TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS

SARJA - SER. AII OSA - TOM. 268

BIOLOGICA - GEOGRAPHICA - GEOLOGICA

Molecular SySteMaticS of (iNSecta, )

reza zahiri

TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2012

From the Laboratory of Genetics, Division of Genetics and Physiology, Department of Biology, University of Turku, FIN-20012,

Supervised by: Docent Niklas Wahlberg University of Turku Finland

Co-advised by: Ph.D. J. Donald Lafontaine Canadian National Collection of , Arachnids and Nematodes Canada

Ph.D. Ian J. Kitching Natural History Museum U.K.

Ph.D. Jeremy D. Holloway Natural History Museum U.K.

Reviewed by: Professor Charles Mitter University of Maryland U.S.A.

Dr. Tommi Nyman University of Eastern Finland Finland

Examined by: Dr. Erik J. van Nieukerken Centre for Biodiversity Naturalis, Leiden The Netherlands

Cover image: phylogenetic tree of Noctuoidea

ISBN 978-951-29-5014-0 (PRINT) ISBN 978-951-29-5015-7 (PDF) ISSN 0082-6979 Painosalama Oy – Turku, Finland 2012

To Maryam, my mother and father

MOLECULAR SYSTEMATICS OF NOCTUOIDEA (INSECTA, LEPIDOPTERA)

Reza Zahiri

This thesis is based on the following original research contributions, which are referred to in the text by their Roman numerals:

I Zahiri, R, Kitching, IJ, Lafontaine, JD, Mutanen, M, Kaila, L, Holloway, JD & Wahlberg, N (2011) A new molecular phylogeny offers hope for a stable family-level classification of the Noctuoidea (Lepidoptera). Zoologica Scripta, 40, 158–173

II Zahiri, R, Holloway, JD, Kitching, IJ, Lafontaine, JD, Mutanen, M & Wahlberg, N (2012) Molecular phylogenetics of (Lepidoptera, Noctuoidea). Systematic Entomology, 37,102–124

III Zaspel, JM, Zahiri, R, Hoy, MA, Janzen, D, Weller, SJ & Wahlberg, N (2012) A molecular phylogenetic analysis of the vampire and their fruit-piercing relatives (Lepidoptera: Erebidae: ). Submitted manuscript

IV Zahiri, R, Lafontaine, JD, Holloway, JD, Kitching, IJ, Schmidt, BC, Kaila, L, & Wahlberg, N. Major lineages of (Lepidoptera, Noctuoidea) elucidated by molecular phylogenetics. Submitted manuscript

V Zahiri, R, Lafontaine, JD, Kitching, IJ, Holloway, JD, Schmidt, BC, Mutanen, M & Wahlberg, N. Relationships of the early lineages of (Lepidoptera, Noctuoidea) based on eight gene regions. Manuscript

Abstract

In this thesis, I conduct a series of molecular systematic studies on the large phytophagous superfamily Noctuoidea (Insecta, Lepidoptera) to clarify deep divergences and evolutionary affinities of the group, based on material from every zoogeographic region of the globe. Noctuoidea are the most speciose radiations of and moths on earth, comprising about a quarter of all . The general aim of these studies was to apply suitably conservative genetic markers (DNA sequences of mitochondrial—mtDNA—and nuclear gene— nDNA—regions) to reconstruct, as the initial step, a robust skeleton phylogenetic hypothesis for the superfamily, then build up robust phylogenetic frameworks for those circumscribed monophyletic entities (i.e., families), as well as clarifying the internal classification of monophyletic lineages (subfamilies and tribes), to develop an understanding of the major lineages at various taxonomic levels within the superfamily Noctuoidea, and their inter-relationships. The approaches applied included: i) stabilizing a robust family-level classification for the superfamily; ii) resolving the phylogeny of the most speciose radiation of Noctuoidea: the family Erebidae; iii) reconstruction of ancestral feeding behaviors and evolution of the vampire moths (Erebidae, Calpinae); iv) elucidating the evolutionary relationships within the family Nolidae and v) clarifying the basal lineages of Noctuidae sensu stricto. Thus, in this thesis I present a well- resolved molecular phylogenetic hypothesis for higher taxa of Noctuoidea consisting of six strongly supported families: , , , Erebidae, Nolidae, and Noctuidae. The studies in my thesis highlight the importance of molecular data in systematic and phylogenetic studies, in particular DNA sequences of nuclear genes, and an extensive sampling strategy to include representatives of all known major lineages of entire world fauna of Noctuoidea from every biogeographic region. This is crucial, especially when the model organism is as species-rich, highly diverse, cosmopolitan and heterogeneous as the Noctuoidea, traits that represent obstacles to the use of morphology at this taxonomic level.

CONTENTS

CONTENTS ...... 6

1. INTRODUCTION ...... 7 1.1 Why Noctuoidea? ...... 7 1.2 Status of Noctuoidea ...... 8 1.3 Initiation of molecular phylogenetic approaches ...... 10 1.4 Outline of the thesis ...... 11

2. MATERIAL AND METHODS ...... 13 2.1 Sampling strategy ...... 13 2.2 Molecular markers ...... 13 2.3 Phylogenetic analyses and character optimizations ...... 14

3. RESULTS AND DISCUSSION ...... 16 3.1 Phylogenetic hypothesis for Noctuoidea ...... 16 3.2 Pattern of relationships among major lineages of Noctuoidea ...... 17 3.3 Phylogenetic hypothesis for quadrifid Noctuoidea ...... 19 3.4 Character optimizations ...... 21 3.5 Evolution of host-plant associations in Noctuoidea ...... 22

4. CONCLUSIONS AND FUTURE DIRECTIONS ...... 29 4.1 Conclusions ...... 29 4.2 Future directions ...... 30

5. ACKNOWLEDGEMENTS ...... 32

6. REFERENCES ...... 34

APPENDIX ...... 37

ORIGINAL PUBLICATIONS ...... 49

Introduction 7 “In scientific investigations, it is permitted to invent any hypothesis and, if it explains various large and independent classes of facts, it rises to the rank of a well-grounded theory” Charles Darwin 1. INTRODUCTION

1.1 Why Noctuoidea? many unknown as well as unnamed species, particularly from tropical regions. I quote a magnificent passage from Charles Darwin who said ‘‘all the organic To understand Noctuoidea evolution, beings which have ever lived on this earth their systems of evolutionary have descended from some one primordial relationships—phylogenies based on form.’’ It can be obviously interpreted extensive evidence from living lineages of from this simple and meaningful passage noctuoids—must be recognized. that every characteristic of every species Fortunately, the monophyly of Noctuoidea on Earth is the outcome of an evolutionary is firmly established. It is based on the history (Futuyma, 2005). The evolutionary presence of a single apomorphic character, perspective and phylogenetic relationships the metathoracic tympanal organ (Miller, have illuminated every subject in biology, 1991). This organ is a highly specialized from the molecular and morphology level hearing apparatus that detects the to ecosystem and beyond. The geneticist echolocation signals of bats (Kitching & Theodosius Dobzhansky (1973) famously Rawlins, 1998); however, there is argued that ‘‘Nothing in biology makes increasing evidence that the tympanum sense, except in the light of evolution.’’ may also be involved in reception of Evolution governs diversity on Earth, and mating signals (Kitching & Rawlins, insects are the most diverse organisms in 1998). the whole history of life (Grimaldi & Engel, 2005). Consequently, insects should Noctuoidea, like most lepidopterans, provide profound insights into evolution. are plant feeding as caterpillars and nectar feeding as adults, and they are a prominent The Order Lepidoptera (moths and element of terrestrial ecosystems, butterflies) is one of four super-radiations functioning as herbivores, pollinators and of insects (along with beetles, flies and prey, as well as being one of the most wasps) that account for the majority of damaging groups of pests to agriculture life on Earth. Noctuoidea are the (Regier et al., 2009). Of the approximately largest superfamily within Lepidoptera— 6,000 Lepidoptera species noted to be of belonging to a large ditrysian clade that economic importance by Zhang (1994), also includes e.g., geometroids and about one-quarter belong to Noctuoidea. bombycoids (Regier et al., 2009, Mutanen Although a large number of these can be et al., 2010)—with approximately 45,000 assigned to what Mitchell et al. (2006) described (Nieukerken et al., 2011) and termed the ‘pest clade’, many more are

8 Introduction distributed across the whole superfamily strong phylogenetic hypothesis. The Noctuoidea in over 500 genera (Zhang, resolution of a stable, extrapolative higher- 1994). The caterpillars of many noctuoid level classificatory structure for the major genera have massive economic impact lineages of Noctuoidea, and understanding annually (Kitching, 1984). In addition, the their phylogenetic relationships, is also of adults of some genera damage fruit crops importance for pest bionomic studies. by piercing the skins to suck juices (Baenziger, 1982). 1.2 Status of Noctuoidea Historically, the classification of The study of relationships among major noctuoid moths has been highly unstable, lineages of organisms—phylogenetic with different classification systems being analysis—has been closely associated with used by different authors. It seems that the the classification and naming of the fundamental distinction between the diversity of life on Earth (i.e., ), different systems is based on the use of which both are a branch of the science of unsatisfactory (occasionally systematics. The classification of plesiomorphic) characters in phylogenetic organisms has been one of the major reconstruction. Various authors have ongoing accomplishments of human recognized between five and thirteen society (Wilson, 2000), but is still far from families, and strikingly, no two completion, both in terms of the inventory publications have agreed on the same of species and of the classification of those divisions of the superfamily into families species in a hierarchical system that has a (Kitching & Rawlins, 1998, Lafontaine & phylogenetic basis. However, there has Fibiger, 2006). For instance, in Figure 1, I been a striking improvement in the theory have summarized most recent Noctuoidea and computational methodology for classifications and have compared them inferring phylogenies (Regier et al., 1995). with the most recent one, which is In particular, the use of molecular data, in presented in this thesis (I). Kitching (1984) particular DNA sequences, is becoming published a historical review of noctuid increasingly important for testing and subfamily relationships and showed that improving classifications, especially for the higher classifications of Noctuidae highly diverse groups of organisms such as used up to that time had been based upon insects. superficial resemblance and vaguely defined characters, rather than on rigorous The main theme of my thesis, as well as application of cladistic principles. my ongoing research, is to improve our Subsequently, Speidel and co-workers understanding of the reasons and causes attempted to progress beyond the age of behind the flourishing diversification of traditional morphological noctuid Noctuoidea on Earth. To address tens of taxonomy by initiating investigations such questions—diversity of their based mainly on the male genitalia and the adaptations, biomass, species-richness, tympanal region, which they considered ecological and economical impacts, etc.— particularly useful in elucidating the basic it is necessary, as a first step, to place relationships of the noctuid subfamilies Noctuoidea and its major lineages in a (Speidel & Naumann, 1995, Speidel et al., phylogenetic context, by reconstructing a 1996, Kühne & Speidel, 2004, 2005).

Introduction 9

Figure 1 Different classification systems of the superfamily Noctuoidea that have been used since Kitching (1984) to date (I). In every classification moths (except the one for Micronoctuidae for which the author’s portrait—the late Michael Fibiger—is used) indicate family-group name being used in the system.

Their work set the stage for the study of classification having its own limitations the systematics of noctuoids, and made it and strengths (Roe et al., 2010). Fibiger & clear that increased character and taxon Lafontaine (2005) proposed a rather new sampling were necessary to resolve the classification with ten families: relationships of the diverse clades. Oenosandridae, Doidae, Notodontidae, Strepsimanidae, Nolidae, Lymantriidae, Recently, three landmark publications Arctiidae, Erebidae, Micronoctuidae and (Fibiger & Lafontaine, 2005, Lafontaine & Noctuidae (Figure 1). Later on, Lafontaine Fibiger, 2006, Mitchell et al., 2006) & Fibiger (2006) proposed a further presented detailed phylogenetic hypotheses revision to the classification of the families and revised the classification of of Noctuoidea, in which Nolidae, Noctuoidea three times (Figure 1), each Strepsimanidae, Arctiidae, Lymantriidae

10 Introduction and Erebidae sensu Fibiger & Lafontaine correctly and can be subject to extensive (2005) were downgraded to subfamily homoplasy (character convergence and status within an expanded family concept reversal). As a result, morphological of Noctuidae based on the quadrifid analyses have often failed to determine venation of the forewing and the presence relationships among most groups with of a tympanal sclerite in the tympanal confidence. membrane. In their view, the superfamily should consist of five families: 1.3 Initiation of molecular phylogenetic Oenosandridae, Doidae, Notodontidae, approaches Micronoctuidae and Noctuidae (Figure 1). As noted above, until recently, the higher systematics of Noctuoidea had been To resolve the dominant complexity of based primarily on morphological relationships in higher systematics of characters with a predominantly phenetic Noctuoidea, it was crucial to understand approach, until the introduction and their phylogenetic relationships by application of cladistic philosophy by building a robust skeleton phylogenetic Kitching (1984, 1987) and Miller (1991). hypothesis, i.e., a phylogeny that was More recently, molecular data, in based on certain specialized features, and particular DNA sequences of that had a common ancestor and unique mitochondrial and nuclear genes (mtDNA evolutionary history. To achieve a more and nDNA, respectively), have opened robust phylogenetic hypothesis, one new and fruitful avenues for the study of strategy is to increase the number of phylogenetic relationships. Molecular characters to obtain a dataset with a strong studies have often been based on a small phylogenetic signal. In molecular number of molecular markers, usually systematics, datasets with a weak between one and three genes (Sperling, phylogenetic ‘signal’ tend to be strongly 2003, Wahlberg & Wheat, 2008). The influenced by the assumptions made by the utility of using many mitochondrial genes analytical methods applied, whereas alone is certainly questionable, as they datasets with a strong phylogenetic signal have a shared evolutionary history, and are not influenced as much (Wahlberg & even entire mitochondrial genomes Wheat, 2008). One avenue for acquiring (15,000–20,000 bp in insects) fail to more characters is to use morphology. provide robust inferences at deep levels However, a species-rich, cosmopolitan and (Cameron et al., 2004). However, they are heterogeneous group such as the useful in the recognition of cryptic species Noctuoidea (Speidel & Naumann, 1995) and sometimes resolve relationships with a vast number of species presents among closely related species and genera obstacles to the use of morphology at this (Lafontaine & Schmidt, 2010). They have taxonomic level. The adults and larvae of proven most valuable for relatively recent species in Noctuoidea exhibit a divergences, especially those of mid- bewildering diversity of size, coloration, Tertiary and later age, although they have adaptation, behaviour and ecology also been applied, albeit infrequently, at (Kitching & Rawlins, 1998). deeper levels (Wiegmann et al., 2000). In Morphological data are thus often difficult contrast, protein-coding nuclear genes to homologize and code, require great generally have slower mutation rates experience to identify character states compared with mtDNA. They are most

Introduction 11 frequently used to study older evolutionary However, all of these studies had very divergences and are particularly good at poor sampling of the higher taxa putatively resolving deeper nodes in phylogenetic belonging to the L.A.Q. clade, and hypotheses, where they have been critically they did not sample type genera important in establishing the family, of many higher taxa. Given that the subfamily and tribal classification of monophyly of many named groups Lepidoptera (Regier et al., 2009, Wahlberg remains questionable, it is crucial to et al., 2009, Mutanen et al., 2010). Over sample the type genera of each family, the past few years, a series of papers have subfamily and tribe to assess the been published with a shared objective: to taxonomic limits of a given category. contribute to the development of a more Furthermore, previous molecular studies satisfactory classification of Noctuoidea at have used only a small number of levels above that of the and molecular markers, usually one to three particularly the ‘quadrifid’ part—those gene regions (Wahlberg & Wheat, 2008). noctuoids with forewing vein M2 arises closer to the origin of M3 than M1, in the 1.4 Outline of the thesis lower part of the discal cell—of the In this thesis, I employed the methods superfamily. It began with the exploration of molecular phylogenetics using eight of molecular markers by Weller et al. markers for genomic DNA extractions of (1994), who were then followed by Lepidoptera to study the evolution of Mitchell et al. (1997, 2000, 2006). The Noctuoidea and reconstruct a skeleton utility of DNA sequences was undeniable, phylogenetic hypothesis for its major and systematists were able to gain lineages. The first chapter gives a fascinating insights that were not obvious comprehensive overview of the higher- before, e.g., the polyphyly of the old level phylogeny and evolutionary affinities concept of Noctuidae (Mitchell et al., of noctuoid moths, in an extensive 1997). Mitchell et al. (2006) found a sampling strategy of the entire Noctuoidea strongly supported clade of quadrifine (I). It reveals a new high-level noctuid moths that also included the phylogenetic hypothesis comprising six families Lymantriidae and Arctiidae. They major, well-supported lineages that are termed this the L.A.Q. clade interpreted as families (I). The second (Lymantriidae, Arctiidae and Quadrifine chapter aims to understand the higher-level Noctuidae). phylogeny and elucidate the evolutionary history of the moth family Erebidae, the Two recent molecular studies on most controversial group among the newly ditrysian Lepidoptera sampled members of circumscribed families (II). Erebidae is a Noctuoidea and found that the enigmatic massive clade and includes a diverse family Doidae did not group with the other groups exhibiting a broad range of feeding noctuoids, but instead appeared to be behaviors, including those that can be related to (Regier et al., 2009, considered ‘piercers’ of fruits or other Mutanen et al., 2010). Otherwise both hosts (skin-piercers: hematophagous) and studies found Noctuoidea to be ‘tear feeders’ (lachryphagous) (III). monophyletic, with Oenosandridae being Within butterflies and moths, adult sister to the rest and Notodontidae the next hematophagy is limited to species within lineage branching off. the vampire moth genus

12 Introduction Ochsenheimer, which are placed within the lineages of the moth family Noctuidae (V). subfamily Calpinae, Erebidae. Paper III A summary flow chart is presented in Fig. focused on the subfamily Calpinae using 2, representing my thesis process with their both morphological and molecular data to main outputs. reconstruct ancestral feeding behaviors within Calpinae as well as whether fruit- piercing behavior and associated modifications of the tongue have evolved independently in different groups of Erebidae (III). The fourth chapter seeks to elucidate the deep divergences and evolutionary relationships of the major lineages within the moth family Nolidae (IV). As a result of expanded sampling, a new lineage (i.e., Diphtherinae) within Noctuoidea—which includes taxa of previously uncertain affinity—was recovered. Diphtherinae is considered to be the plesiomorphic sister lineage to the rest of Nolidae (IV), thus a new phylogenetic hypothesis for Nolidae is presented (IV). The fifth chapter elucidates the Figure 2 A flow chart summarizing five chapters evolutionary relationships of the basal included in this thesis.

Material and Methods 13 2. MATERIAL AND METHODS

2.1 Sampling strategy closely related taxa of other families of Lepidoptera (papers I, II, IV, V) or The sampling strategy that I adopted subfamilies of Erebidae (III). I rooted the has treated the world fauna. I attempted to cladograms, in different papers, with include representatives of all known major different taxa, which represents what I lineages of quadrifine Noctuoidea from consider to be the putative sister family to every biogeographic region. This strategy the remainder of the terminal taxa. is being used to establish priorities for ongoing studies, to test further the 2.2 Molecular markers robustness of the major clades of Noctuoidea, both in relation to each other The total genomic DNA from one or and internally. two legs, dried or freshly preserved in 96% ethanol, was extracted using the DNeasy Based on the results of recent tissue extraction kit (Qiagen, Hilden, publications (Fibiger & Hacker, 2005, Germany) following the manufacturer’s Lafontaine & Fibiger, 2006, Mitchell et al., instructions. For each specimen, I 2006, Lafontaine & Schmidt, 2010), 152, sequenced cytochrome c oxidase subunit I 237, 35, 120 and 76 terminal taxa were (COI) from the mitochondrial genome, and sampled as representatives of the most elongation factor-1α (EF-1α), ribosomal recognized Noctuoidea lineages for papers protein S5 (RpS5), carbamoylphosphate I–V, respectively. Furthermore, there were synthase domain protein (CAD), cytosolic numerous unplaced taxa of uncertain status malate dehydrogenase (MDH), that were included in each paper. Indeed, glyceraldehyde-3-phosphate the allocation of the unplaced taxa into any dehydrogenase (GAPDH), isocitrate higher taxa of Noctuoidea, however dehydrogenase (IDH) and wingless genes tentatively, could not be determined in from the nuclear genome. For paper III, I previous classifications. I was unable to sequenced an additional gene, the D2 sample/amplify a few rare taxa with region of the nuclear ribosomal RNA restricted distributions and/or low species (rRNA) 28S region. All genes—except richness (e.g., Strepsimaninae, Afridinae, 28S, which is multiple-copy and encodes Camptolominae). Where possible, a ribosomal RNA—are single-copy, protein- representative of the type genus of each coding exons and have previously been lineage is included, but this was not found to be highly informative in possible for a few tribes/subtribes, in phylogenetic analyses of Lepidoptera at which case a closely related genus was higher taxonomic levels (Wahlberg et al., selected. 2009, Mutanen et al., 2010, I, II). Appendix 1 summarizes all 393 DNA amplification (PCR) and terminal taxa that are used in the five sequencing protocols follow Wahlberg & papers with their voucher codes and Wheat (2008). Sequencing was performed GenBank accession numbers. mainly with an ABI 3730XL capillary To test the monophyly of the target sequencer (Macrogen, Seoul, Korea), and a taxon under study in the different papers, I smaller part with an ABI PRISMR included representatives from the most 3130XL capillary sequencer (Turku,

14 Material and Methods Finland). The resulting chromatograms codon positions as well as to partition the were checked and DNA sequences aligned data by genes (8 partitions) in the ML by eye using BioEdit v. 7.0.4.1 (Hall, analyses, and by nDNA and mtDNA (two 1999). Alignment was trivial and the few partitions) in the BI analyses. insertion/deletion events that were detected were of entire codons (in CAD, IDH and Parsimony analyses (MP) were RpS5), and could be easily aligned. To undertaken using New Technology minimize the risk of any kind of confusion heuristic searches implemented in the during the sequencing protocol and errors program, TNT v 1.1 (Goloboff et al., in alignments, I constructed neighbor- 2003). New technology searches joining and Maximum Likelihood trees (Goloboff, 1999) consisted of Tree Fusion, separately for each gene region and Ratchet, Tree Drifting and Sectorial checked them carefully for identical Searches performed, with default sequences and other doubtful patterns. In parameters applied, until the minimal tree addition, to minimize the risk of was found 1000 times. All characters were misidentification, all the specimens were treated as unordered and equally weighted, cross-checked with their DNA barcodes and robustness of the hypothesis was (COI) in BOLD (Barcode of Life Data assessed through the bootstrap (BP) with System, http://www.boldsystems.org/views 1000 pseudoreplicates (Felsenstein, 1985). /login.php) (Ratnasingham & Hebert, In addition, in papers I and II clade 2007), where reference specimens were support was estimated by Bremer support available for many of the species used in (BS) (Bremer, 1988, 1994) using a script this study. (Peña et al., 2006) in TNT. Model-based phylogenetic analyses were performed 2.3 Phylogenetic analyses and character using ML and a GTR + Γ model was optimizations selected as the most appropriate model of sequence evolution for each gene partition The gene regions were analyzed using based on the Akaike Information Criterion various phylogenetic approaches including using FindModel (http://www.hiv.lanl.gov/ model-based (Maximum Likelihood, ML; content/sequence/findmodel/findmodel.ht and Bayesian Inference, BI), and non ml). ML analyses were conducted using model-based (i.e., parsimony) methods. the default settings on the web-server Initially, the data matrices were analysed RAxML III BlackBox (Stamatakis et al., in various combinations using ML to 2008). ML bootstrap analysis with 1000 explore their phylogenetic signal. Single pseudoreplicates (Felsenstein, 1985) was genes were analyzed on their own, nuclear also conducted with RAxML III. genes were combined, third codon positions were removed, data was BI was not used for papers I and II. In partitioned into mtDNA and nDNA and the other papers, BI analyses were carried finally the data was partitioned by gene out using the software MrBayes v3.1 regions (8 partitions). The effects of (Ronquist et al., 2005) on the freely varying taxon and gene combinations were available Bioportal server (http://www. compared against the analyses of the full, bioportal.uio.no). The dataset was divided combined and partitioned by gene data. into two partitions: mtDNA and nDNA, as Based on these data explorations, it was partitioning by gene resulted in poor decided to include all genes and third

Material and Methods 15 mixing of chains and problems with stage (which was 1,000 sampled convergence of likelihoods. I modeled the generations). evolution of sequences according to the GTR + Γ model independently for the two To understand character evolution in partitions using the “unlink” command in higher noctuoids, a character optimization MrBayes. The Bayesian analyses were analysis based on parsimony was separately run two times for five, 23 and undertaken in paper IV using the software 20 million generations for papers III−V, Mesquite v2.75 (Maddison & Maddison, respectively, with every 1000th generation 2011). Ancestral state reconstructions and sampled. Clade robustness was estimated character transformations were optimized by posterior probabilities (PP) in MrBayes. onto the topology resulting from the Convergence was determined when the Bayesian analysis (IV). standard deviation of split frequencies went below 0.05 and the PSRF (Potential All laboratory procedures and Scale Reduction Factor) approached 1, and phylogenetic data analyses are detailed in both runs had properly converged to a the original papers. stationary distribution after the burn-in

16 Results and Discussion

3. RESULTS AND DISCUSSION

Erebidae and Noctuidae probably stems 3.1 Phylogenetic hypothesis for from high levels of homoplasy Noctuoidea (particularly in the third codon position) In the initial study, I aimed, as a first and very sparse sampling. step, to reconstruct a robust phylogenetic hypothesis for higher taxa of Noctuoidea. At this stage, with well-supported The results strongly supported the monophyletic groups established within a monophyly of Noctuoidea. The major phylogenetic framework, the question groups within the Noctuoidea clade all arose of how best to apply the Linnaean shared a particular morphological system of nomenclature to the structure of synapomorphy—a metathoracic tympanal that framework, by making decisions on organ. I found six strongly supported the content and arrangement of families, major lineages within Noctuoidea that subfamilies, tribes and subtribes in a deserved family status. These are manner that was most likely to optimize Oenosandridae, Notodontidae, Euteliidae, the stability of that system and facilitate Erebidae, Nolidae and Noctuidae (Fig. 3). access to its information content (II). In The first two major lineages are well- particular, the establishment of a well- recognized taxa that have often been founded family-level noctuoid considered families within Noctuoidea. classification is certainly an issue of Oenosandridae are a small family, only considerable practical importance, because known from , comprising eight it affects the classification of about a species in four genera (Nielsen et al., quarter of the world’s lepidopteran species, 1996), which mainly feed on Myrtaceae according to current estimates (Nieukerken (Miller, 1991). Notodontidae contain et al., 2011). In paper II, I discussed in approximately 3,800 species (Nieukerken detail reasons for applying the six family- et al., 2011) and occur worldwide. The group system to the higher systematics of other four lineages have been split into as Noctuoidea with their advantages and many as 10 families, with arctiines, drawbacks. lymantriines and nolines frequently being considered to be sufficiently distinct from One of the most striking features of the the rest to warrant full family status. My application of molecular data in my thesis phylogenetic hypothesis (I) placed was uncovering the phylogenetic previously recognized families—arctiines, relationships of many unplaced taxa of lymantriines, aganaines, herminiines and uncertain affinity. Molecular phylogenetic micronoctuines—into the strongly techniques allowed the easy allocation of supported Erebidae clade. Within these taxa, which had remained ‘incertae Erebidae, relationships of only a few sedis’ or with uncertain limits for many lineages (e.g., , and years. For example, the position of a ) were well supported (I). The number of taxa characterized by the low support for some nodes within pseudoquadrifine hindwing venation had

Results and Discussion 17 been unstable for a long time (IV–V). and BI). In paper I, Euteliidae were sister Most of these groups (i.e., to Noctuidae in ML analyses (Fig. 3), and pseudoquadrifine Noctuidae) were sister to the other three families together in previously assumed to be related to erebid MP analyses. Similarly, in papers IV–V, subfamilies (Fibiger & Lafontaine, 2005, Euteliidae were placed as sister to the rest Lafontaine & Fibiger, 2006) (II) or even of the quadrifid clade with moderately considered as distinct families (e.g., good support in MP, ML and BI analyses Pantheidae) (Kitching & Rawlins, 1998) (Figs 4–5). In paper I, Nolidae were sister (V). The results of papers IV–V placed to Erebidae in ML analyses, but form a them in a basal position within the family trichotomy with Erebidae and Noctuidae in Noctuidae with strong support. MP analyses.

3.2 Pattern of relationships among The short internal nodes, with little or major lineages of Noctuoidea no support for many basal divergences, in all quadrifid Noctuoidea lineages (I, II, Notodontidae are found to be the sister IV, V), suggest that these groups group of all other Noctuoidea, with diversified rapidly within a relatively short Oenosandridae branching off next (I). period of time (Whitfield & Kjer, 2008). However, this pattern of relationships Evolutionary rates in basal divergences relative to the rest of Noctuoidea is not appear punctuated and such explosive well supported in all papers. Both radiations are generally interpreted in two Oenosandridae and Notodontidae have a different ways: (i) there is an historical trifid forewing venation similar to that of explanation (e.g., rapid radiation or the Geometridae, a character state that appears signature of a mass extinction event) or (ii) to be plesiomorphic relative to the it is simply an artefact. Under the rapid quadrifid forewing venation found in the radiation scenario, it is hypothesized that other noctuoid families. All these terms are the lineages diverged so rapidly and within discussed and defined in detail in paper II. such a narrow time window that there was little opportunity for the ancestors of each The results of paper I recovered the six monophyletic group to evolve distinctive recognized families within Noctuoidea and apomorphies (Futuyma, 2005). However, the monophyly of the quadrifid Noctuoidea such a pattern of short internal nodes and (i.e., Euteliidae, Erebidae, Nolidae, and lineages with low support can be produced Noctuidae). Although, the relationships by other factors, such as inadequate data amongst the remaining four families are quality, poor and sparse sampling strategy, not clear, they formed a monophyletic conflict within or among datasets (data group (i.e., quadrifid Noctuoidea clade) inconsistency), incongruence between the with very strong support (Fig. 3) and real evolutionary process and the assumed shared a synapomorphy (i.e., quadrifid models of sequence evolution, or even lack forewing venation). The relationships of of phylogenetic signal due to accumulation the four clades of quadrifid lineage of overlapping mutations (i.e., the remained somewhat ambiguous in papers probability of substitutional saturation at a I–II, although the results of papers IV–V given site). suggested a basal position for Euteliidae in all three phylogenetic methods (MP, ML

18 Results and Discussion

Figure 3 The phylogenetic hypothesis of the superfamily Noctuoidea based on a maximum likelihood analysis, along with outgroups. Clades representing families are coloured. The six families recognized here are indicated. Names of moths shown in figure clockwise are: Notodontidae: Phalera Hübner; Euteliidae: Eutelia Hübner, Noctuidae: Eucocytia Rothschild & Jordan (Pantheinae), Periphanes Hübner (Heliothinae); Nolidae: Eligma Hübner (Eligminae); Erebidae: Germar (), Hübner (), Walker (Aganainae), Hübner (Arctiinae), Calyptra Ochsenheimer (Calpinae), Haworth (), Guenée (), Boisduval (Erebinae), and Ochsenheimer (Erebinae).

In addition, a recent study indicates that creating a sharp increase in the rate of such phylogenetic patterns may well be diversification (Benton & Emerson, 2007). signature of mass extinction events (Crisp & Cook, 2009), because mass extinction produces a sharp drop in the cumulative fossil diversity and is commonly thought to stimulate subsequent adaptive radiation,

Results and Discussion 19 3.3 Phylogenetic hypothesis for recovered as monophyletic clade (Fig. 4), quadrifid Noctuoidea in which Arctiinae have a sister relationship with a strongly supported Paper I revealed an urgent need for a pairing of Aganainae and Herminiinae. comprehensive series of revisions for the The clade also has a morphological higher classifications of quadrifid synapomorphy in the prespiracular position Noctuoidea families used up to that time. of the counter-tympanal hood, which was My results in paper I almost failed to until then thought to be plesiomorphic. recover some previously recognized Adults of many aganaines and arctiines are subfamilies within Erebidae as visually striking and aposematic, and monophyletic groups. For instance, they aganaines and herminiines share long suggested that some recent concepts of labial palps and a bare lower frons. subfamilies Calpinae, , Herminiinae are generally cryptic, feeding Erebinae and Phytometrinae were on vegetable detritus, and Aganainae are polyphyletic (I). Consequently, the focus aposematic, feeding on the same suite of in paper II was designed to elucidate the toxic cardenolide-synthesizing plant higher-level phylogeny and evolutionary families (Apocynaceae and Moraceae) as relationships of the massive Erebidae clade the danaine and other moth (II). I thus conducted a large-scale genera such as Glyphodes () and molecular phylogenetic analysis, which Agathia (Geometridae) (Holloway, 2008). uncovered a well-resolved skeletal phylogenetic hypothesis. I thus presented a Another interesting result from paper II new phylogenetic hypothesis for Erebidae was the placement of the new established consisting of 18 moderate to strongly family Micronoctuidae. are supported subfamilies (Fig. 4): enlarged to incorporate Micronoctuini as a Scoliopteryginae, , Anobinae, tribe, corroborating the findings of paper I. , Lymantriinae, , The subfamily Erebinae, brings together Herminiinae, Aganainae, Arctiinae, the core catocalines (with the exceptions of Calpinae, Hypocalinae, , Hypocalinae, and Toxocampinae, Tinoliinae, Tinoliinae). Scolecocampinae, Hypenodinae, Boletobiinae and Erebinae (Fig. 4). Where Calpinae sensu Lafontaine & Fibiger possible, I diagnosed apomorphic (2006) consisted of four tribes, Anomini, morphological character states for each Scoliopterygini, and Phyllodini on monophyletic lineage (II). the basis of the sharing of peculiar morphological adaptations. A robust, Paper II provides strong support for highly developed fruit-piercing (and in subordinating five taxa where previously some cases skin-piercing and blood treated as families—Arctiidae, sucking) proboscis is found widely in Lymantriidae, Micronoctuidae, Calpini and in some of the more robust Herminiidae and Aganaidae—within scoliopterygines such as Hübner, Erebidae. One of the most striking with many similar features in the structure. features, a strong association among three However, my phylogenetic analysis of them, was shown in papers I–II: Aganainae + Herminiinae + Arctiinae are

20 Results and Discussion

Figure 4 Phylogenetic hypothesis of the moths family Erebidae, based on ML analysis. Clades representing the major clades are coloured. Support values (bootstrap) are shown next to the branches. Names of moths shown in figure clockwise are: Nolidae: Eligma (Eligminae); Noctuidae: Periphanes (Heliothinae); Erebidae: Scoliopteryx (Scoliopteryginae), Walker (Anobinae), Lymantria (Lymantriinae), Hübner (Pangraptinae), Peridrome (Aganainae), Euplagia Hübner (Arctiinae), Syntomis Ochsenheimer (Arctiinae), Calyptra (Calpinae), Hübner (Eulepidotinae), Hübner (Boletobiinae), Phytometra (Boletobiinae), Dalman (Erebinae), Schrank (Erebinae), Cocytia (Erebinae), and Ophiusa (Erebinae).

confirmed the polyphyly of the old concept suggesting that the fruit-piercing behavior of Calpinae, and supports a monophyletic and the associated modifications of the Calpinae that places members of Anomini tongue seen in moths of both groups have and Scoliopterygini in other noctuid evolved independently (III). The subfamilies (II–III). These results phylogenetic hypothesis suggested three

Results and Discussion 21 subclades for the subfamily Calpinae that concept of the subfamily (V). In addition, were treated as tribes: Phyllodini, by increasing taxon sampling of several Ophiderini and Calpini (II). The polyphyly unassigned Neotropical taxa, I uncovered a of the former concept of Calpinae provides previously unknown lineage of Noctuoidea an object lesson in how the sharing of with Neotropical origins ( peculiar morphological adaptations may Hübner + Lepidodes Guenée) with strong mislead classifications, and how shared support. This lineage appears to be the features of a more subtle nature may be sister group to Nolidae, and it shares an overlooked in an unchallenged traditional unambiguous feature and the most classification. Within the entire characteristic Nolidae apomorphy yet Lepidoptera, adult hematophagy—the proposed—the structure of the boat-shaped ability to pierce mammalian tissue and cocoon with a vertical, anterior exit slit—, extract a blood meal—is limited to species suggesting that the clade could be included within the vampire moth genus Calyptra in the family Nolidae as the subfamily Ochsenheimer, which belongs to the Diphtherinae (IV). Diphtherinae is subfamily Calpinae. In paper III, we tested considered to be the plesiomorphic sister whether hematophagy in Calyptra arose lineage to the rest of Nolidae, from plant (e.g., fruit-piercing) or animal- characterized by the loss of the proximal related behaviors (e.g., tear feeding or pair of tibial spurs on the hindlegs of lachryphagy). To do that, we subjected the males, and the presence of a frontal resulting phylogenetic trees to a Bayesian tubercle or process, which is presumably method of ancestral state reconstruction to associated with a derived strategy of reconstruct ancestral feeding behaviors emergence from the cocoon (IV). My within Calpinae and test competing analyses (IV) revealed a well-resolved hypotheses regarding their evolution. The phylogenetic hypothesis for Nolidae, results supported the hypothesis that blood allowing me to present a new classification feeding in vampire moth evolved from the for Nolidae consisting of eight strongly fruit-piercing habit as opposed to tear supported subfamilies: Diphtherinae, feeding or other animal-related feeding Risobinae, Collomeninae, Beaninae, behaviors (e.g., dung feeding, urine Eligminae, Westermanniinae, , and feeding) (III). . Among these, two groups are suggested as new subfamilies (i.e., In paper IV, I aimed to elucidate the Collomeninae and Beaninae). I also higher-level phylogeny of Nolidae and to defined each monophyletic group by clarify relationships in basal lineages of autapomorphic morphological character Noctuidae (V). My phylogenetic states. hypothesis (I) had already recovered Nolidae and Noctuidae as well-supported 3.4 Character optimizations monophyletic clades (Fig. 3). The results The higher systematics of the quadrifid were fascinating and fairly robust. Many Noctuoidea is often discussed in terms of genera previously placed in Nolidae and whether the hindwings have a trifine or the former subfamily Ophiderinae quadrifine venation. To understand (Erebidae) were placed with strong support character evolution in higher noctuoids and within Noctuidae, in the subfamily major nolids, I undertook a character Bagisarinae, supporting an expanded optimization analysis based on parsimony

22 Results and Discussion using the software Mesquite v2.75 basal lineages of Erebidae. This trend of (Maddison & Maddison, 2011). My results character evolution can be traced by of ancestral-state reconstructions and checking the position of the vein M2 in character optimization (Fig. 5) showed that different groups of quadrifids. For most traits—those characters that are instance, the condition of M2 in considered to be of phylogenetic Diphtherinae is exactly the same condition significance—are clearly synapomorphic that occurs in Pantheinae, Plusiinae, for major lineages of quadrifids, except the Dilobinae and Bagisarinae (V), where M2 hindwing venation which was an is very slightly reduced. In higher noctuids ambiguous character state (IV). It is (i.e., ) the vein is still visible in generally thought that the exactly the same position, but is even more pseudoquadrifine condition is the ancestral reduced, and then entirely lost in state for Noctuoidea. This condition Noctuinae (Fibiger & Lafontaine, 2005). In concerns the position of three veins (M2, the Erebidae lineage, M2 is seen in this M3 and CuA1), in which M2 arises about condition in some primitive lineages (e.g., one-third of the way up the discal cell, and Rivulinae, Hypeninae, and Herminiinae). M2 is strong and parallel to M3. My As a consequence, the quadrifine (M2 character examinations indicated that the adjacent to M3) form of venation must pseudoquadrifine condition is shared by have been independently gained several the basal lineages of Noctuidae s.s. (i.e., times within Erebidae, acquired once in Bagisarinae, Plusiinae, Dilobinae and Nolidae (after the Diphtherinae lineage Pantheinae) (V), and a few erebid branched off), and once in Euteliidae (Fig. subfamilies (Hypeninae, Herminiinae, 5). Thus, all these so-called primitive Scoliopteryginae and Rivulinae) (II), as lineages have retained the ancestral well as Diphtherinae (Nolidae) (IV). I (symplesiomorphic) hindwing venation evaluated the distribution patterns and trait with a pseudoquadrifine condition evolutionary trends of this complex trait (Fig. 5). under the two most commonly used character optimization algorithms of 3.5 Evolution of host-plant parsimony analysis: ACCTRAN— associations in Noctuoidea accelerated transformation—and DELTRAN—delayed transformation— There have been few attempts to study (Agnarsson & Miller, 2008). I finally the evolution of host-plant use in favoured DELTRAN optimization (IV), Noctuoidea. The results from the character which minimizes reversals and maximizes optimizations (IV) drove me to learn more convergences and parallel evolution. This about the evolution of feeding habits in favours the acquisition of the derived higher noctuoids. One feature that has been quadrifine state—base of M2 close to suggested as the prime factor governing M3—independently in Erebidae, Nolidae the evolution of -host plant (with Diphtherinae excluded), and associations, is host growth form, which Euteliidae (Fig. 5). In other words, the appears, on the whole, to be more plesiomorphic condition of M2 in the conserved phylogenetically than host-plant hindwing of the four quadrifid lineages is taxon affiliation (Janz & Nylin, 1998). the form found in Diphtherinae and basal Given its prevalence among the deeper lineages of Noctuidae, and arguably some lineages, woody-plant feeding can be

Results and Discussion 23

Fig. 5 Summary of ancestral states reconstruction on Bayesian tree under DELTRAN optimization. Clades representing higher taxa (i.e., families) are coloured. Support values under the two support measures (bootstrap/posterior probabilities) shown next to the branches. Coloured characters on terminal branches and internal nodes indicate the presence of morphological traits as shown below the tree. Names of moths shown in figure from top to bottom are: Spirama (Erebidae, Erebinae), Autographa Hübner (Noctuidae, Plusiinae), Diphthera (Nolidae: Diphtherinae), Eligma Hübner (Nolidae: Eligminae), Leach (Nolidae, Nolinae), Hübner (Nolidae, Chloephorinae, Chloephorini), Giaura Walker (Nolidae, Chloephorinae, Sarrothripini). reasonably inferred as ancestral for entire other macrolepidopteran superfamilies Noctuoidea (Holloway, 1989, Mitchell et (Powell et al., 1998). al., 2006), as it is, apparently, for most

24 Results and Discussion Within Noctuoidea, arboreal feeding is consumption of lower plants and detritus predominant among the oldest and basal has arisen in several groups, most notably lineages in trifid families—Oenosandridae Erebidae (II). For example, lichen-feeding and Notodontidae—and, within quadrifids, is predominant among lithosiines in diverse lineages of Erebidae (e.g., many (Arctiinae) and a number of Aventiini Erebinae, Aganainae, Lymantriinae, etc.) (Boletobiinae) species (Wagner et al., as well as Euteliidae (Table 1). My results 2008), while detritivory, mycophagy and corroborate those of previous results algivory is dominant in Herminiinae and (Forbes, 1923, Holloway, 1987, Weller, Boletobiinae (II) and recurs sporadically in 1989, Miller, 1991, Richards, (1933) 1932) other noctuid subfamilies (e.g., some in accepting that trifids are the , see Table 1) (V). plesiomorphic sister lineage to the rest of Noctuoidea (i.e. quadrifid Noctuoidea) (I, The results in paper V also suggested II, IV, V). For example, the family that Noctuidae included a number of Oenosandridae—only known from lineages that are exclusively arboreal Australia—mainly feeds on the woody feeders, such as Dilobinae (Rosaceae), plant family Myrtaceae (Miller, 1991). In Raphiinae (Salicaceae), Pantheinae Notodontidae—with a worldwide (Pinaceae) and (polyphagous distribution but more diverse in tropics and but mostly on trees) (Table 1). The first especially the Neotropics (Weller, 1989, three of these groups are associated with Miller, 1991)—almost all species feed on basal Noctuidae lineages in my trees, and only a few are found on phylogenetic hypothesis (Fig. 6)—those herbaceous plants (Miller, 1991). Within characterized by the plesiomorphic Euteliidae, Euteliinae most commonly feed pseudoquadrifine condition of the on Anacardiaceae (Powell et al., 1998), a hindwing venation. There are also a few plant family that contains trees and shrubs groups among the derived noctuid lineages with highly poisonous flowers. Among that generally feed on trees and shrubs, their other prominent hosts are such as some Xylenini, Psaphidini Burseraceae (includes both shrubs and (Mitchell et al., 2006), and Orthosiini. trees), Dipterocarpaceae (mainly tropical Some other subfamilies are more lowland rainforest trees), Moraceae and specialized; for example, Agaristinae, Hamamelidaceae (which consists of small often show a strong preference for trees and shrubs) (Holloway, 1985, Powell Vitaceae (Holloway, 1989). My review of et al., 1998). Stictopterinae, the sister major trends in feeding habits in the group of Euteliinae, is associated primarily subfamily Dyopsinae (Table 1) indicates with Dipterocarpaceae and Clusiaceae that most of them feed on the plant family (Table 1). Within quadrifids, where tree Urticaceae, a flowering plant family of feeding is probably also ancestral, it seems mostly trees and shrubs. In contrast, clear that there have been many herbaceous-feeding larvae are predominant independent colonizations and subsequent in the higher trifines (i.e., the ‘pest clade’, radiations on herbaceous plants, most Amphipyrinae, Metoponiinae, etc.). spectacularly in Arctiinae (Erebidae) and derived trifine lineages (e.g., the pest clade). Although, the great majority of quadrifids feed on living higher plants,

Results and Discussion 25

Table 1 Larval host-plant families for Noctuidae study taxa. Zoogeographic regions are abbreviated as follows: P = Palaearctic; O = Oriental; Au = Australasia; Nea = Nearctic; Neo = Neotropical; Af = Afrotropical.

26 Results and Discussion

Continuation of Table 1.

Results and Discussion 27 These results are also widely evolutionarily conservative than host corroborated by the study of Mitchell et al. affiliation (Mitchell et al., 2006). (2006), who studied the role of ecological However, my preliminary study of host- and geographical factors in the plant associations showed that in a few diversification of Noctuoidea. They Noctuidae subfamilies a strong preference presented a provisional synopsis of species toward feeding on a specific plant family diversity, latitudinal distribution, and host- can be seen, such as Bagisarinae which plant use for major noctuoid groups feed mainly on Malvaceae. sampled in their study, superimposed onto the phylogeny. It is revealed that the One of the fundamental reasons for growth form (i.e., woody-plant feeding vs. studying the evolutionary history of herb-feeding) of the host-plant appears on noctuoid moths is to determine the main the whole more conserved driving forces behind the diversification of phylogenetically than host-plant taxon this species-rich group. It has become affiliation, where woody-plant feeding can apparent that the evolution of host-plant be reasonably inferred as ancestral for use has likely been a key ecological Noctuoidea, as it is, apparently, for most mechanism behind the rapid diversification other macrolepidopteran superfamilies. and evolutionary divergence in the butterfly families (Janz & Nylin, 1998, In general, herbaceous-feeding larvae Janz et al., 2006). Noctuoidea are about are predominant in the higher trifines (i.e., three times more diverse than the the ‘pest clade’, Amphipyrinae, butterflies, and the role of host plant Metoponiinae, etc.), whereas in the basal specialization in the diversification of the noctuid and basal trifines lineages arboreal moths has yet to be studied in detail. With feeding is predominant. This evolutionary the phylogenetic relationships of the major pattern of feeding habits, postulating a lineages of Noctuoidea becoming clearer general evolutionary trend from a tree (I, II, IV, V), questions about host plant feeding to a herb feeding habit, has also associations and diversification can now be been shown for butterflies (Janz & Nylin, addressed for this megadiverse clade. 1998). Thus it can be suggested that the host-growth form in Noctuoidea is more

Fig. 6 Phylogenetic hypothesis of the basal Noctuidae subfamilies, based on a Bayesian inference analysis. Clades representing major lineages are coloured. Support values under the two support measures (Bootstrap/posterior probabilities) shown next to the branches. Names of moths shown in figure clockwise are: Eutelia (Euteliidae); Catocala (Erebidae); Eligma (Nolidae); (Noctuidae Dyopsinae, Dyopsini), Sosxetra Walker (Dyopsinae, Ceroctena clade), Diloba Boisduval (Dilobinae), Eucocytia (Pantheinae), Amyna Guenée (Bagisarinae), Vespola Walker (Bagisarinae), Walker (Bagisarinae), Acronicta Ochsenheimer (Acronictinae), Periphanes (Heliothinae), Euxoa Hübner (Noctuinae).

28 Results and Discussion

Conclusions and future directions 29 4. CONCLUSIONS AND FUTURE DIRECTIONS

4.1 Conclusions correctly and can be subject to extensive homoplasy (character convergence and To conclude my Ph.D. thesis, I have reversal). Consequently, despite their summarized a number of distinctive issues major role in inferring phylogenies, and strategies that I have employed in this morphological analyses have often failed thesis that are different from those in to determine relationships among most previous works. groups with confidence. On the other hand, phenotypic traits (e.g., morphological, First of all and probably the most ecological, host-plant associations, important scheme was the taxon sampling behavioural characters, etc.) and strategy. Elucidating the evolutionary synapomorphies can be properly history of the massive superfamily recognized from molecular phylogeny- Noctuoidea clade (potentially including based systems. In the context of such a 45,000 species) required extensive taxon robust evolutionary hypothesis, sampling. A deliberate and carefully morphological, ecological and behavioural considered sampling strategy could only be characters can be better understood. For accomplished by selecting exemplars from example, I demonstrated that the significant groupings of genera and prespiracular counter-tympanal hood of morphologically well-supported concepts Aganainae, Herminiinae and Arctiinae is of higher taxa. In my five projects, I chose not the result of convergent (independent) up to 393 taxa (Appendix 1) of 45,000 evolutionary events, as previously thought noctuoids that have been formally (I–II). I proved that this is the result of a described, covering almost all recognized common ancestry of these groups within major clades of Noctuoidea, as the family Erebidae (II). Polyphyly of the representatives for major lineages of old concept of Calpinae was another clear Noctuoidea. This extensive taxon sampling case (II–III). My results recovered a was made possible through the extensive monophyletic subfamily Calpinae that was network that I built up during my studies. restricted to three monophyletic tribes (i.e., One of the main causes for the previous Phyllodini, Ophiderini and Calpini) (III), low support of phylogenetic relationships and placed all other groups that had for some massive clades probably stems previously been placed as tribes within from very sparse sampling. Calpinae (e.g., Anobini, Anomini and Scoliopterygini), as independent and The second feature was the obstacles distant well-defined lineages (i.e., that are met in applying morphological Scoliopteryginae and Anobinae) within traits, in particular, in a species-rich, Erebidae (II). Calpinae sensu lato was cosmopolitan and heterogeneous taxon traditionally restricted to the fruit-piercing such as Noctuoidea. The high number of (and in some cases skin piercing and blood species presents complications to the use sucking) moths (Kitching & Rawlins, of morphology and any other kinds of 1998). However, my molecular phylogeny phenotypic traits at this taxonomic level. revealed that this feeding behavior, as well Morphological data are thus often difficult as its associated modifications of the to homologize and code, require great proboscis and adaptations (III), have experience to identify character states

30 Conclusions and future directions evolved independently in Calpinae, To conclude, I had been able to address Scoliopteryginae (including Anomini), a massive and long-recalcitrant Anobinae and some Erebinae (II). This phylogenetic problem, that of the provides again an object lesson on how the relationships among and within major sharing of peculiar morphological lineages of the largest superfamily of adaptations may mislead in classification, Lepidoptera, Noctuoidea. The and how shared features of a more subtle phylogenetic analyses that I employed nature may be overlooked in an were well designed, and many relatively unchallenged traditional classification (I). deep nodes are strongly resolved and Other examples of discovering substantial progress has been made on the morphological apomorphies based on my backbone phylogeny of Noctuoidea. This molecular phylogeny results were in group of insects is of major economic and Diphtherinae—characterized by the loss of ecological importance. It constitutes an the proximal pair of tibial spurs on the exemplar case in which molecular hindlegs of males and the presence of a methods, which seem to be highly frontal tubercle—(IV), Nolidae— informative at this level, have been of construction of a boat-shaped cocoon with enormous help, in part because the sheer a vertical exit slit, and finger-like size of the group has greatly impeded retinaculum on the forewings of the progress via the morphological approach. males—(IV), trifid and quadrifid lineages—condition of vein M2 in 4.2 Future directions forewing—(I, II, IV, V), host-plant This Ph.D. thesis addressed several associations—e.g., detritivory, lichen- phylogenetic problems concerning the feeding, mycophagy and algivory—in evolution of Noctuoidea, but there are still Boletobiinae (Erebidae) (II) and finally many unanswered questions. For example, speculation for a potential broad it is crucial to determine where, when and evolutionary feeding habit trend in how the major groups of noctuoids Noctuoidea from tree feeding in trifid diverged and evolved. The common factors lineages toward herb feeding in more that influence the speciation process and derived lineages (i.e., pest clade in identifying possible reasons for this Noctuidae), similar to the pattern that has remarkable and extraordinary diversity of been suggested for butterflies (Janz & species among other herbivorous insects Nylin, 1998). are not yet understood. Likewise, the patterns of diversification, the main driving A third issue was related to determining forces behind the diversification of this the evolutionary relationships of noctuoid species-rich group, and plausible taxa of uncertain systematic position using explanations for the differences in molecular data. In particular, those taxa diversity among the various groups within characterized by the pseudoquadrifine Noctuoidea have yet to be determined—for hindwing venation, which have been instance, why does a family such as previously assigned to various noctuoid Euteliidae contain about 500 species, but groups (IV–V). Molecular phylogenetics another like Erebidae contains 25,000 methods illustrate how easy is it can be to species? It would be of great interest to pinpoint their certain phylogenetic know whether major climatic changes and position. mass extinction events over geological

Conclusions and future directions 31 time scales have had a major impact on the The use of novel tools in DNA diversification of Noctuoidea. And it sequencing technologies, such as Next- would be most interested to infer a Generation Sequencing (NGS) methods scenario of the evolutionary history and and relatively new field of phylogenomics, biogeography of noctuoids, based on all might be able to address the state of available data (i.e., morphology, DNA uncertainty in Noctuoidea diversification sequences, ecological data, geographical and their rapid radiations. Phylogenomics distributions, and geological and is useful for evolutionary studies, in paleontological information). particular resolving ambiguous phylogenies and for verifying relationships Further studies are also needed to created on the basis of a few gene regions identify the reasons and causes for the (Hackett et al., 2008). Since the cost of short basal branches, i.e., whether there is whole genome sequencing is decreasing, a historical explanation behind them (e.g., anticipation of total genome sequences rapid radiation), or whether it is simply an from the major lineages of interest, is no artefact of insufficient data. longer a distant dream (Murphy et al., 2004).

32 Acknowledgements

5. ACKNOWLEDGEMENTS

Laboratory work for this project was (including coffee and other supplies you funded through a grant from the Academy of brought every day) and practical supervision Finland (grant no. 129811) and Kone during the period I was working at the Foundation to my supervisor, Dr. Niklas Canadian National Collection of Insects. Don, I Wahlberg. My subsistence expenses were would like to say, thank you for your funded by the CIMO (May 2008 to April confidence in me. Ian and Jeremy, I would like 2009), the Finnish Cultural Foundation to thank you for your fruitful, brilliant and (February 2010 to January 2011) and the comprehensive comments on the manuscripts. Alfred Kordelin Foundation (January 2012 to I am pleased to acknowledge my co- June 2012). I would like to take this authors, Dr. Lauri Kaila and Dr. Marko opportunity to say thank to these Foundations Mutanen, who have greatly contributed to the for supporting my four years stay in Finland. improvement of manuscripts and also for Next, I would like to express my deep sequencing of some material. I sincerely thank thankfulness to my supervisor, Dr. Niklas to Dr. Jennifer Zaspel, lead author of paper III, Wahlberg. To be honest, this dissertation for helping me on that paper. I am grateful to would not have been possible without Niklas’s Dr. Chris Schmidt for all his practical and support and consistent guidance since the first valuable comments on our joint-papers (IV,V). day I started my laboratory work (in September I also wish to acknowledge the work of Ms 2008) to the final parts, where I am typing Jocelyn Gill (CNC) for her expert work on the these words (April 2012). I have started from color plates for paper IV. below zero when Niklas taught me how to A large number of specimens for the work in Genetics laboratory! It was a molecular study were provided by a group of completely new field to me as a taxonomist! nice people collaborating with us in this Niklas, you have been so kind all times, very project: Prof Charles Mitter et al. (LepTree patient, always positive and constantly project, University of Maryland, USA), Prof optimistic. Thank you for the trust and Daniel H. Janzen (University of Pennsylvania, confidence you had on me. USA); Roger C. Kendrick (Kadoorie Farm, I would like to dedicate this thesis to one of Hong Kong); Ugo Dall’Asta (Royal Museum the most influential persons in my life, the late for Central Africa, Belgium); Lauri Kaila and Michael Fibiger, who was my first teacher in Jaakko Kullberg (Finnish Museum of Natural lepidopterology, God bless you kind man. History); Rob de Vos (Zoologisch Museum, I owe my deepest gratitude to my thesis’ Netherlands); Erik Nieukerken (Netherlands advisory team, Dr. Donald Lafontaine, Dr. Ian Centre for Biodiversity); Laszlo Ronkay Kitching and Dr. Jeremy Holloway, who made (Hungarian Natural History Museum); Alexej this thesis possible. I think a nice feature of this Matov (Zoological Institute of the Russian thesis was the inclusion of three leading Academy of Sciences); Leif Aarvik (Natural authorities on noctuoid morphology and History Museum, Norway); Shen-Horn Yen classification in the world, and that they have (National Sun Yat-sen University, ); been closely involved in the design and Henry Barlow (International Trust for interpretation of my molecular results. Don, I Zoological Nomenclature, UK & Malaysia); would like to thank you for all the discussions Chris Muller (Flinders University, Australia);

Acknowledgements 33 Ian Kitching & Jeremy Holloway (Natural helpful all the time. I will never forget our History Museum, UK); Michael G. Pogue Finnish sauna events, will never forget Vappu (Smithsonian Institution, U.S.A); Jennifer M. 2010 and 2011! I would like to thank Julien Zaspel (University of Wisconsin Oshkosh, Leneveu and Heike Witthauer for providing me USA); Jérôme Barbut (Muséum national with the great atmosphere in which to work in d'Histoire naturelle, France); Donald the TEGlab environment. I also wish to thank Lafontaine and Christian Schmidt (the Raija Rouhiainen, who was the one who took Canadian National Collection of Insects); care of my financial matters, calculating David Wagner (University of Connecticut, Niklas’s grants several times a year. USA); Vasiliy Kravchenko (Tel Aviv I would like to thank Heidi and Johanna for University, Israel), as well as a number of keeping the laboratory working. I owe sincere private collectors: Kari Nupponen (Espoo, thankfulness to Irma Saloniemi for all her Finland); Petri Hirvonen (Porvoo, Finland); consultation, guidance and advice throughout Szabolcs Safian (Hungary); Michael Fibiger my doctoral studies. I would like to thank the (Sorø, Denmark); Jorg-Uwe Meineke lecturers and researchers of the ‘Laboratory of (Germany); Peter Smetacek (); Ulf Genetics’: Christina Nokkola, Seppo Nokkala, Drechsel (Paraguay); and Markku Pellinen Erica Leder, Anti Vasemägi, Juha-Pekka Vähä, (Finland). Sanna Huttunen, Mikko Nieminen, Spiros, I wish to thank the pre-reviewers of the Matthieu, Olaf, and Susan. I am very grateful thesis, Prof. Charlie Mitter and Dr. Tommi to all the TEGlab people, in particular: Nyman, for their informative comments on the Tatjaana, Mikhail, Roghelio, Paula, Veronika, thesis introduction. Despite not having had the Elsi, Heidi, Megha, Ksenia, Walter, Bineet and chance to meet Prof. Mitter in person, I have Eero for technical help, resolving practical learned a lot from his great personality. I was issues, and of course tolerating me for four impressed, for the first time in October 2007, years! Also, it is my privilege to share my before coming to Finland, when we were feelings of gratitude with my always cheerful asking experts to set up a strong research friends, Pavel Matos and Siim Kahar. I would proposal for PhD project. It is a pleasure to like to express my sincere thanks to the UTU thank Prof. Harri Savilahti and Dr. Erik van Zoological Museum, especially Prof. Pekka Nieukerken, the custos and the opponent in my Niemelä, Ilari Sääksjärvi, Anssi Teräs (ÅA), doctoral disputation. for your continued supports. I would like to show my gratitude to Prof. I am obliged to my wife, Maryam, who has Craig Primmer for all his unseen but valuable supported me through every situation. I also support. I am grateful to Ville Aukee and Meri want to thank my Aunt Shari for her support, Lindqvist for all your assistance and technical especially when I was deeply hopeless and support. desperate. My sincere thank goes to Dr. Carlos Peña, And finally thanks to Suomi for letting me NSG’ web application developer, who created be here for four years and allowing me finally the noctuid database for my thesis project. to live! I have experienced things I have never Special thanks to my nice ex-officemates, experienced before: ice swimming, enjoying 30 Akarapong Swatdipong (Pop) and Kalle degrees below zero, smoked saunas, real Rytkönen. Pop, thank you for all those nice Finnish Saunas, Salmiakki vodka shots, getting moments we have shared together in the same almost five months snow per year (Nov.-March office and coffee room. Kalle, thank you so 2010), spring snow, winter snow, autumn much for being positive, cheerful, joyful and snow!!!

34 References

6. REFERENCES

Agnarsson, I. & Miller, J. A. (2008) Is ACCTRAN University Agricultural Experiment Station better than DELTRAN? Cladistics, 24, 1032– Memoir, 68, 1–729. 1038. Futuyma, D. J. (2005). Evolution. Sinauer Baenziger, H. (1982) Fruit-piercing moths in Associates, Sunderland, Massachusetts. Thailand: a general survey and some new perspectives. Mitt. Schweiz. ent. Ges., 55, 213– Goloboff, P., Farris, J. & Nixon, K. (2003) T.N.T.: 240. tree analysis using new technology. Program and documentation, available from the authors, and Benton, M. J. & Emerson, B. C. (2007) How did at . life become so diverse? The dynamics of diversification according to the fossil record and Goloboff, P. A. (1999) Analyzing large data sets in molecular phylogenetics. Palaeontology, 50, 23– reasonable times: Solutions for composite 40. optima. Cladistics, 15, 415–428.

Bremer, K. (1988) The limits of amino-acid Grimaldi, D. & Engel, M. S. (2005). Evolution of sequence data in angiosperm phylogenetic the insects. Cambridge University Press, reconstruction. Evolution, 42, 795–803. Cambridge, New York etc.

Bremer, K. (1994) Branch support and tree Hackett, S. J., R. T. Kimball, S. Reddy, R. C. K. stability. Cladistics, 10, 295–304. Bowie, E. L. Braun, M. J. Braun, J. L. Chojnowski, W. A. Cox, K. L. Han, J. Cameron, S. L., Miller, K. B., D'Haese, C. A., Harshman, C. J. Huddleston, B. D. Marks, K. J. Whiting, M. F. & Barker, S. C. (2004) Miglia, W. S. Moore, F. H. Sheldon, D. W. Mitochondrial genome data alone are not enough Steadman, C. C. Witt and T. Yuri. 2008. A to unambiguously resolve the relationships of phylogenomic study of birds reveals their Entognatha, Insecta and Crustacea sensu lato evolutionary history. Science 320: 1763–1768. (Arthropoda). Cladistics, 20, 534–557. Hall, T. A. (1999) BioEdit: a user-friendly Crisp, M. D. & Cook, L. G. (2009) Explosive biological sequence alignment editor and radiation or cryptic mass extinction ? analysis program for Windows 95/98/NT. 41, Interpreting signatures in molecular phylogenies. 95–98. In: Nucleic Acids Symposium Series. Evolution, 63, 2257–2265. Holloway, J. D. (1985) The moths of Borneo (part Dobzhansky, T. (1973) Nothing in biology makes 14): Family Noctuidae: subfamilies Euteliinae, sense except in the light of evolution. The Stictopterinae, Plusiinae, Pantheinae. Malayan American Biology Teacher 35, 125–129. Nature Journal, 38, 157–317.

Felsenstein, J. (1985) Confidence-limits on Holloway, J. D. (1987) Lepidoptera patterns phylogenies - an approach using the bootstrap. involving Sulawesi: what do they indicate of Evolution, 39, 783–791. past geography? In: Biogeographical evolution of the Malay archipelago (Whitemore. T. C., Fibiger, M. & Hacker, H. H. (2005) Systematic ed.). pp. 103–118. Clarendon Press, Oxford. List of the Noctuoidea of Europe (Notodontidae, Nolidae, Arctiidae, Lymantriidae, Erebidae, Holloway, J. D. (1989). The moths of Borneo (part Micronoctuidae, and Noctuidae). Esperiana, 12): Family Noctuidae: Trifine subfamilies: Schwanfeld, 11, 93–205. Noctuinae, Heliothinae, Hadeninae, Acronictinae, Amphipyrinae, Agaristinae. Fibiger, M. & Lafontaine, J. D. (2005) A review of Southdene Sdn Bhd., Kuala Lumpur. the higher classification of the Noctuoidea (Lepidoptera) with special reference to the Holloway, J. D. (2008) The moths of Borneo (part Holarctic fauna. Esperiana, 11, 7–92. 17): Family Noctuidae, subfamilies Rivulinae, Phytometrinae, Herminiinae, Hypeninae and Forbes, W. T. M. (1923) The Lepidoptera of New Hypenodinae. Malayan Nature Journal, 60, 1– York and neighboring states. Part 1. Cornell 268.

References 35 Janz, N. & Nylin, S. (1998) Butterflies and plants: genes for phylogenetic analyses of Noctuoidea A phylogenetic study. Evolution, 52, 486–502. (Insecta : Lepidoptera). Systematic Biology, 49, 202–224. Janz, N., Nylin, S. & Wahlberg, N. (2006) Diversity begets diversity: host expansions and Mitchell, A., Mitter, C. & Regier, J. C. (2006) the diversification of plant-feeding insects. Bmc Systematics and evolution of the cutworm moths Evolutionary Biology, 6. (Lepidoptera : Noctuidae): evidence from two protein-coding nuclear genes. Systematic Kitching, I. J. (1984). An historical review of the Entomology, 31, 21–46. higher classification of the Noctuidae (Lepidoptera). Bulletin of the British Museum Murphy, W. J., P. A. Pevzner and S. J. O'Brien. (Natural History) (Entomology). 2004. Mammalian phylogenomics comes of age. Trends in Genetics 20: 631-639. Kitching, I. J. (1987). Spectacles and silver Y's: a synthesis of the systematics, cladistics and Mutanen, M., Wahlberg, N. & Kaila, L. (2010) biology of the Plusiinae (Lepidoptera: Comprehensive gene and taxon coverage Noctuidae). Bulletin of the British Museum elucidates radiation patterns in moths and (Natural History) (Entomology), London. butterflies. Proceedings of the Royal Society B- Biological Sciences, 277, 2839–2848. Kitching, I. J. & Rawlins, J. E. (1998) The Noctuoidea. In: Handbook of Zoology, Nielsen, E. S., Edwards, E. D. & Rangsi, T. V. Lepidoptera, Moths and Butterflies, (Kristensen, (1996). Checklist of the Lepidoptera of N. P., ed.). pp. 355–401. W. de Gruyter, Berlin. Australia. CSIRO, Australia.

Kühne, L. & Speidel, W. (2004) The system of the Nieukerken, E. J., Kaila, L., Kitching, I. J., Catocalinae (Lepidoptera, Noctuidae)- a Kristensen, N. P., Lees, D. C., Minet, J., Mitter, historical survey. Beiträge zur Entomologie, 54, C., Mutanen, M., Regier, J. C., Simonsen, T. J., 127–146. Wahlberg, N., Yen, S.-H., Zahiri, R., Adamski, D., Baixeras, J., Bartsch, D., Bengtsson, B. Å., Lafontaine, J. D. & Fibiger, M. (2006) Revised Brown, J. W., Bucheli, S. R., Davis, D. R., De higher classification of the Noctuoidea Prins, J., De Prins, W., Epstein, M. E., Gentili- (Lepidoptera). Canadian Entomologist, 138, Poole, P., Gielis, C., Hättenschwiler, P., 610–635. Hausmann, A., Holloway, J. D., Kallies, A., Karsholt, O., Kawahara, A., Koster, S. J. C., Lafontaine, J. D. & Schmidt, B. C. (2010) Kozlov, M., Lafontaine, J. D., Lamas, G., Annotated check list of the Noctuoidea (Insecta, Landry, J.-F., Lee, S., Nuss, M., Penz, C., Rota, Lepidoptera) of North America north of Mexico. J., Schmidt, B. C., Schintlmeister, A., Sohn, J. Zookeys, 1–239. C., Solis, M. A., Tarmann, G. M., Warren, A. Maddison, W. P. & Maddison, D. R. (2011) D., Weller, S., Yakovlev, R., Zolotuhin, V. & Mesquite: a modular system for evolutionary Zwick, A. (2011) Order Lepidoptera Linnaeus, analysis. pp. 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level Miller, J. S. (1991) Cladistics and classification of classification and survey of taxonomic richness. the Notodontidae (Lepidoptera, Noctuoidea) Zootaxa, 3148, 212–221. based on larval and adult morphology. Bulletin of the American Museum of Natural History, Peña, C., Wahlberg, N., Weingartner, E., 204, 1–230. Kodandaramaiah, U., Nylin, S., Freitas, A. V. L. & Brower, A. V. Z. (2006) Higher level Mitchell, A., Cho, S., Regier, J. C., Mitter, C., phylogeny of Satyrinae butterflies (Lepidoptera : Poole, R. W. & Matthews, M. (1997) Nymphalidae) based on DNA sequence data. Phylogenetic utility of elongation factor-1 alpha Molecular Phylogenetics and Evolution, 40, 29– in Noctuoidea (Insecta: Lepidoptera): The limits 49. of synonymous substitution. Molecular Biology and Evolution, 14, 381–390. Powell, J. A., Mitter, C. & Farrell, B. (1998) Evolution of larval food preferences in Mitchell, A., Mitter, C. & Regier, J. C. (2000) Lepidoptera. In: Handbook of Zoology, More taxa or more characters revisited: Lepidoptera, Moths and Butterflies, (Kristensen, Combining data from nuclear protein-encoding N. P., ed.).

36 References Ratnasingham, S. & Hebert, P. D. N. (2007) Sperling, F. A. H. (2003). Butterfly species and BOLD: The Barcode of Life Data System molecular phylogenies. University of Chicago (www.barcodinglife.org). Molecular Ecology Press, Chicago. Notes, 7, 355–364. Stamatakis, A., Hoover, P. & Rougemont, J. Regier, J. C., Friedlander, T., Leclerc, R. F., (2008) A Rapid bootstrap algorithm for the Mitter, C. & Wiegmann, B. M. (1995) RAxML web servers. Systematic Biology, 57, Lepidopteran phylogeny and applications to 758–771. comparative studies of development. In: Molecular model systems in the Lepidoptera, Wagner, D. L., Rota, J. & McCabe, T. L. (2008) (Goldsmith, M. R. & Wilkins, A. S., eds.). of (Noctuidae) with notes on Cambridge University Press, Cambridge. algivory and lichenivory in . Annals of the Entomological Society of America, Regier, J. C., Zwick, A., Cummings, M. P., 101, 40–52. Kawahara, A. Y., Cho, S., Weller, S., Roe, A., Baixeras, J., Brown, J. W., Parr, C., Davis, D. Wahlberg, N., Leneveu, J., Kodandaramaiah, U., R., Epstein, M., Hallwachs, W., Hausmann, A., Peña, C., Nylin, S., Freitas, A. V. L. & Brower, Janzen, D. H., Kitching, I. J., Solis, M. A., Yen, A. V. Z. (2009) Nymphalid butterflies diversify S. H., Bazinet, A. L. & Mitter, C. (2009) Toward following near demise at the Cretaceous/Tertiary reconstructing the evolution of advanced moths boundary. Proceedings of the Royal Society and butterflies (Lepidoptera: Ditrysia): an initial Series B Biological Sciences, 276, 4295–4302. molecular study. BMC Evolutionary Biology, 9, Wahlberg, N. & Wheat, C. W. (2008) Genomic 280–300. outposts serve the phylogenomic pioneers: Richards, A. G. ((1933) 1932) Comparative Designing novel nuclear markers for genomic skeletal morphology of the noctuid tympanum. DNA extractions of lepidoptera. Systematic Entomologica Americana, 13, 1–43. Biology, 57, 231–242.

Roe, A. D., Weller, S. J., Baixeras-Almela, J., Weller, S. J. (1989) Phylogeny of the Nystaleini Brown, J., Cummings, M., Davis, D., Horak, M., (Lepidoptera: Noctuoidea: Notodontidae) Vol. Kawahara, A., Mitter, C., Parr, C., Regier, J., PhD dissertation. University of Texas, Austin. Rubinoff, D., Simonsen, T. J., Wahlberg, N. & Weller, S. J., Pashley, D. P., Martin, J. A. & Zwick, A. (2010) Evolutionary Framework for Constable, J. L. (1994) Phylogeny of noctuoid Lepidoptera Model Systems. In: Genetics and moths and the utility of combining independent Molecular Biology of Lepidoptera, (Goldsmith, nuclear and mitochondrial genes. Systematic M. & Marec, F., eds.). pp. 1-24. CRC Press, Biology, 43, 194–211. Gainsville, FL, USA. Whitfield, J. B. & Kjer, K. M. (2008) Ancient Ronquist, F. J. & Huelsenbeck, P. (2005) Bayesian rapid radiations of insects: Challenges for analysis of molecular evolution using MrBayes. phylogenetic analysis. Annual Review of In: Statistical methods in molecular evolution Entomology, 53, 449–472. (Nielsen, R. ed.). Springer, New York, New York, USA. Wiegmann, B. M., Mitter, C., Regier, J. C., Friedlander, T. P., Wagner, D. M. & Nielsen, E. Speidel, W., Fanger, H. & Naumann, C. M. (1996) S. (2000) Nuclear genes resolve Mesozoic-aged The phylogeny of the Noctuidae (Lepidoptera). divergences in the order Lepidoptera. Systematic Entomology, 21, 219–251. Molecular Phylogenetics and Evolution, 15, Speidel, W. & Naumann, C. M. (1995) 242–259. Phylogenetic aspects in the higher classification Wilson, E. O. (2000) A global biodiversity map. of the subfamily Catocalinae (Lepidoptera, Science, 289, 2279–2279. Noctuidae). Beiträge zur Entomologie, 45, 109– 118. Zhang, B. C. (1994). Index of Economically Important Lepidoptera. Wallingford: CAB Speidel, W. & Naumann, C. M. (2005) A survey of International. family-group names in noctuoid moths (Insecta: Lepidoptera). Systematics and Biodiversity, 2, 191–221.

Appendix 37

APPENDIX Locality

HONG KONG Type status Type

TS INDONESIA TS MALAYSIA TS USA TG TANZANIA IDH − − − − X TG HONG KONG XX TG HONG KONG TG MALAYSIA

HQ006551 AUSTRALIA CAD − − − −− −

JN401050 JN401052 JN401684 HONG KONG MDH −

JN401791 JN401053 JN401685 TS HONG KONG JN401792 GU830370 GU828161 GU830051 TG/TS FINLAND RpS5 −− − − XX

GU830617 GU830318 GU828108 GU829995 TG/TS FINLAND GU830563 GU830251 GU828039 GU829918 RICA COSTA GU830643 GU830348 GU828140 GU830028 TG/TS FINLAND HQ006739 HQ006647HQ006682 HQ007016 HQ006560 HQ006592 HQ006963 TG TAIWAN GAPDH − −− − − − − −

GU829791 Wingless −

JN400927 JN401566 JN401873 JN401772 JN401036 JN400941 GU829692 GU829904 GU830791 GU830534 GU828307 GU830223 TG

G -en íĮ

EF1

− − −

egin E - íĮ EF1

GU828873 GU829175GU828871 GU829434 GU829173 GU829432 GU829717 GU830561 GU830249 GU828037 GU829916 TG RICA COSTA COI-Jerry

− − COI-LCO XXXXXXXX XXXXXXXX XXXXX

JN401234 JN401118 JN401352 JN401252JN401253 JN401134 JN401135 JN401369 JN401370 JN401480JN401254 JN400939 JN401481 JN401582JN401255 JN400983 JN401136 JN401893 JN401583JN401256 JN401137 JN401371 JN401894 JN401790 JN401372 JN401138 JN401482 JN401051 JN400981 JN401683 JN401483 JN401373 JN401584 JN400940 JN401585 HONG KONG EU141358EU141360 EU141358 EU141360 EU136665 EU136665 EU136667 EU141239 EU136667 EU141494 EU141241 EU141391 EU141495 EU141615 EU141393 EU141313 EU141617 EU141550 EU141315 TG/TS EU141552 FINLAND TG/TS USA GU828580 GU828380 GU828919 GU829212DQ018928 GU829481 DQ018928 GU829743 GU830597 DQ018899 GU830293GU828791 GU828083 DQ018899 GU829969 GU929762HQ006217 DQ018869 TG/TS EU141485 FINLAND GU829098 HQ006921GU828607 EU141381 GU829377 EU141604 HQ006313GU828651 GU828405 GU829651 EU141303 GU829871 HQ006404 EU141539 GU828941GU828653 GU828449 GU830751 TG/TS HQ006825 GU830492 GU829235 HQ006480 GU828983GU828654 GU828451 GU828266 HQ006729 GU829502 GU830173 GU829266 HQ006638 GU828984GU828792 GU828452 TG/TS GU829539 AUSTRALIA GU829268 GU828985GU828843 GU829780 GU929763 GU830650 GU829540 GU829269 GU829099GU828527 GU829781 GU929807 GU830357 GU830652 GU829541 GU828148 GU829378 GU829144 GU830038GU828525 GU829782 GU830359 GU830653 GU829652 GU828150 TS GU830040GU828532 GU829872 GU830360 GU830752 GU828151 TG/TS FINLAND GU830041GU828621 GU828334 GU830493 FINLAND GU828267 GU828878 GU830174 GU828419 GU829179 GU828956HQ006183 FINLAND GU829439 GU829246HQ006210 GU829721 HQ006887 AUSTRALIA GU830568 GU829516 HQ006279 GU829764 HQ006914 GU830256 GU830629 GU828044 HQ006374 HQ006306 GU829923GU828802 GU830330 HQ006791 GU828122 HQ006397 GU830010 HQ006455 GU929772 HQ006698 HQ006818 TG/TS GU829107 HQ006473 HQ006606 GREECE RICA COSTA HQ006722 HQ006979 GU829385 HQ006528 HQ006631GU828641 GU829661 HQ007000 TS GU829879 GU828439 GU830759 USA GU830501 GU828975 GU828274 GU830183 GU829260HQ006227 GU829532 HQ006166 HQ006930 HQ006322 AUSTRALIA HQ006963 HQ006414 HQ006263 HQ006835 HQ006357 HQ006775 GU828664 GU828462 GU828995 GU829278 Specimen ID Specimen MM00027 MM07590 RZ403 NW141-12 NW149-1 NW107-1 MM00122 MM00981 MM00998 MM01005 MM07592 MM09888 05-SRNP-57213 05-SRNP-4443 06-SRNP-22781 MM00160 RZ508 RZ23 RZ35 RZ287 MM07614 RZ120 RZ541 MM00407 RZ411 RZ101 RZ55 RZ13 RZ100 RZ265 RZ283 MM01404 I I,II,IV Paper I,IV I I I I,II I,II,IV I,II,IV,V I I I,V I I I I,II,V IV I I,II,IV,V II I,II IV,V IV,V I,II,IV II II I,II I,II II II II I,II Outgroup Thyatira batis Ingroup Oenosandra boisduvali Species Discophlebia sp. Sphinx ligustri mori Bombyx Archiearis parthenias bucephala Phalera Stauropus fagi Clostera pigra melanosticta Epicoma Thaumetopoea solitaria Crinodes besckei Nystalea striata Scotura leucophleps adulatrix Eutelia Eutelia geyeri Marathyssa basalis Targalla subocellata describensAegilia Lophoptera hemithyris Lophoptera squammigera Stictoptera columba Scoliopteryx libatrix Ossonoba torpida fulvida Rusicada metaxantha Rusicada Gonitis involuta imparata Nychioptera noctuidalis sericealis Thyatirinae Sphinginae Bombycinae Archiearinae Phalerinae Heterocampinae Pygaerinae Thaumetopoeinae Thaumetopoeinae Dudusinae Nystaleinae Dioptinae Euteliinae Euteliinae Euteliinae Euteliinae Stictopterinae Stictopterinae Stictopterinae Stictopterinae Scoliopteryginae Scoliopteryginae Scoliopteryginae Scoliopteryginae Scoliopteryginae Scoliopteryginae unassigned unassigned Rivulinae Oenosandridae FamilySphingidae Subfamily Geometridae Oenosandridae Notodontidae Notodontidae Notodontidae Notodontidae Notodontidae Notodontidae Notodontidae Notodontidae Notodontidae Euteliidae Euteliidae Euteliidae Euteliidae Euteliidae Euteliidae Euteliidae Euteliidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae

38 Appendix HUNGARY TS MALAYSIA TS HUNGARY TG GHANA TG HUNGARY − − − JN401688 TS RICA COSTA JN401689 GHANA JN401697 MALAYSIA JN401704 GHANA JN401690 GHANA JN401700 MALAYSIA HQ006544 TG GHANA − − − −− − − JN401055 JN401686JN401056 JN401687 MALAYSIA GHANA JN401062 JN401696 TG HONG KONG HQ007022 HQ006568 TG/TS USA HQ006974 HQ006523 TS INDONESIA HQ007013 − −− − − − JN401793 JN401054 JN401794 JN401795 JN401797 JN401057JN401798 JN401691 JN401058JN401799 JN401692 JN401059JN401800 JN401693 TS HONG KONG JN401060 HONG KONG JN401694 RICA COSTA RICA COSTA JN401796 JN401807 JN401066JN401808 JN401702 JN401067 JN401703 TS USA TS HONG KONG HQ006607 HQ006980 HQ006529 USA HQ006627 HQ006601 HQ006973 HQ006522 GHANA − −− −− − − − − − − −−− − − − − − −−−− JN401896 GU830654 GU830361GU830719 GU828152 GU830042 GU830449 GU828232 TG GU830132 TG/TS FINLAND FINLAND HQ006747 HQ006736 − −− − − − − HQ006448 HQ006691 HQ006599 HQ006971 HQ006520 GHANA − JN401489 JN400945 JN401591 JN401503 JN400958 JN401603 HQ006368 HQ006785 HQ006450 − − − JN401257 JN401139JN401258 JN401374JN401259 JN401140 JN401484JN401260 JN400979 JN401141 JN401375 JN401586 JN401142 JN401376 JN401485 JN400942 JN401377 JN401486 JN401587 JN401261 JN400986 JN401487 JN401588 JN401262 JN400943 JN401143 JN401589 JN401263 JN401144 JN401378JN401264 JN401145 JN401488JN401265 JN400944 JN401146 JN401379 JN401590 JN401266 JN401147 JN401380 JN401490 JN400946 JN401148 JN401381 JN401491 JN401592 JN401267 JN400947 JN401382 JN401492 JN401593 JN401268 JN400948 JN401149 JN401493 JN401594 JN401269 JN400949 JN401150 JN401383 JN401595 JN401151 JN401384 JN401494 JN400993 JN401385 JN401495 JN401596 JN400950 JN401496 JN401895 JN401801 JN400951 JN401061 JN401597 JN401695 JN401897 JN401802 TG USA JN401270JN401271 JN401152JN401272 JN401153 JN401386JN401273 JN401154 JN401387 JN401497 JN400952 JN401155 JN401388 JN401498 JN401598JN401274 JN400953 JN401389 JN401499 JN401898 JN401599 JN401803 JN400954 JN401156 JN401500 JN401899 JN401600 JN401804 JN400955 JN401390 JN401900 JN401063 JN401601 JN401805 JN401698 JN401901 JN401501 JN401064 JN400956 JN401699 TS JN401602 MALAYSIA JN401275 TS JN401902 TANZANIA JN401806JN401276 JN401157 JN401065JN401277 JN401158 JN401701 JN401391 JN401159 TS JN401502 HONG KONG JN400957 JN401392 JN401504 JN400959 JN401604 HQ006184 HQ006888 HQ006280 HQ006375 HQ006792HQ006206 HQ006456 HQ006177 HQ006910 HQ006302 HQ006881 HQ006395 HQ006814 HQ006469 GU828668 GU828466 GU828999 GU829282 GU829553HQ006215 GU829794 GU830664GU828655 HQ006919 GU830374 GU828165 HQ006311 GU830055GU828748 GU828453 TG/TS HQ006402 GU828986HQ006209 GU929722 FINLAND HQ006823 GU829270 GU829062HQ006167 HQ006478 HQ006913 HQ006727 GU829542 GU829347 HQ006305HQ006241 HQ006964 HQ006636 GU829611 HQ007005 HQ006396 HQ006264HQ006216 HQ006943 HQ006817 HQ006358 HQ006335HQ006236 HQ006472 HQ006920 HQ006721 HQ006776 HQ006428 HQ006312 HQ006443 HQ006939 HQ006630 HQ006683 HQ006849 HQ006999 HQ006403 HQ006331 HQ006546 HQ006494 HQ006593 HQ006752 HQ006824 HQ006964 HQ006423 TG HQ006513 HQ006479 HQ006659 HQ006728 HQ006844 HQ007024 TG/TS HONG KONG HQ006572 HQ006637 FINLAND HQ007006 TG HQ006550HQ006178 TG HQ006882 HONG KONG HQ006274GU828663 HQ006369HQ006224 GU828461 HQ006786 HQ006451 GU828994HQ006232 HQ006927 HQ006693 GU829277 HQ006319HQ006175 HQ006935 GU829549 HQ006411 HQ006327 GU829790 HQ006879 GU830660 HQ006832 HQ006419 HQ006272 GU830369 HQ006840 GU828160 HQ006366 GU830050 HQ006489 TG/TS FINLAND RZ177 RZ200 RZ89 RZ166 RZ159 RZ24 RZ413 RZ167 RZ94 RZ332 RZ183 RZ109 RZ103 RZ92 RZ311 MM01545 RZ368 RZ4 MM01048 MM06740 RZ34 RZ130 RZ40 RZ408 RZ279 RZ292 RZ319 RZ18 RZ119 MM01286 RZ5 RZ6 RZ271 RZ260 RZ66 RZ394 RZ367 RZ180 I,II II I,II I,II I,II II I,II II II II I,II II II II II II I,II II I,II I,II,IV,V I,II I,II I,II I,II II II II II I,II II I,II I,II I,II II II II II II sp. sp. sp. sp. sp. Rivula ochrea Rivula ondo Bocula bifaria ansorgei Alesua etialis anguliplaga Anoba Marcipa major Crithote prominens costimaculaRema strigataBaniana Deinopa signiplena proboscidalis Cultripalpa salicalis Lymantria monacha salicis plana antiqua bicornuta Pangrapta Chrysograpta igneola Hyposemansis singha Gracilodes caffra costistriga Masca abactalis Schistorhynx argentistriga strigilatus tristalis tarsicrinalis aemula Lysimelia neleusalis verticalis Pangrapta Rivulinae Rivulinae Rivulinae Rivulinae Rivulinae Anobinae Anobinae Anobinae Anobinae Anobinae Anobinae Anobinae Anobinae Hypeninae Hypeninae Hypeninae unassigned unassigned Lymantriinae Lymantriinae Lymantriinae Lymantriinae Lymantriinae Pangraptinae Pangraptinae Pangraptinae Pangraptinae Pangraptinae Pangraptinae unassigned Herminiinae Herminiinae Herminiinae Herminiinae Herminiinae Herminiinae Herminiinae Pangraptinae

Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae

Appendix 39 TS OMAN TG/TS HUNGARY JN401706JN401707 TS MALAYSIA TS MALAYSIA JN401714 MALAYSIA JN401716JN674991 RICA COSTA TG AUSTRALIA JN401717JN401740 TG/TS HONG KONG GHANA JN674993 TG RUSSIA JN674994JN674995JN674996 BRAZIL BRAZIL BRAZIL JN401715 TS MALAYSIA JN674992 TG GHANA HQ006571 RICA COSTA HQ006534 TS HONG KONG GU829926 TG USA HQ006561 TG TAIWAN HQ006545 RICA COSTA − − − − − − − − − − − − − −− − − HQ006949 HQ006499 FINLAND −− −− −−− −− − JN401810 JN401812 JN401069 JN401708 HONG KONG JN401809 JN401068 JN401705 JAPAN GU830328 GU828120 GU830008 GREECE GU830398 GU828185 GU830080 TG/TS FINLAND − − − − JN401904 JN401813 JN401070 JN401709 TG/TSJN401906 HONG KONG JN401815 JN401072 JN401711JN401878 JN401817 JN401074 JN401713 MALAYSIA MALAYSIA HQ006663 GU830624 GU830325 GU828115 GU830003 TG/TS TAHILAND HQ006666 GU830569 GU830258 GU828046 GU829925 RICA COSTA HQ006711 HQ006619 HQ006991 HQ006537 HONG KONG HQ006740 HQ006648 − − − − − −− − − − − JN401612 JN401910 − JN400960 JN401605 HQ006816 HQ006471 HQ006720 HQ006629 − − HQ006339 HQ006765 HQ006425 HQ006846 HQ006492 HQ006749 HQ006656 GU829305 GU829573 GU829813 − − − HQ006334 HQ006427 HQ006848 HQ006493 HQ006751 HQ006658 − JN401278JN401279 JN401160JN401280 JN401161 JN401393 JN401281 JN401162 JN401394JN401282 JN401163 JN401395 JN401505 JN400961 JN401164 JN401396 JN401506 JN401606 JN401283 JN400962 JN401397 JN401507 JN401607JN401284 JN400963 JN401165 JN401508 JN401903 JN401608 JN401285 JN401811 JN400964 JN401166 JN401398JN401286 JN401167 JN401399 JN401509 JN400965 JN401168 JN401400 JN401510 JN401609 JN400966 JN401401 JN401511 JN401905 JN401814 JN400967 JN401512 JN401071 JN401610 JN400968 JN401710 JN401876 JN401816 JN401073 JN401712 MALAYSIA MALAYSIA JN401287 JN401169 JN401402 JN401513JN401288 JN400969 JN401611JN401289 JN401170 JN401909 JN401818 JN401171 JN401403JN674869 JN401404 JN401514 JN674851 JN401515JN401290 JN400970 JN674886 JN401613JN401291 JN401172 JN674902 JN401911 JN401819 JN674968 JN401173 JN401405 JN674919JN674870 JN401406 JN401516 JN674950JN674871 JN674934 JN400971 JN674852 JN401517 JN401614 JN400990 JN674853 JN674887 JN401912 JN401615JN674872 JN401820 JN674888 JN674903 JN401913JN674873 JN401821 JN674969 JN674854 JN674904 JN674920JN674874 JN674970 JN674855 JN674889 JN674951 JN674921 JN674856 JN674890 JN674905 JN674952 JN674935 JN674971 JN674891 JN674906 JN674922 JN674972 JN674907 JN674953 JN674923 JN674936 JN674973 JN674954 JN674924 JN674937 JN674955 JN674938 GU828615HQ006220 GU828413 GU828949 HQ006924 GU829240 HQ006316 GU829509 HQ006407 HQ006828 HQ006483 HQ006732 HQ006641 HQ007009 HQ006554HQ006193 TG HQ006897 HONG KONG HQ006289 HQ006383 HQ006801 HQ006462 HQ006706HQ006146 HQ006614 HQ006238 HQ006853 GU828619 HQ006941 HQ006151 GU828417 GU828954GU828535 HQ006858 GU829244 HQ006249HQ006149 GU828337 GU829514 HQ006344 GU828881GU828534 HQ006856 HQ006760 GU829181 HQ006247 HQ006433 GU828336 HQ006668 GU829442 HQ006342 GU828880 GU829722 HQ006579 GU830570 HQ006758 HQ006951 GU829180 HQ006501HQ006169 GU829441 HQ006198 HQ006873 HQ006266GU828693 HQ006902 ECUADOR HQ006360 HQ006294 GU828489 HQ006778 HQ006387 HQ006444 HQ006685 HQ006806 HQ006228 HQ006594 HQ006965 HQ006514 HQ006931 TG/TS HQ006323HQ006173 RUSSIA HQ006415 HQ006877 HQ006836 HQ006270 HQ006364HQ006174 HQ006782 HQ006446 HQ006878 HQ006689 HQ006271 HQ006597 HQ006969 HQ006365 HQ006518HQ006208 HQ006783 HQ006447 HQ006912 HQ006690 HQ006304 HQ006598 GHANA HQ006970 HQ006519 TG MALAYSIA HQ006240 RZ397 MM00145 RZ44 RZ346 RZ345 RZ280 RZ268 RZ47 RZ28 RZ399 RZ398 MM05843 RZ8 MM00154 MM05380 AM-94-0396 MM05671 06-SRNP-35191 RZ88 RZ387 RZ136 RZ30 MM03713 RZ93 RZ56 RZ546 RZ153 RZ155 RZ338 RZ16 RZ430 RZ335 RZ417 RZ421 RZ420 RZ404 RZ210 RZ400 II I,II I,II II II II II II I,II II II I,II I,II I,II I,II I,II I,II I,II I,II II I,II I,II I,II,IV,V II II I,II,III II,III I,II,III II,III II,III I,II,III III III I,II,III III III III II sp sp caricaeAsota heliconia Asota Neochera inops membliaria Euplocia orbicularis Peridrome praecipua quadripennis Psimada antica Garudinia simulana bipunctata canescensApisa Syntomis phegea famula viridis virginica cribraria troetschi Pseudophaloe leucophaea baulus dominula transiens caja astreus dilina eyndhovii imperialisPhyllodes Miniodes phaeosoma Hemiceratoides sittaca salaminia fullonia Eudocima divitiosaEudocima tyrannus Eudocima uxor Gonodonta lincus Gonodonta milla Gonodonta syrna Aganainae Aganainae Aganainae Aganainae Aganainae Aganainae Aganainae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Arctiinae Unassigned Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae

Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae

40 Appendix USA COSTA RICA COSTA RICA COSTA RICA TS COSTA RICA TG RUSSIA TG/TS THAILAND − − − − JN674997JN674999 BRAZIL ECUADOR JN675000JN675001 HONG KONG RUSSIA JN675002JN675004 BRAZIL JN401723 TS USA JN401725 USA JN401727 TS MALAYSIA HQ006562 TG JAPAN − − − − − − − − −− −− −− − JN674986 JN401084 JN401729 HONG KONG − −− − JN401827 JN674957 JN674940 JN674956 JN674939 JN674985 JN674998 USA JN674958 JN401924 JN401834 JN401082 HQ006709 HQ006617 HQ006989 GU830699 GU830415 GU828199 GU830097 TG FINLAND HQ006678 HQ006588 HQ006960 HQ006511 TG RICA COSTA HQ006697 HQ006605 HQ006978 HQ006527 RICA COSTA − − −− − − − − −− JN674983 JN674933 JN674967 JN674949 JN674989 JN675005 TG USA JN400977 JN400975 JN401620JN400973 JN401918 JN401621 JN401828 JN401919 JN401829 JN401079 JN401722 RICA COSTA HQ006815 HQ006470 HQ006719 HQ006628 HQ006804 − − −−− − − JN674913 GU829323 GU829587 −− − −− − JN674867 − JN674875JN674876 JN674857JN674877 JN674858 JN674892 JN674859 JN674893 JN674908JN401292 JN674974 JN674894 JN674909JN674884 JN674975 JN401174 JN674910 JN674976 JN674866 JN401407 JN674925JN674885 JN674900 JN401518 JN674959 JN674941 JN400972 JN674868 JN674917 JN401616JN674878 JN674982 JN674901 JN401914 JN674931JN674879 JN401823 JN674860 JN674918 JN674965 JN401075 JN674947 JN674984 JN674861 JN401718 JN674895 JN674988 JN674932JN401293 TG JN674896 JN674911 JN674966 JAPAN JN674880 JN674948 JN674977 JN401175 JN674912 JN674990 JN674926JN674881 JN674978 JN674862 JN675006 JN401408 JN674960 JN674927JN674882 JN674942 JN674863 TG JN401519 JN674961 MALAYSIA JN674883 JN674943 JN400987 JN674864 JN674897 JN401617 JN674865 JN674898 JN674914 JN401915JN401294 JN401824 JN674979 JN674899 JN674915 JN401076 JN674928JN401295 JN674980 JN401176 JN401719 JN674916 JN674962 JN674929JN401296 JN674944 JN674981 JN401177 JN401409 JN674963 JN674930 JN674945 JN401178 JN401410 JN401520 JN674964 HONG KONG JN674987 JN674946 JN400985JN401297 JN675003 JN401521 JN401618 JN400980JN401298 JN401179 JN401916 JN401619 JN401825 JN401917 JN401411 JN401180 BRAZIL JN401077 JN401826JN401299 JN401720 JN401412 JN401078 TG/TSJN401300 JN401721 HONG KONG JN401181 TGJN401301 JN401182 JN401413 RICA COSTA JN401183 JN401414 JN401522 JN400974 JN401415 JN401523 JN401622 JN400995JN401302 JN401524 JN401920 JN401623 JN401830 JN401004 JN401184 JN401921 JN401624 JN401831 JN401922 JN401416 JN401080 JN401832 JN401303 JN401724 JN401525 JN401005JN401304 JN401185 JN401625JN401305 JN401186 JN401923 JN401417 HONG KONG JN401833JN401306 JN401187 JN401418 JN401081 JN401726 JN401188 JN401419 JN401526 JN401006 JN401420 JN401527 JN401626 JN401007 JN401528 JN401925 RICA COSTA JN401627 JN400991 JN401907 JN401628 JN401835 JN401926 JN401083 JN401728 MALAYSIA HQ006156 HQ006861 HQ006252 HQ006348 HQ006763 HQ006435 HQ006671HQ006207 HQ006582 HQ006955 HQ006504 HQ006911 TG/TS HQ006303 FINLAND HQ006159 HQ006864 HQ006256 HQ006351 HQ006768 HQ006439 HQ006675 HQ006586 HQ006958 HQ006508HQ006176 TS HQ006880 HONG KONG HQ006273 HQ006367 HQ006784HQ006231 HQ006449 HQ006692 HQ006934 HQ006600 HQ006972 HQ006326 HQ006521 HQ006418HQ006162 HQ006839 HQ006488 USA HQ006960 HQ006743 HQ006651 HQ006259 HQ007018 HQ006564 HQ006354 HQ006771 TGHQ006196 USA HQ006182 HQ006900 HQ006292 HQ006886 HQ006278GU828711 HQ006373HQ006229 GU828506 HQ006790 HQ006932 HQ006324 HQ006416 HQ006837 HQ006487 HQ006741HQ006242 HQ006649 HQ006944 HQ006336 HQ006429 HQ006850 HQ006495 HQ006753 HQ006660 HQ007025 HQ006573 TG USA RZ423 RZ432 RZ419 RZ431 CTW2 RZ514 RZ333 RZ106 RZ429 RZ102 RZ337 RZ434 RZ422 RZ418 RZ433 RZ17 RZ105 RZ340 RZ354 RZ59 RZ334 RZ343 RZ12 RZ267 RZ370 RZ298 RZ295 RZ22 RZ276 MM05092 RZ57 RZ331 RZ389 RZ111 RZ9 MM00963 RZ336 RZ445 III III III III III III I,II,III III III I,II,III II,III III III III III I,II,III II II,III II I,II,III II,III II I,II,III II II II I,II I,II,III II I,II I,II II II II I,II II,III II I,II,III,IV,V Gonodonta fulvangula Gonodonta nutrix Gonodonta sicheas Calyptra thalictri Calyptra hokkaida Calyptra lata Calyptra minuticornis nitissima coelonota Plusiodonta casta Plusiodonta emarginata excavata Oraesia excavate Oraesia Oraesia nobilis Oraesia glaucocheila rectristria Oraesia hormos deflorata Tautobriga glaucopis rufimargo fuscireticulataAntiblemma Sanys irrosca Eulepidotis rectimargo gemmatalis finitima toxea Oxidercia ceramina chamaephanes pastinum Lygephila maxima Tinolius eburneigutta denotalis hieroglyphica mediorufa Platyjionia liburna Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Calpinae Hypocalinae Hypocalinae Hypocalinae Eulepidotinae Eulepidotinae Eulepidotinae Eulepidotinae Eulepidotinae Eulepidotinae Eulepidotinae Eulepidotinae Eulepidotinae Eulepidotinae Toxocampinae Toxocampinae Toxocampinae Tinoliinae Tinoliinae Tinoliinae Unassigned Scolecocampinae

Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae

Appendix 41 HONG KONG MALAYSIA INDONESIA HONG KONG TS GHANA TS HONG KONG TG MALAYSIA TG/TS RUSSIA − − − − − JN401738JN401739 MALAYSIA MALAYSIA JN401741 TG HONG KONG JN401744 FINLAND JN401743 TS HONG KONG JN401742 TG GHANA HQ006509 TS HONG KONG HQ006569 TG HUNGARY − − − − −− − − JN401086 JN401731 HONG KONG JN401096 JN401746 TS USA JN401097 GU828168 GU830058 TG/TS FINLAND HQ006966 HQ006515 TG INDONESIA HQ006984 HQ006531 TG UAE −−− − −− − − − −− − − −−− JN401850 JN401095 JN401745 HONG KONG − JN401928 JN401929 JN401930 JN401837 JN401087 JN401933 JN401841JN401934 JN401091 JN401842 JN401735 JN401092 JN401736 TS MALAYSIA TS MALAYSIA GU830666 HQ006676 HQ006686 HQ006702 HQ006684 − − − − − − − − − JN401629 JN401927 JN401836 JN401085 JN401730 USA JN401634 JN401936JN401635 JN401844 JN401937 JN401845 JN401641 JN401644 JN401945 − − − JN400994 JN401631 JN401908 JN401839 JN401089 JN401733 GHANA JN401012 JN401633 JN401935 JN401843 JN401093 JN401737 TS MALAYSIA −−− − − −− GU829285 GU829556 HQ006408 HQ006829 HQ006484 HQ006733 HQ006642 HQ007010 HQ006555 HONG KONG −−− − − JN401437 JN401542 JN401016 JN401640 JN401942 JN401849 − JN401193 JN401425 JN401532 JN400992 JN401630 JN401931 JN401838 JN401088 JN401732 GHANA − JN401307 JN401189 JN401421JN401308 JN401529 JN401309 JN401190JN401310 JN401191 JN401422 JN401192 JN401423 JN401530 JN401008 JN401424 JN401531JN401311 JN401009 JN401194JN401312 JN401426 JN401195 JN401427 JN401533JN401313 JN401010 JN401632JN401314 JN401196 JN401932JN401315 JN401840 JN401197 JN401428 JN401090JN401316 JN401198 JN401734 JN401429 JN401534JN401317 JN400996 JN401199 JN401430 JN401535 JN401011 JN401200 JN401431 MALAYSIA JN401318 JN401432 JN401536 JN401201 JN401537 JN401319 JN401433JN401320 JN401202 JN401538 JN401013 JN401203 JN401434 JN401636JN401321 JN401435 JN401539 JN401938 JN401846 JN400989 JN401204 JN401540 JN401094 JN401637 JN401014 JN401436 JN401939 JN401638 JN401847 JN401322 JN401541 JN401940 JN401015 JN401639JN401323 JN401941 JN401848 JN401324 JN401205 JN401206 JN401438 JN401439JN401325 JN401543 JN401017 JN401207 JN401642JN401326 JN401943 JN401440 JN401208 JN401544 JN400997 JN401643 JN401944 JN401851 GU828671 GU828469 HQ006192 HQ006896 HQ006288 HQ006382 HQ006800 HQ006461HQ006171 HQ006705 HQ006613 HQ006875 HQ006987 HQ006268 HQ006362HQ006160 HQ006780 HQ006445 HQ006865 HQ006687 HQ006257HQ006211 HQ006595 HQ006967 HQ006352 HQ006516HQ006165 HQ006915 HQ006769 TG HQ006307HQ006197 HQ006962 INDONESIA HQ006398 HQ006262 HQ006901 HQ006819 HQ006356 HQ006293 HQ006474 HQ006723 HQ006774 HQ006386 HQ006442 HQ006632 HQ006681 HQ006805 HQ007001 HQ006547 HQ006463 HQ006591 HQ006710 HQ006962 HQ006512 HQ006618 HQ006990 TG HQ006536HQ006170 HONG KONG TG/TS FINLAND HQ006874 HUNGARY HQ006267HQ006237 HQ006361 HQ006940 HQ006779 HQ006332 HQ006424HQ006154 HQ006845 HQ006491 HQ006862 HQ006748 HQ006253GU828707 HQ006655 HQ006347HQ006212 GU828502 HQ006764 GU829030 HQ006436 HQ006916 HQ006672 GU829319 HQ006308 HQ006583HQ006218 GU829583 HQ006954 HQ006399 HQ006505 GU829821 HQ006922 GU830695 HQ006820 TG/TS HQ006475 GU830411 FINLAND HQ006314 HQ006724 GU828195 GU830093 HQ006633 HQ006405HQ006189 HQ007002 TG/TS HQ006826 FINLAND HQ006481 HQ006893HQ006168 HQ006730 HQ006639 HQ006285 HQ006872 HQ007007 HQ006379 HQ006552 HQ006265HQ006221 HQ006797 HQ006359 HQ006925 HQ006777 HONG KONG RZ393 RZ288 RZ409 RZ297 MM01780 RZ27 RZ42 RZ369 RZ138 RZ104 RZ36 RZ129 RZ3 RZ385 RZ412 RZ390 RZ415 RZ392 RZ7 RZ98 RZ220 RZ372 MM04877 RZ37 RZ41 RZ107 RZ285 RZ248 RZ135 RZ116 RZ45 RZ326 MM00340 RZ137 RZ410 RZ475 RZ476 II II I,II II II I,II I,II II II I,II I,II I,II I,II I,II II II II II II I,II II II II I,II I,II I,II II II I,II I,II II I,II II I,II II II II . brachypalpia . ? sp sp. sp. sp . sp sp. 1 sp. 2 sp. stygialis humidalis costaestrigalis Luceria striata Luceria oculalis Anachrostis Micronoctua Biuncus Biuncus pustulifera nitens viridaria Phytometra flexula Zurobata rorata Homodes crocea Enispodes purpurea mnionomera absimilisParolulis Araeopteron purpurinaEublemma anachoresisEublemma albifasciaEublemma edilis emortualis trigonifera Prolophota Hypenagonia atrigutta Metaemene Mataeomera semialba semirufaEuaontia circumdata bolinoides insuspecta Ugiodes cinerea fuliginaria Scolecocampinae Hypenodinae Hypenodinae Hypenodinae Hypenodinae Hypenodinae Hypenodinae Hypenodinae Hypenodinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Boletobiinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Boletobiinae

Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae

42 Appendix UAE TS TANZANIA TG MALAYSIA TG/TS GERMANY − − JN401748JN401749 USA JN401750 USA USA JN401761 TS HONG KONG HQ006530 TAIWAN − − − − −− − −− JN401104 JN401756JN401105 TG JN401757 TANZANIA NAMIBIA JN401106 JN401758 TAIWAN HQ006981 HQ007003 HQ006548 TS HONG KONG − − − − − JN401954 JN401859 JN401103 JN401755 TS USA HQ006679 HQ006589 HQ006717 HQ006625HQ006700 HQ006997 HQ006542HQ006708 TG/TS HQ006616 SPAIN HQ006707 HQ006615 HQ006988 HQ006535 TS HONG KONG HQ006742 HQ006650 HQ007017 HQ006563HQ006744 TG/TS HQ006652 USA HQ007019 HQ006565 TG/TS CONGO HQ006688 HQ006596 HQ006968 HQ006517 TG GHANA HQ006667 HQ006578HQ006750 HQ006950 HQ006500 HQ006657HQ006718 HQ007023 TS HQ006570 HQ006626 HQ006998 FINLAND TG HQ006543 FINLAND TG HONG KONG − − − − − − − − − − − − JN401648 JN401949 JN401854 − JN401023 JN401025 JN401655JN401000 JN401957 JN401656 JN401958 JN401861 JN401107 JN401759 ECUADOR HQ006793 HQ006457 HQ006699 HQ006608 HQ006772 − − − − − HQ006318 HQ006410 HQ006831 HQ006485 HQ006735 HQ006644 HQ007012 HQ006557 TS HONG KONG HQ006260 − − JN401327 JN401209JN401328 JN401441JN401329 JN401210 JN401545 JN400998 JN401211 JN401442 JN401645JN401330 JN401443 JN401546 JN401946JN401331 JN401852 JN401002 JN401212 JN401547 JN401098 JN401646 JN401018 JN401213 JN401747 JN401444 JN401947 JN401647 JN401860 JN401445 JN401548 JN401948 JN401853 JN401549 JAPAN JN401019 JN401649 JN401950 JN401855 JN401099 JN401751JN401332JN401333 JN401214 RICA COSTA JN401334 JN401215 JN401446 JN401216 JN401447 JN401550JN401335 JN401020 JN401448 JN401551 JN401650 JN401021 JN401217 JN401552 JN401951 JN401651JN401336 JN401856 JN401022 JN401449 JN401952 JN401100 JN401652 JN401857JN401337 JN401218 JN401752 JN401953 JN401101 JN401858 JN401753 JN401450 JN401219 JN401102 JN401754 TS JN401553 JN401451 USA USA JN401024 TG JN401554 JN401653 RICA COSTA JN400999JN401338 JN401955 JN401654JN401339 JN401220 JN401956 JN401340 JN401221 JN401452 JN401222 JN401453 JN401454 JN401555 JN401026 JN401657 JN401959 JN401862 JN401108 JN401760 TG/TSJN401341 MALAYSIA JN401223 JN401455 JN401556 JN401027 JN401658 JN401960 JN401863 HQ006201 HQ006905 HQ006297HQ006164 HQ006390 HQ006961 HQ006809 HQ006261 HQ006466 HQ006714 HQ006355HQ006225 HQ006622 HQ006773 HQ006994 HQ006539 HQ006441 HQ006928 HQ006680 HQ006320 HQ006590 HQ006961 HQ006412HQ006204 JAPAN HQ006833HQ006186 HQ006486 HQ006908 HQ006737 HQ006300HQ006195 HQ006890 HQ006645 HQ007014 HQ006393 HQ006282 HQ006558HQ006244 HQ006899 HQ006812 HQ006376 TG HQ006291HQ006223 HQ006946 HQ006794 RICA COSTA HQ006385 HQ006338HQ006161 HQ006803 HQ006431HQ006194 HQ006866 HQ006852 HQ006258 HQ006497 HQ006898 HQ006755 HQ006353 HQ006290 HQ006662 HQ006770 HQ007027 HQ006384 HQ006575 HQ006440 HQ006677 HQ006802 TGHQ006230 HQ006587 HQ006959 HONG KONG HQ006510 HQ006933 TG HQ006325HQ006233 TAIWAN HQ006417 HQ006936 HQ006838 HQ006328 HQ006420GU828700 HQ006841 HQ006185 GU828495 GU829023HQ006172 HQ006889 GU829312 HQ006281 HQ006876 GU829576 HQ006269 GU829816 GU830688 HQ006363 GU830404 HQ006781 GU828189 GU830086HQ006199 TGHQ006180 HQ006903 FINLAND HQ006295HQ006150 HQ006884 HQ006388 HQ006276HQ006239 HQ006857 HQ006807 HQ006371 HQ006248HQ006205 HQ006464 HQ006942 HQ006712 HQ006788 HQ006343 HQ006333HQ006163 HQ006453 HQ006909 HQ006620 HQ006695 HQ006759 HQ006992 HQ006426 HQ006301 HQ006538HQ006214 HQ006603 HQ006847 HQ006976 HQ006394 HQ006525 HQ006918 HQ006813 HQ006310HQ006213 AUSTRALIA HQ006401 HQ006917 RICA COSTA HQ006822 HQ006309 HQ006477 HQ006726 HQ006400 HQ006635 HQ006821 HQ007004 HQ006549 HQ006476 HQ006725 HONG KONG RZ350 RZ307 RZ313 RZ320 RZ127 RZ270 RZ53 RZ91 RZ321 RZ243 RZ291 RZ99 RZ48 RZ11 RZ29 RZ314 RZ284 RZ342 RZ58 RZ286 RZ60 RZ290 RZ275 MM04358 RZ149 RZ359 RZ473 RZ407 RZ309 RZ20 MM05469 RZ33 RZ126 RZ39 RZ261 RZ38 RZ241 RZ82 II II I,II I,II II I,II II I,II II I,II I,II I,II I,II I,II I,II I,II II II II I,II II I,II II II I,II,IV,V II II II II I,II I,II I,II I,II I,II II II I,II I,II . . sp sp fumosa lucilla alchymista Heteranassa bethunei crespula Pseudbarydia robusta acrosticta chlorea cruegeri rufibasis ephesperis apicalis deducta perlaeta Forsebia punctifinis atomaris bipunctata humeralis Audea brandbergensis capensis retorta Spirama Calyptis idonea luminosa diemeni latipes mi glyphicaEuclidia cyllaria caranea subcinerea umminea Platyja salebrosa macula Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae

Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae

Appendix 43 COSTA RICA MALAYSIA COSTA RICA UAE TS COSTA RICA TS COSTA RICA TG COSTA RICA TG COSTA RICA TG/TS RICA COSTA TG/TS RICA COSTA TG/TS UAE − − − − XTGTHAILAND X TS MALAYSIA JN401765 MALAYSIA − −− −− − −− −− − −−− X X X TS COSTA RICA XX XX X X X TS X COSTA RICA TG/TS COSTA RICA HQ006610 HQ006983 − − − − X XX X X XXX X HONG KONG HQ006734 HQ006643 HQ007011 HQ006556 HONG KONG −− −−− − −− − −− −−− − − − X XXX X X X X X JN401028 JN401659 JN401961 JN401864 JN401109 JN401762 AUSTRALIA JN400926 JN401565 JN401872 JN401771 JN401035 JN401668 TG MALAYSIA − − − − −− −− XXXX XXXX X XXXXXX XXXXXXXXTGTHAILAND − −−− − −−− − − −− XXXXX X XX XXXXXX X X XXXXXXXX XXXXXXXXXXUSA X X XX XXXXXXXXXXMALAYSIA XXXXXX XXXXXXXXX XXXXXXXXXXMALAYSIA XXXX XX XXXXXXXXXX X X X X X TS COSTA RICA JN401342JN401343 JN401224JN401344 JN401225 JN401456 JN401226 JN401457JN401345 JN401458 JN401557JN401346 JN401029 JN401227 JN401558 JN401660JN401347 JN401030 JN401228 JN401459 JN401962 JN401661 JN401822 JN401229 JN401460 JN401559 JN401963 JN401110JN401348 JN401866 JN401003 JN401763 JN401461 JN401560 JN401111 JN401662JN401349 JN401031 JN401230 JN401764 TS JN401561 JN401964 JN401663 JN401867 MALAYSIA JN401032 JN401231 TS JN401462 JN401965 JN401664 JN401869 HONG KONG JN401463 JN401562 JN401966 JN401112JN401350 JN401868 JN401001 JN401766 JN401563 JN401113 JN401665 TG/TS JN401033 JN401232 JN401767 JN401967 GUINEA NEW JN401666 JN401865 JN401464 JN401968 JN401881 JN401870 JN401768 JN401564 MALAYSIA JN401115 JN401034 JN401769 TS JN401667 MALAYSIA TS JN401969 JN401871 USA JN401116 JN401770 GHANA JN401233 JN401117 JN401351 HQ006202 HQ006906 HQ006298 HQ006391 HQ006810HQ006179 HQ006467 HQ006715 HQ006883 HQ006623 HQ006995 HQ006275 HQ006540 HQ006370HQ006188 HQ006787HQ006187 HQ006452 HQ006892 TAIWAN HQ006694 HQ006284 HQ006891 HQ006602 HQ006975 HQ006378 HQ006283 HQ006524HQ006181 HQ006796 HQ006377HQ006222 HQ006459 HQ006885 HQ006795 HQ006277 HQ006458 HQ006926 MALAYSIA HQ006701 HQ006372 HQ006317 HQ006609 HQ006789 HQ006982 HQ006409 HQ006454 HQ006696 HQ006830 HQ006604 HQ006977 HQ006526 TG MALAYSIA HQ006203 HQ006907 HQ006299 HQ006392 HQ006811HQ006243 HQ006468 HQ006716 HQ006945 HQ006624 HQ006996 HQ006337 HQ006541 HQ006430 HQ006851 HQ006496 HONG KONG HQ006754 HQ006661 HQ007026 HQ006574 TG/TS HONG KONG RZ465 RZ631 RZ633 RZ308 RZ269 RZ113 RZ318 RZ317 RZ401 RZ306 RZ19 RZ294 RZ247 RZ246 RZ190 RZ21 RZ46 RZ353 RZ630 RZ594 RZ381 RZ65 RZ461 RZ469 RZ638 RZ396 RZ32 RZ500 RZ516 RZ360 RZ97 RZ462 RZ361 RZ522 RZ391 RZ628 RZ632 RZ634 IV IV IV II II II I,II II II II I,II II I,II I,II,IV II I,II I,II IV IV IV IV II,IV I,II,IV IV IV,V IV IV I,IV IV IV IV I,II,IV,V IV IV IV II IV IV,V 1 2 3 1 2 2 3 1 2 1 porphyreticaPraxis manlia scrobiculata campana ulopteraAvatha Cocytia durvillii praetermissa servaAchaea mygdon elonympha devia metaphaea Ophiusa coronata dotata Lepidodes gallopavo Lepidodes limbulata Lepidodes limbulata Lepidodes limbulata Diphthera festiva Diphthera festiva Diphthera festiva obstructaRisoba obstructaRisoba levitans Baileya Collomena siopera Collomena siopera Neostictopera nigropuncta terminigeraBeana siamicaBaroa Selepa molybdea Selepa discigera/celtis seminivea Ptisciana Triorbis aureovitta narcissusEligma argyritisElaeognatha product cardinalis Pterogonia Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Erebinae Diphtherinae Diphtherinae Diphtherinae Diphtherinae Diphtherinae Diphtherinae Diphtherinae Risobinae Risobinae Risobinae Collomeninae Collomeninae Collomeninae Beaninae Eligminae Eligminae Eligminae Eligminae Eligminae Eligminae Eligminae Eligminae Westermanniinae

Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Erebidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae

44 Appendix THAILAND MALAYSIA HONG KONG TS JAPAN TS THAILAND TS THAILAND TS MALAYSIA TG HONG KONG TG HONG KONG TG MALAYSIA TG/TS THAILAND − − − − − XUSA X MALAYSIA XTAIWAN XTHAILAND XTGUSA X TG MALAYSIA X MALAYSIA XX TG MALAYSIA MALAYSIA − − − − −− − −− −− −− − − − −− XX MALAYSIA X X −−− −− − − X X XX HONG KONG X X TG HONG KONG −− − − XX XX XXX GU830665 GU830376 GU828167 GU830057 TG FINLAND HQ006745 HQ006653 HQ007020 HQ006566 TG JAPAN − − − − − XXX X XXX XX XXX X X − − − − XXX X X X X X X X INDONESIA − − XXXXXXX MALAYSIA XXXXXXXX XXXXXXX XXXXXX XXXXXX − − − − −−− − XXXXXXXX X XXXXXXX X XXX XXXXXXXXXXTSMALAYSIA XXXXXXXXX XXXXXXXXXXTHAILAND XX XXXXXXX XXXXXXXXXXXTGTHAILAND XXXXXXX XXXXXXXXX XXX XXX XXXXX XX XXXXXX XX XX XXXXXXXXXXXTAIWAN XXX XXX XXXXXXXX TSXXXXXXXX HONG KONG XXXXXXXXXXMALAYSIA XXXXXXXXXXMALAYSIA XXXXX XXXXXXXXXXTSMALAYSIA XXXXXXXX XXXXXXXX XXX HQ006191 HQ006895 HQ006287 HQ006381 HQ006799 HQ006460 HQ006704 HQ006612 HQ006986 HQ006533 HONG KONG GU828670 GU828468 GU829001 GU829284 GU829555 HQ006219 HQ006923 HQ006315GU828747 HQ006406 GU929721 HQ006827 GU829061 HQ006482 HQ006731 GU829346 HQ006640 GU829610 HQ007008 HQ006553 GU829845 GU830718 GU830448 GU828231 GU830131 HONG KONG TG/TS FINLAND HQ006234 HQ006937 HQ006329 HQ006421 HQ006842 RZ526 RZ530 RZ645 RZ483 RZ414 RZ498 RZ624 RZ625 RZ485 RZ627 MM01776 RZ488 RZ494 RZ533 RZ534 RZ495 RZ641 RZ43 RZ648 RZ480 RZ492 RZ484 RZ586 RZ525 RZ386 RZ503 RZ479 RZ531 RZ521 RZ515 RZ63 RZ114 RZ626 RZ493 MM06650 RZ26 RZ487 RZ504 IV IV IV IV IV IV IV IV IV IV IV I,II,IV IV IV IV IV IV IV IV I,IV IV I,II,IV IV IV IV IV IV IV IV IV IV IV IV I,IV IV I,II,IV IV IV 2 1 3 Miaromima cornucopia superbaWestermannia Iragaodes nobilis contrariata Negeta abbreviata Negeta contrariata Negeta contrariata Melanographia flexilineata tympanistes Alcanola obscurataAlcanola minuscula Nola basinigra cretacea Nola Nola analis Nola lucidalis Nola fasciata brunellus mansueta angulata Paracrama dulcissima Paracrama Earias clorana roseifera Earias Earias insulana Maurilia iconica razowskii Tortriciforma Didigua viridifascia Xenochroa annae Xenochroa xanthia Diehlea tumida Chloriola gratissima viridimacula Gelastocera tortriciformis argenteaAriolica Gariga mirabilis Membranola lampang Westermanniinae Westermanniinae Westermanniinae Westermanniinae Westermanniinae Westermanniinae Westermanniinae Nolinae Nolinae Nolinae Nolinae Nolinae NolinaeNolinae Nolinae unknown noline Nolinae Nolinae Nolinae Nolinae Nolinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Nolinae

Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae

Appendix 45 MALAYSIA JAPAN MALAYSIA MALAYSIA THAILAND HONG KONG TS THAILAND TS THAILAND TS MALAYSIA TS COSTA RICA TS COSTA RICA TG HONG KONG TG/TS GERMANY − − − − − XTSTHAILAND XX MALAYSIA TSX MALAYSIA MALAYSIA X TGX MALAYSIA X HONG KONG X MALAYSIA XAUSTRALIA MALAYSIA XX HONG KONG MALAYSIA −− − − − −− − −− −− −− − − − − − − − −− −−− −−− XXX X XX XXX HQ006738 HQ006646 HQ007015 HQ006559 TG MALAYSIA − − − − − XXXXXX XXXXX XXX XXXXXX XXXXXX XXXXXX JN401356 JN401468 JN400930 JN401570 JN401879 JN401776 JN401040 JN401672 MALAYSIA HQ006255 HQ006350 HQ006767 HQ006438 HQ006674 HQ006585 HQ006957 HQ006507 TG RICA COSTA − − − − − − − −− XXXXXXXXX X XXXXXXXXXXTSJAPAN X XXXXXXXXXXMALAYSIA X XXXXXXXXXXJAPAN XXXXXXXX XXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX X XXXXXXXXX XXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXXXUSA XXXXX XX XXXXXXXXXX XXXXXX XXXXXXXXX XXXXXXXXXX X XXXXXXXXX X X X X X XXXXXXXXX TG X X HONG KONG X X X X X X X X X HONG KONG X HONG KONG JN401235 JN401119 JN401353JN401238 JN401465 JN400928 JN401567 JN401874 JN401773 JN401037 JN401669 GHANA GU828600 GU828399 GU828934 GU829229 GU829496 GU829754 GU830611 GU830312 GU828101 GU829989 TG FINLAND HQ006235 HQ006938 HQ006330 HQ006422 HQ006843 HQ006490GU828612 HQ006746 HQ006654 GU828410 HQ007021 HQ006567 GU828946 TG GU829238 SUMATRA GU829506 GU829760 GU830621HQ006200 GU830323 GU828113 GU830000 HQ006904 TG HQ006296 FINLAND HQ006389 HQ006808 HQ006465 HQ006713 HQ006621 HQ006993 HQ006158 HQ006226 HQ006929 HQ006321 HQ006413 HQ006834 RZ128 MM00107 RZ491 RZ497 RZ518 RZ566 RZ478 RZ643 RZ520 RZ646 RZ490 RZ529 RZ489 RZ579 RZ524 RZ555 RZ639 RZ640 RZ64 RZ528 RZ481 MM00135 RZ501 RZ539 RZ477 RZ502 RZ519 RZ496 RZ527 RZ532 RZ486 RZ10 RZ147 RZ54 RZ548 RZ416 RZ499 RZ31 IV I,IV,V IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV I,IV IV IV I,IV IV IV IV IV IV IV IV IV IV I,II,V II,V I,II,V V II,V IV I,IV 2 1 2 1 3 Tympanistes fusimargo prasinanaPseudoips prasinanaPseudoips Clethrophora distincta Hylophilodes orientalis Chloroplaga sp. Chloroplaga nygmia Sinna extrema Sinna floralis Siglophora ferreilutea Chandica quadripennis Cossedia hyriodes ceylusalisLabanda Aquis orbicularis Tathothripa continua donans Blenina quinaria Blenina Dilophothripa chrysorrhaea nomimus Egchiretes degenerana Nycteola sinuosa indica Nycteola nilotica Garella ruficirra Giaura robusta Giaura nigrilineata Giaura multipunctata Giaura niveidisca verna Pardasena clopaea Etanna breviusculaEtanna breviusculaEtanna breviusculaEtanna Dyops chromatophila melanis Pseudoarcte modesta schneiderianaPararcte kala Belciana Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Chloephorinae Dyopsinae Dyopsinae Dyopsinae Dyopsinae Dyopsinae

Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Nolidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae

46 Appendix FRENCH GUIANA COSTA RICA COSTA RICA SARDINIA TS ECUADOR TS COSTA RICA TG/TS INDONESIA − − − − − − XTSUSA XUSA XTSTHAILAND X GUATEMALA XTGUSA XTSUSA JN401678 TG/TS FINLAND JN401680 TG INDIA JN401674 TS MALAYSIA − −− − − − − − − −− −− XXX XX JN401887 JN401784 JN401888 JN401785 JN401047 GU830640 GU830344HQ006669 GU828135 GU830023 HQ006580 HQ006952 TG/TS HQ006502 FINLAND TG FINLAND GU830690 GU830406HQ006664 GU828191 GU830088 HQ006576 HQ006947 TG/TS FINLAND GU830792 GU830535 GU828308 GU830224 SARDINIA − − − − − − − − JN400931 JN401571 JN401880 JN401777 JN401041 − XX −−−− JN401363 JN401474 JN400935 JN401577 JN401886 JN401783 JN401046 JN401677 RICA COSTA −− − XXXXXXXX XXXXXXXXX XXXXX XXXXXXX X XXXXXXXX XXXXXXXXXXTSMALAYSIA XXXXXXXX XXXXXXX XXXXXXXX JN401237 JN401121 JN401355JN401236 JN401467 JN400929 JN401120 JN401569 JN401354 JN401877 JN401775 JN401466 JN401039 JN400988 JN401671 JN401568JN401246 TS JN401875 JN401774 MALAYSIA JN401128 JN401038JN401247 JN401670 JN401364JN401249 JN401129 TS JN401475 RICA COSTA JN400982 JN401248 JN401131 JN401366 JN401130 JN401477 JN401365 JN400937 JN401476 JN401579 JN400936JN401242 JN401888 JN401578 JN401787 JN401125 JN401889 JN401786JN401241 JN401360 JN401048JN401240 JN401679 JN401124 JN401471 JN400984 TG JN401123 JN401359 JN401574 MALAYSIA JN401358 JN401470 JN401883JN401244 JN401780 JN400978 JN401469 JN401043 JN401573JN401245 JN400932 JN401127 JN401675 JN401882 JN401572 JN401779 JN401239 JN401362 JN401881 JN401778 JN401122 JN401473 MALAYSIA JN401042 JN400934 JN401673 JN401357 JN401576 TS JN401885 JN401782 MALAYSIA JN401045 JN401243 JN401126JN401243 JN401361 JN401472 JN400933 JN401575 JN401884 JN401781 JN401044 JN401676RICA COSTA GU828636HQ006152 GU828434 GU828970GU828703 HQ006859 GU829256 HQ006250GU828701 GU828498 GU829528 HQ006345 GU829026 GU828496 HQ006761 GU829315 GU829024GU828548 GU829579 GU829313 GU829818 GU828350 GU830691 GU829577 GU828893 GU829817 GU830407 GU830689 GU828192 GU829193 GU830089 GU830405 GU829455 GU828190 GU830087 GU829728GU828702 GU830579 TG/TS GU830270 FINLAND HQ006147 FINLAND GU828497 GU828059 GU829939 GU829025GU828617 HQ006854 TG GU829314 HQ006245 GU828415 USA GU829578 HQ006340 GU828952GU828844 HQ006756 GU829243 GU929808 GU829512 GU829145 GU829763 GU830627 GU829412 GU830327 GU829693 GU828118 GU830006 TG GREECE GU828660 GU828458GU828667 GU828991 GU828465 GU829275 GU828998HQ006157 GU829546 GU829281 GU829787HQ006148 HQ006863 GU830657 GU830366 GU829552 GU828157 GU829793 HQ006254 GU830047 HQ006855 GU830663 GU830373 HQ006349 TG HQ006246GU828666 GU828164 HQ006766 FINLAND GU830054 HQ006341 HQ006437 GU828464 HQ006673 HQ006757 TS GU828997 HQ006432 HQ006584 FINLAND HQ006665 HQ006956 GU829280 HQ006506 HQ006577 GU829551 HQ006948 HQ006498 GU829792 GU830662 TS GU830372 FINLAND GU828163 FINLAND GU830053 TG FINLAND RZ459 RZ384 RZ636 RZ552 RZ281 MM00328 MM05132 MM04601 MM04543 MM09267 CWM-94-0372 RZ87 RZ388 MM04583 MM09893 MM00152 RZ50 MM09894 RZ382 RZ395 RZ351 RZ595 RZ463 RZ464 RZ472 RZ621 RZ474 RZ482 MM01162 MM01542 RZ596 MM00005 MM06745 MM01529 RZ617 RZ618 RZ597 V II,V II,V V V II,V I,II,IV,V I,V I,V I,IV,V II,V I,II,V II,V II,V I,II,V I,V I,IV,V II,V I,II,V II,V II,V II,V V II,IV,V II,IV,V II,IV,V IV,V IV,V IV,V I,II,IV,V I,V V I,V I,V I,V V V . sp Belciana biformisBelciana Cyclodes omma Ceroctena amynta Sosxetra grata gamma Autographa Abrostola tripartita Deltote uncula umbratica abruptRaphia meeki Eucocytia Antitrisuloides catocalina coenobita Panthea trabealisEmmelia lucidaAcontia octo Amyna albago pavo Dyrzela plagiata leena Encruphion caeruleifera Vespola temperataParangitia mosaica Parangitia Diopa corone Concana mundissima Concana lecta Concana permixta Amphipyra perflua nubeculosaBrachionycha quadrifasciata Flammona tenebrata Panemeria ligustri Acronicta rumicis Cerma cerintha Comachara cadburyi Acronicta americana Dyopsinae Dyopsinae Dyopsinae Dyopsinae Plusiinae Plusiinae Eustroniinae Dilobinae Raphiinae Pantheinae Pantheinae Pantheinae Pantheinae Acontiinae Bagisarinae Bagisarinae Bagisarinae Bagisarinae Bagisarinae Bagisarinae Bagisarinae Bagisarinae Bagisarinae Bagisarinae Bagisarinae Bagisarinae Amphipyrinae Amphipyrinae Metoponiinae Metoponiinae Acronictinae Acronictinae Acronictinae Acronictinae Acronictinae

Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae

Appendix 47 MALAYSIA INDONESIA − − X TG MALAYSIA XUSA XTSUSA XX MALAYSIA MALAYSIA JN401681 TS JAPAN − − − − − GU828061 GU829941 TG USA −− − GU830581 HQ006703 HQ006611 HQ006985 HQ006532 HONG KONG − − XX XX − GU829326 GU829590 GU829827 GU830702 GU830418 GU828202 GU830100 TG FINLAND − XXXXXXXX XXXXXXXXXXTSUSA XXXXXXXX XXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXX XXXX JN401250 JN401132 JN401367JN401251 JN401478 JN400976 JN401133 JN401580 JN401368 JN401891 JN401788 JN401479 JN400938 JN401581 JN401892 JN401789 JN401049 JN401682 RICA COSTA GU828820 GU929788 GU829125 GU829400GU828550 GU829674 GU829892 GU828352 GU830773 GU828895GU828712 GU830519 GU828289 GU829194 GU830201 GU828507 GU829457 TG/TS GU829034GU828708 AUSTRALIA GU829324 GU828503 GU829588 GU829031 GU829825 GU830700 GU829320HQ006190 GU830416 GU829584 GU828200 GU830098 GU829822 HQ006894 GU830696 HQ006286GU828714 GU830412 GU828196 HQ006380 GU830094HQ006153 GU828509 FINLAND HQ006798 GU828571 HQ006860 HQ006251GU828661 GU828372 FINLAND HQ006346 GU828913GU828860 GU828459 HQ006762 GU829206 GU828992GU828705 HQ006434 GU929822 HQ006670 GU829475 GU829276 GU829163 GU829738 GU828500 HQ006581 GU830591 GU829547 HQ006953 GU829425 GU829028 HQ006503 GU829788 GU830285 GU830658 GU829709 GU828076 GU829317 GU829960 GU829911 GU830367 GU830807 GU829581 GU828158 GU830048 GU829820 GU830552 FINLAND GU830693 GU828320 TG GU830238 GU830409 TANZANIA GU828194 FINLAND TG GU830091 USA TG FINLAND MF-05-0053 RZ619 RZ620 RZ616 MM07669 RZ277 RZ511 CWM-95-0471 RZ341 MM05114 RZ517 MM04919 RZ523 RZ545 RZ25 RZ14 MM05153 MM01170 RR-98-0914 MM04752 MM01651 I,II,V V V V I,II,V II,V V I,II II,V I,V V I,V V V I,II,V V I,V I,V I,IV,V I,V I,II,IV,V . . sp sp Harrisimemna trisignata hebraeicum Agriopodes fallax Periscepta polysticta Condica illecta Condica vecors Hemicephalis alesa umbraPyrrhia diehli Chytonix raptricula Stenoloba futii Ecpatia longinquua Ecpatia aureata Tiracola polyodon Actinotia octogenaria Diaphone crenata Apamea Ufeus faunas Noctua fimbriata Acronictinae Acronictinae Acronictinae Agaristinae Aediinae Condicinae Condicinae Heliothinae unassigned Bryophilinae Bryophilinae unassigned unassigned Noctuinae Noctuinae Noctuinae Noctuinae Noctuinae Noctuinae Noctuinae

Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae