonance imaging (MRI) analysis on Citation: Lucignani, M.; Longo, D.; CDH infants to investigate cortical parameters such as cortical thickness (CT) and local gyrification Fontana, E.; Rossi-Espagnet, M.C.; index (LGI).
    [Show full text]
  • Fractal Dimension Brain Morphometry: a Novel Approach to Quantify White Matter in Traumatic Brain Injury
    Brain Imaging and Behavior (2019) 13:914–924 https://doi.org/10.1007/s11682-018-9892-2 ORIGINAL RESEARCH Fractal dimension brain morphometry: a novel approach to quantify white matter in traumatic brain injury Venkateswaran Rajagopalan1,2 & Abhijit Das2,3 & Luduan Zhang4 & Frank Hillary5 & Glenn R. Wylie2,3 & Guang H. Yue2,6 Published online: 16 June 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptNeurotoxicology Author Manuscript. Author Author Manuscript manuscript; available in PMC 2015 May 01. Published in final edited form as: Neurotoxicology. 2014 May ; 42: 12–23. doi:10.1016/j.neuro.2014.02.009. Quantitative Mapping of Trimethyltin Injury in the Rat Brain Using Magnetic Resonance Histology G. Allan Johnson1,2, Evan Calabrese1,2, Peter B. Little3, Laurence Hedlund1, Yi Qi1, and Alexandra Badea1 1Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 2Biomedical Engineering, Duke University, Durham, NC 3Neuropathology consultant, EPL Inc., Research Triangle Park, NC Abstract The growing exposure to chemicals in our environment and the increasing concern over their impact on health have elevated the need for new methods for surveying the detrimental effects of these compounds. Today’s gold standard for assessing the effects of toxicants on the brain is based on hematoxylin and eosin (H&E)-stained histology, sometimes accompanied by special stains or immunohistochemistry for neural processes and myelin. This approach is time-consuming and is usually limited to a fraction of the total brain volume. We demonstrate that magnetic resonance histology (MRH) can be used for quantitatively assessing the effects of central nervous system toxicants in rat models. We show that subtle and sparse changes to brain structure can be detected using magnetic resonance histology, and correspond to some of the locations in which lesions are found by traditional pathological examination. We report for the first time diffusion tensor image- based detection of changes in white matter regions, including fimbria and corpus callosum, in the brains of rats exposed to 8 mg/Kg and 12 mg/Kg trimethyltin.
    [Show full text]
  • MRI-Derived Measurements of Human Subcortical, Ventricular
    NeuroImage 46 (2009) 177–192 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths Jorge Jovicich a,⁎, Silvester Czanner b, Xiao Han c, David Salat d,e, Andre van der Kouwe d,e, Brian Quinn d,e, Jenni Pacheco d,e, Marilyn Albert h, Ronald Killiany i, Deborah Blacker g, Paul Maguire j, Diana Rosas d,e,f, Nikos Makris d,e,k, Randy Gollub d,e, Anders Dale l, Bradford C. Dickerson d,f,g,m,1, Bruce Fischl d,e,n,1 a Center for Mind–Brain Sciences, Department of Cognitive and Education Sciences, University of Trento, Italy b Warwick Manufacturing Group, School of Engineering, University of Warwick, UK c CMS, Inc., St. Louis, MO, USA d Athinoula A. Martinos Center for Biomedical Imaging, USA e Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA f Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA g Gerontology Research Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA h Department of Neurology, Johns Hopkins University School of Medicine, USA i Department of Anatomy and Neurobiology, Boston University School of Medicine, USA j Pfizer Global Research and Development, Groton, CT, USA k Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA l University of California San Diego, CA, USA m Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA n CSAIL/HST, MIT, Cambridge, MA, USA article info abstract Article history: Automated MRI-derived measurements of in-vivo human brain volumes provide novel insights into normal Received 19 August 2008 and abnormal neuroanatomy, but little is known about measurement reliability.
    [Show full text]
  • Chapter 3: Internal Anatomy of the Central Nervous System
    10353-03_CH03.qxd 8/30/07 1:12 PM Page 82 3 Internal Anatomy of the Central Nervous System LEARNING OBJECTIVES Nuclear structures and fiber tracts related to various functional systems exist side by side at each level of the After studying this chapter, students should be able to: nervous system. Because disease processes in the brain • Identify the shapes of corticospinal fibers at different rarely strike only one anatomic structure or pathway, there neuraxial levels is a tendency for a series of related and unrelated clinical symptoms to emerge after a brain injury. A thorough knowl- • Recognize the ventricular cavity at various neuroaxial edge of the internal brain structures, including their shape, levels size, location, and proximity, makes it easier to understand • Recognize major internal anatomic structures of the their functional significance. In addition, the proximity of spinal cord and describe their functions nuclear structures and fiber tracts explains multiple symp- toms that may develop from a single lesion site. • Recognize important internal anatomic structures of the medulla and explain their functions • Recognize important internal anatomic structures of the ANATOMIC ORIENTATION pons and describe their functions LANDMARKS • Identify important internal anatomic structures of the midbrain and discuss their functions Two distinct anatomic landmarks used for visual orientation to the internal anatomy of the brain are the shapes of the • Recognize important internal anatomic structures of the descending corticospinal fibers and the ventricular cavity forebrain (diencephalon, basal ganglia, and limbic (Fig. 3-1). Both are present throughout the brain, although structures) and describe their functions their shape and size vary as one progresses caudally from the • Follow the continuation of major anatomic structures rostral forebrain (telencephalon) to the caudal brainstem.
    [Show full text]