Enrichment of Pathogenic Alleles in the Brittle Cornea Gene, ZNF469, in Keratoconus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Private 16Q24.2Q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features
G C A T T A C G G C A T genes Article A Private 16q24.2q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features Orazio Palumbo * , Pietro Palumbo , Ester Di Muro, Luigia Cinque, Antonio Petracca, Massimo Carella and Marco Castori Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; [email protected] (P.P.); [email protected] (E.D.M.); [email protected] (L.C.); [email protected] (A.P.); [email protected] (M.C.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +39-088-241-6350 Received: 5 June 2020; Accepted: 24 June 2020; Published: 26 June 2020 Abstract: No data on interstitial microduplications of the 16q24.2q24.3 chromosome region are available in the medical literature and remain extraordinarily rare in public databases. Here, we describe a boy with a de novo 16q24.2q24.3 microduplication at the Single Nucleotide Polymorphism (SNP)-array analysis spanning ~2.2 Mb and encompassing 38 genes. The patient showed mild-to-moderate intellectual disability, speech delay and mild dysmorphic features. In DECIPHER, we found six individuals carrying a “pure” overlapping microduplication. Although available data are very limited, genomic and phenotype comparison of our and previously annotated patients suggested a potential clinical relevance for 16q24.2q24.3 microduplication with a variable and not (yet) recognizable phenotype predominantly affecting cognition. Comparing the cytogenomic data of available individuals allowed us to delineate the smallest region of overlap involving 14 genes. Accordingly, we propose ANKRD11, CDH15, and CTU2 as candidate genes for explaining the related neurodevelopmental manifestations shared by these patients. -
Loss-Of-Function Mutations in RAB18 Cause Warburg Micro Syndrome
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT Loss-of-Function Mutations in RAB18 Cause Warburg Micro Syndrome Danai Bem,1 Shin-Ichiro Yoshimura,2,12 Ricardo Nunes-Bastos,2 Frances F. Bond,3 Manju A. Kurian,1,13 Fatima Rahman,1 Mark T.W. Handley,4 Yavor Hadzhiev,1 Imran Masood,5 Ania A. Straatman-Iwanowska,1,13 Andrew R. Cullinane,1,14 Alisdair McNeill,1,3,15 Shanaz S. Pasha,1 Gail A. Kirby,1 Katharine Foster,6 Zubair Ahmed,7 Jenny E. Morton,3 Denise Williams,3 John M. Graham,8 William B. Dobyns,9 Lydie Burglen,10 John R. Ainsworth,11 Paul Gissen,1,13 Ferenc Mu¨ller,1 Eamonn R. Maher,1,3 Francis A. Barr,2 and Irene A. Aligianis1,3,16,* Warburg Micro syndrome and Martsolf syndrome are heterogenous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Previously, identification of mutations in RAB3GAP1 and RAB3GAP2 in both these syndromes implicated dysregulation of the RAB3 cycle (which controls calcium-mediated exocytosis of neurotransmitters and hormones) in disease pathogenesis. RAB3GAP1 and RAB3GAP2 encode the catalytic and noncatalytic subunits of the hetrodimeric enzyme RAB3GAP (RAB3GTPase-activating protein), a key regulator of the RAB3 cycle. We performed autozygosity mapping in five consanguineous families without RAB3GAP1/2 mutations and identified loss-of-function mutations in RAB18. A c.71T > A (p.Leu24Gln) founder mutation was identified in four Pakistani families, and a homozygous exon 2 deletion (predicted to result in a frameshift) was found in the fifth family. -
Claire Hastie Thesis
Hastie, Claire E. (2011) Discovering common genetic variants for hypertension using an extreme case-control strategy. PhD thesis. http://theses.gla.ac.uk/2423/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Discovering Common Genetic Variants for Hypertension Using an Extreme Case-control Strategy Claire E. Hastie, M.Sc. This being a thesis submitted for the degree of Doctor of Philosophy (Ph.D.) in the Faculty of Medicine, University of Glasgow October 2010 BHF Glasgow Cardiovascular Research Centre Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary, and Life Sciences University of Glasgow © C.E. Hastie 2010 Declaration I declare that this thesis has been written entirely by myself and is a record of research performed by myself with the exception of discovery cohort genotyping (Dr Wai K. Lee, Dr Anna Maria Di Blasio, Stewart Laing, and Dr Davide Gentilini), genotyping and association analysis of replication cohorts (undertaken by investigators from each cohort, respectively), and analysis of data from the BRIGHT (Dr Sandosh Padmanabhan), GRECO and HERCULES clinical functional cohorts (undertaken by investigators from each cohort, respectively). -
Common Differentially Expressed Genes and Pathways Correlating Both Coronary Artery Disease and Atrial Fibrillation
EXCLI Journal 2021;20:126-141– ISSN 1611-2156 Received: December 08, 2020, accepted: January 11, 2021, published: January 18, 2021 Supplementary material to: Original article: COMMON DIFFERENTIALLY EXPRESSED GENES AND PATHWAYS CORRELATING BOTH CORONARY ARTERY DISEASE AND ATRIAL FIBRILLATION Youjing Zheng, Jia-Qiang He* Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA * Corresponding author: Jia-Qiang He, Department of Biomedical Sciences and Pathobiology, Virginia Tech, Phase II, Room 252B, Blacksburg, VA 24061, USA. Tel: 1-540-231-2032. E-mail: [email protected] https://orcid.org/0000-0002-4825-7046 Youjing Zheng https://orcid.org/0000-0002-0640-5960 Jia-Qiang He http://dx.doi.org/10.17179/excli2020-3262 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). Supplemental Table 1: Abbreviations used in the paper Abbreviation Full name ABCA5 ATP binding cassette subfamily A member 5 ABCB6 ATP binding cassette subfamily B member 6 (Langereis blood group) ABCB9 ATP binding cassette subfamily B member 9 ABCC10 ATP binding cassette subfamily C member 10 ABCC13 ATP binding cassette subfamily C member 13 (pseudogene) ABCC5 ATP binding cassette subfamily C member 5 ABCD3 ATP binding cassette subfamily D member 3 ABCE1 ATP binding cassette subfamily E member 1 ABCG1 ATP binding cassette subfamily G member 1 ABCG4 ATP binding cassette subfamily G member 4 ABHD18 Abhydrolase domain -
Hereditary Hearing Impairment with Cutaneous Abnormalities
G C A T T A C G G C A T genes Review Hereditary Hearing Impairment with Cutaneous Abnormalities Tung-Lin Lee 1 , Pei-Hsuan Lin 2,3, Pei-Lung Chen 3,4,5,6 , Jin-Bon Hong 4,7,* and Chen-Chi Wu 2,3,5,8,* 1 Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan; [email protected] 2 Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan; [email protected] 3 Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan; [email protected] 4 Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan 5 Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan 6 Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan 7 Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan 8 Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan * Correspondence: [email protected] (J.-B.H.); [email protected] (C.-C.W.) Abstract: Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. -
Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo -
Large Homozygous RAB3GAP1 Gene Microdeletion Causes Warburg
Picker-Minh et al. Orphanet Journal of Rare Diseases 2014, 9:113 http://www.ojrd.com/content/9/1/113 LETTER TO THE EDITOR Open Access Large homozygous RAB3GAP1 gene microdeletion causes Warburg Micro Syndrome 1 Sylvie Picker-Minh1,2,3, Andreas Busche4, Britta Hartmann4, Birgit Spors5, Eva Klopocki6,7, Christoph Hübner1, Denise Horn6 and Angela M Kaindl1,2,3* Abstract Warburg micro syndrome (WARBM) is a genetic heterogeneous disease characterized by microcephaly, intellectual disability, brain, ocular, and endocrine anomalies. WARBM1-4 can be caused by biallelic mutations of the RAB3GAP1 (RAB3 GTPase-activating protein 1), RAB3GAP2, RAB18 (RAS-associated protein RAB18), or TBC1D20 (TBC1 domain protein, member 20) gene, respectively. Here, we delineate the so far largest intragenic homozygous RAB3GAP1 microdeletion. Despite the size of the RAB3GAP1 gene deletion, the patient phenotype is mainly consistent with that of other WARBM1 patients, supporting strongly the theory that WARBM1 is caused by a loss of RAB3GAP1 function. We further highlight osteopenia as a feature of WARBM1. Keywords: RAB3GAP1, WARBM, Warburg micro syndrome, Microcephaly, Intellectual disability, Congenital cataract, Array CGH Letter to the editor protein-function [1,2,4-7], putatively explaining the lack of Warburg micro syndrome (WARBM) is a rare autosomal a genotype-phenotype correlation. We here report the lar- recessive disorder characterized by neurodevelopmental gest RAB3GAP1 gene microdeletion to date in patients abnormalities such as congenital or postnatal microcephaly, with WARBM1 and compare their phenotype with that of severe intellectual disability, pachy- or polymicrogyria, other WARBM1 patients. The two index patients were and hypoplasia/agenesis of the corpus callosum as well as born at term without complications as the first and second ocular manifestations including congenital cataract, micro- child of healthy, consanguineous parents of Kurdish- cornea, microphthalmia, and optic atrophy [1-3]. -
Variation in Genomic Landscape of Clear Cell Renal Cell Carcinoma
ARTICLE Received 30 May 2014 | Accepted 3 Sep 2014 | Published 29 Oct 2014 DOI: 10.1038/ncomms6135 Variation in genomic landscape of clear cell renal cell carcinoma across Europe Ghislaine Scelo1,*, Yasser Riazalhosseini2,3,*, Liliana Greger4,*, Louis Letourneau3,*, Mar Gonza`lez-Porta4,*, Magdalena B. Wozniak1, Mathieu Bourgey3, Patricia Harnden5, Lars Egevad6, Sharon M. Jackson5, Mehran Karimzadeh2,3, Madeleine Arseneault2,3, Pierre Lepage3, Alexandre How-Kit7, Antoine Daunay7, Victor Renault7,He´le`ne Blanche´7, Emmanuel Tubacher7, Jeremy Sehmoun7, Juris Viksna8, Edgars Celms8, Martins Opmanis8, Andris Zarins8, Naveen S. Vasudev5, Morag Seywright9, Behnoush Abedi-Ardekani1, Christine Carreira1, Peter J. Selby5, Jon J. Cartledge10, Graham Byrnes1, Jiri Zavadil1, Jing Su4, Ivana Holcatova11, Antonin Brisuda12, David Zaridze13, Anush Moukeria13, Lenka Foretova14, Marie Navratilova14, Dana Mates15, Viorel Jinga16, Artem Artemov17, Artem Nedoluzhko18, Alexander Mazur17, Sergey Rastorguev18, Eugenia Boulygina18, Simon Heath19, Marta Gut19, Marie-Therese Bihoreau20, Doris Lechner20, Mario Foglio20, Ivo G. Gut19, Konstantin Skryabin17,18, Egor Prokhortchouk17,18, Anne Cambon-Thomsen21, Johan Rung4, Guillaume Bourque2,3, Paul Brennan1,Jo¨rg Tost20, Rosamonde E. Banks5,AlvisBrazma4 & G. Mark Lathrop2,3,7,20,w The incidence of renal cell carcinoma (RCC) is increasing worldwide, and its prevalence is particularly high in some parts of Central Europe. Here we undertake whole-genome and transcriptome sequencing of clear cell RCC (ccRCC), the most common form of the disease, in patients from four different European countries with contrasting disease incidence to explore the underlying genomic architecture of RCC. Our findings support previous reports on frequent aberrations in the epigenetic machinery and PI3K/mTOR signalling, and uncover novel pathways and genes affected by recurrent mutations and abnormal transcriptome patterns including focal adhesion, components of extracellular matrix (ECM) and genes encoding FAT cadherins. -
D82b54407ece9642da45e12eee
Oxford Medical Case Reports, 2020;4,1–3 doi: 10.1093/omcr/omaa031 Case Report CASE REPORT Novel mutation in the RAB3GAP1 gene, the first diagnosed Warburg Micro syndrome case in Syria Soubhi Tenawi1,†, Rawan Al Khudari1,†,* and Diana Alasmar2 1Faculty of Medicine, Damascus University, Damascus, Syria, 2Professor of Inborn Errors of Metabolism, Pediatrics Department, Damascus University, Damascus, Syria *Correspondence address. Faculty of Medicine, Damascus University, Damascus, Syria. Tel: +963992336336; E-mail: [email protected] Abstract Warburg Micro syndrome is a rare autosomal recessive disease due to mutation in the RAB3GAP1, RAB3GAP2, RAB18 and TBC1D20 genes. It is commonly seen in consanguineous marriages, characterized by optic (microcornea, microphthalmia, congenital cataracts), neurologic )microcephaly, corpus callosum hypoplasia, severe mental retardation( and hypogonadism; some non-typical findings could be present (cardiomyopathy, peripheral neuropathy). We report a novel homozygous mutation in the RAB3GAP1 gene in a 7-month-old boy from healthy nonconsanguineous parents from the same village in Syria, with bilateral congenital cataracts, hypogonadism, muscular hypotonia and severe developmental delay. Whole exome sequencing (WES) showed a homozygous mutation in the c.2195del p.(Pro732Glnfs∗6) in exon 19 of the RAB3GAP1 gene, which is likely pathogenic and correlates with Warburg Micro syndrome type 1. INTRODUCTION eye and brain [4]. Here, we report a novel RAB3GAP1 homozygous mutation in a child with WARBM. Warburg Micro syndrome (WARBM) is a rare autosomal reces- sive disorder characterized by postnatal growth retardation, hypoplasia of the corpus callosum, microcephalus, delayed CASE REPORT motor development, severe intellectual disability, microph- thalmia, microcornea, congenital cataracts, optic atrophy and A 7-month-old boy presented to Children’s University Hospi- hypogonadism [1]. -
Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus Dromedarius
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical & Computer Engineering, Department Electrical and Computer Engineering of 2009 Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius Abdulaziz M. Al-Swailem King Abdulaziz City for Science and Technology Maher M. Shehata King Abdulaziz City for Science and Technology Faisel M. Abu-Duhier King Abdulaziz City for Science and Technology Essam J. Al-Yamani King Abdulaziz City for Science and Technology Khalid A. Al-Busadah King Faisal University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Inan, Mehmet S.; and Otu, Hasan H., "Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius" (2009). Faculty Publications from the Department of Electrical and Computer Engineering. 426. https://digitalcommons.unl.edu/electricalengineeringfacpub/426 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Abdulaziz M. Al-Swailem, Maher M. -
RAB3GAP1 Gene RAB3 Gtpase Activating Protein Catalytic Subunit 1
RAB3GAP1 gene RAB3 GTPase activating protein catalytic subunit 1 Normal Function The RAB3GAP1 gene provides instructions for making a protein that helps regulate the activity of specialized proteins called GTPases, which control a variety of functions in cells. To perform its function, the RAB3GAP1 protein interacts with another protein called RAB3GAP2 (produced from the RAB3GAP2 gene) to form the RAB3GAP complex. Often referred to as molecular switches, GTPases can be turned on and off. They are turned on (active) when they are attached (bound) to a molecule called GTP and are turned off (inactive) when they are bound to another molecule called GDP. The RAB3GAP complex turns on a GTPase known as RAB18 by exchanging GTP for the attached GDP. When active, RAB18 is involved in a process called vesicle trafficking, which moves proteins and other molecules within cells in sac-like structures called vesicles. RAB18 regulates the movement of substances between compartments in cells and the storage and release of fats (lipids) by structures called lipid droplets. The protein also appears to play a role in a process called autophagy, which helps clear unneeded materials from cells. RAB18 is important for the organization of a cell structure called the endoplasmic reticulum, which is involved in protein processing and transport. The RAB3GAP complex is also thought to inactivate another GTPase known as RAB3 by stimulating a reaction that turns the attached GTP into GDP. RAB3 plays a role in the release of hormones and brain chemicals (neurotransmitters) from cells. Health Conditions Related to Genetic Changes RAB18 deficiency More than 60 RAB3GAP1 gene mutations have been found to cause RAB18 deficiency, resulting in conditions that affect the eyes, brain, and reproductive system. -
A User's Guide to the Encyclopedia of DNA Elements (ENCODE)
A User’s Guide to the Encyclopedia of DNA Elements (ENCODE) The ENCODE Project Consortium"* Abstract The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome. Citation: The ENCODE Project Consortium (2011) A User’s Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biol 9(4): e1001046. doi:10.1371/ journal.pbio.1001046 Academic Editor: Peter B. Becker, Adolf Butenandt Institute, Germany Received September 23, 2010; Accepted March 10, 2011; Published April 19, 2011 Copyright: ß 2011 The ENCODE Project Consortium. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: Funded by the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. The role of the NIH Project Management Group in the preparation of this paper was limited to coordination and scientific management of the ENCODE Consortium.