Trophic Relationships of Prey Species (Etrumeus Whiteheadi

Total Page:16

File Type:pdf, Size:1020Kb

Trophic Relationships of Prey Species (Etrumeus Whiteheadi TROPHIC RELATIONSHIPS OF PREY SPECIES (ETRUMEUS WHITEHEADI, MYCTOPHIDAE AND SEPIA) AND THEIR PREDATORS (MERLUCCIUS CAPENSIS, MERLUCCIUS PARADOXUS, LOPHIUS VOMERINUS AND TRACHURUS CAPENSIS) OFF NAMIBIA A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE OF THE UNIVERSITY OF NAMIBIA BY VICTORIA NDINELAGO ERASMUS: 200405004 FEBRUARY 2015 Main supervisor: Dr. E. Julies (University of Namibia) Co-supervisor: Dr. J.A Iitembu (Ministry of Fisheries and Marine Resources) ii Abstract This study was conducted in Namibian waters that forms part of the Benguela current ecosystem. This upwelling-driven ecosystem supports high abundances of fish species, some of which have been the backbone of Namibian commercial fishery for decades. The study of the trophic relationships of prey species of commercial fish is important, as it improves understanding of the ecology of their predators and considers multi-species interactions in fisheries management. The objectives of this study were to assess the trophic levels of Sepia spp, Etrumeus whiteheadi and Myctophidae, to determine the trophic relationships among these species, to identify their potential trophic roles in the marine ecosystem and to determine the likely contributions of these prey species to the diet of Merluccius capensis, Merluccius paradoxus, Lophius vomerinus and Trachurus capensis, using stable isotopes. Muscle tissues were sampled from E. whiteheadi, Myctophidae, Sepia spp, M. capensis, M. paradoxus, L. vomerinus and T. capensis. Isotope analyses revealed that all the prey species analysed are on the same trophic level except for L. hectoris that fed at a slightly higher trophic level. δ15N values of prey species varied among all prey species. Symbolophorus boops had the most depleted δ15N, while L. hectoris had the most enriched δ15N values. Significant differences were noted in δ13C', with D. hudsoni having the most depleted and E. whiteheadi the most enriched δ13C'. Isotope-based population metrics showed over lapping of trophic niches of all species, with S.boops having a significantly wider trophic niche. All prey species analysed are important in the ecosystem since they all contributed to the diet of the four predators, although their contribution varied. A Bayesian isotope mixing iii model showed no significant difference in relative contribution of prey an indication that prey availability is possibly a greater determining factor of prey dietary contribution. Etrumeus whiteheadi was a dominant prey item in the diets of the predators with an exception of that of M. paradoxus. This study contributes towards understanding of prey trophic interactions, which can aid the implementation of an ecosystem approach to fisheries management in Namibia. Key words: stable isotopes, trophic niche, trophic relationships, trophic level, prey species, carbon, nitrogen, Etrumeus whiteheadi, Myctophidae, Sepia spp. iv Table of Contents Abstract..........................................................................................................................................ii Table of Contents ......................................................................................................................... iv List of tables................................................................................................................................viii List of Figures............................................................................................................................... ix Abbreviations ..............................................................................................................................xii Dedication .................................................................................................................................... xv Declarations ................................................................................................................................ xvi Chapter 1 ....................................................................................................................................... 1 Introduction................................................................................................................................... 1 1.1 Background .........................................................................................................1 1.2 Orientation of the study ....................................................................................7 1.3 Statement of problem........................................................................................8 1.4 Objectives of the study ....................................................................................10 1.5 Hypotheses of the study ..................................................................................10 1.6 Significance of the study .................................................................................11 Chapter 2 ..................................................................................................................................... 14 Literature review......................................................................................................................... 14 2.1 The Benguela current marine ecosystem ...........................................................14 2.2 Trophic relationships ...........................................................................................16 2.3 Prey species under study......................................................................................20 2.3.1 Etrumeus whiteheadi ......................................................................................21 2.3.2 Myctophidae...................................................................................................22 v 2.3.3 Sepia spp. ........................................................................................................26 2.4 Predators under study..........................................................................................28 2.4.1 Merluccius paradoxus and Merluccius capensis ..........................................28 2.4.2 Trachurus capensis.........................................................................................30 2.4.3 Lophius vomerinus...........................................................................................31 Figure 9: Lophius vomerinus (photo: Gamatham, 2011) ............................................32 2.5 Methods of assessing trophic relationships ........................................................32 2.5.1 Stomach content analysis.................................................................................32 2.5.2 Behavioural studies in the laboratory ..............................................................34 2.5.3 Compound specific isotopes ............................................................................34 2.5.4 Fatty acid signature..........................................................................................35 2.5.5 Immunological methods ..................................................................................36 2.5.6 DNA identification techniques ........................................................................37 2.5.7 Stable isotopes ................................................................................................38 2.5.7.1 What is a stable isotope? ............................................................................38 2.5.8 Use of stable isotopes in feeding ecology studies .........................................38 Chapter 3 ..................................................................................................................................... 50 Materials and Methods............................................................................................................... 50 3.1 Study area .............................................................................................................50 3.2 Sampling.................................................................................................................52 3.2.1 Sampling procedure .........................................................................................52 3.2. 2 Sampling Techniques......................................................................................54 3.2.3 Collection of predator samples ........................................................................55 vi 3.2.4 Preparations of samples ...................................................................................57 3.3 Stable isotope analysis............................................................................................58 3.4 Data Analysis ........................................................................................................60 3.4.1 Trophic level calculations................................................................................60 3.4.2 Trophic relationship of the prey species looking at δ15N and δ13C values ......61 3.4.3 Trophic niche calculations ............................................................................62 3.4.4 Dietary contributions of different prey species to the diets of commercial species.......................................................................................................................63 Chapter 4 ..................................................................................................................................... 65 Results .........................................................................................................................................
Recommended publications
  • For This Impact Assessment. 79 Appendix 5
    ENVIRONMENTAL IMPACT ASSESSMENT REPORT Dredging of marine phosphates from ML 170 FISHERIES, MAMMALS AND SEABIRDS SPECIALIST STUDY SPECIALIST STUDY NO. 1A: Marine Benthic Specialist Study for a Proposed Development of Phosphate Deposits in the Sandpiper Phosphate Licence Area off the Coast of Central Namibia Capricorn Fisheries Monitoring Project: The Dredging of marine phosphate enriched sediments from Mining Licence Area No. 170 Date: December 2011 Prepared for: Namibian Marine Phosphate (Pty) Ltd. Prepared by: M. J. Smith (CapFish) D.W. Japp (CapFish) Dr T. Robinson (Stellenbosch University) Declaration: I, D.W. Japp of Capricorn Fisheries Monitoring, do not have and will not have any vested interest (either business, financial, personal or other) in the proposed activity proceeding other than remuneration for work performed in terms of the South African Environmental Impact Assessment Regulations, 2010 Draft Report Namibian Marine Phosphate (Pty) Ltd. Page 1 ENVIRONMENTAL IMPACT ASSESSMENT REPORT Dredging of marine phosphates from ML 170 FISHERIES, MAMMALS AND SEABIRDS SPECIALIST STUDY A broad overview of Namibia’s marine resources characteristics only in the immediate target and commercial fisheries is presented. Five mining sites is expected. Any expansion of the primary impacts of the proposed Sandpiper proposed dredging will significantly alter the phosphate mining are suggested. These are: the potential to impact on the broader ecosystem. likely impact of mining on commercial fisheries; There is an obvious impact in the immediate area the likely impact of mining on the main of the mining which is serious and likely to be commercial fish species; the likely impact of permanent (or at least > 20 years) – that is the mining on the recruitment of commercially physical removal and destruction of substrate.
    [Show full text]
  • Cephalopoda: Sepiidae) Ott the South Coast of Southern Africa *
    S. Afr. I. Zool. 1993,28(2) 99 Biological and ecological aspects of the distribution of Sepia australis (Cephalopoda: Sepiidae) otT the south coast of southern Africa * Martina A. Compagno Roeleveld ** South African Museum, P.O. Box 61, Cape Town, 8000 Republic of South Africa M.R. Lipinski *** Zoology Department, University of Cape Town, Rondebosch, 7700 South Africa Michelle G. van der Merwe South African Museum, P.O. Box 61, Cape Town, 8000 South Africa Received 9 June 1992; accepted 6 October 1992 During the South Coast Biomass Survey in 1988, 49,4 kg (6336 individuals) of Sepia australis were caught between Cape Agulhas and Algoa Bay. A biomass index of 803 t of S. australis was calculated for the area at that time. Largest catches were taken between about 20"E and 22"E, in waters of 10-11°C and 50-150 m depth. The overall sex ratio was 2M: 3F and mean individual mass was 6,47 9 for males and 8,67 9 for females. The largest animals were a mature male of 58 mm mantle length and a maturing female of 65 mm mantle length. Most of the animals trawled off the South Coast were maturing or fully mature in early winter and very few immature animals were found. Differences in mean mantle length and maturity stage of the animals in different areas were found to be correlated most strongly with water temperature but also with depth and longitude. Largest numbers and mean sizes of mature animals caught suggest that the main spawning grounds off the South Coast may be in deeper water on the western side of the Agulhas Bank.
    [Show full text]
  • Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
    Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K.
    [Show full text]
  • Surveys of the Fish Resources of Namibia
    ANNEX II RECORDS OF FISHING STATIONS R/V "DR. FRIDTJOF NANSEN" SURVEY:1991401 STATION: 501 DATE :27/01/1991 GEAR TYPE: BT NO: 1 POSITION:Lat S 28°40.02 R/V "DR. FRIDTJOF NANSEN" SURVEY:1991401 STATION: 505 start stop duration Lon E 16°13.98 DATE :27/01/1991 GEAR TYPE: BT NO: 1 POSITION:Lat S 29°22.98 TIME :07:00:00 07:30:00 30.0 (min) Purpose : 3 start stop duration Lon E 14°51.00 LOG : 3992.20 3993.40 1.5 Region : 1 TIME :18:20:00 18:30:00 10.0 (min) Purpose : 3 FDEPTH: 81 78 Gear cond.: 0 LOG : 4073.60 4073.80 0.2 Region : 1 BDEPTH: 81 78 Validity : 0 FDEPTH: 237 235 Gear cond.: 8 Towing dir: 138° Wire out : 400 m Speed : 3.0 kn BDEPTH: 237 235 Validity : 9 Sorted : 70 Total catch: 69.80 Catch/hour: 139.60 Towing dir: 248° Wire out : 850 m Speed : 0.3 kn Sorted : 58 Total catch: 58.00 Catch/hour: 348.00 SPECIES CATCH/HOUR % OF TOT. C SAMP weight numbers SPECIES CATCH/HOUR % OF TOT. C SAMP Chelidonichthys capensis 67.80 360 48.57 weight numbers Merluccius capensis, female 23.00 122 16.48 2 Lepidopus caudatus 159.60 1752 45.86 Krill 20.00 0 14.33 Helicolenus dactylopterus 67.80 636 19.48 18 Callorhinchus capensis 8.60 10 6.16 Merluccius capensis, female 58.20 24 16.72 17 Jasus lalandii 5.00 46 3.58 Zeus capensis 37.80 252 10.86 Merluccius capensis, male 4.60 24 3.30 1 Callorhinchus capensis 15.00 6 4.31 Austroglossus microlepis 4.20 26 3.01 Todarodes sagittatus 6.60 6 1.90 Sufflogobius bibarbatus 3.20 450 2.29 Callanthias legras 1.80 12 0.52 Merluccius capensis, juvenile 3.20 150 2.29 3 Holohalaelurus regani 1.20 6 0.34 Trachurus capensis 0.00 2 0.00 __________ ________ Etrumeus whiteheadi 0.00 42 0.00 Total 348.00 100.00 Engraulis capensis 0.00 6 0.00 __________ ________ Total 139.60 100.00 R/V "DR.
    [Show full text]
  • Marine Faunal Assessment Concessions 2C-5C
    BASIC ASSESSMENT FOR A PROSPECTING RIGHT APPLICATION FOR OFFSHORE SEA CONCESSION 6C WEST COAST, SOUTH AFRICA Marine Faunal Assessment Prepared for: On behalf of: De Beers Consolidated Mines Limited July 2018 BASIC ASSESSMENT FOR A PROSPECTING RIGHT APPLICATION FOR OFFSHORE SEA CONCESSION 6C WEST COAST, SOUTH AFRICA MARINE FAUNAL ASSESSMENT Prepared for SLR Consulting (South Africa) (Pty) Ltd On behalf of: De Beers Consolidated Mines Limited Prepared by Andrea Pulfrich Pisces Environmental Services (Pty) Ltd July 2018 Contact Details: Andrea Pulfrich Pisces Environmental Services PO Box 302, McGregor 6708, South Africa, Tel: +27 21 782 9553 E-mail: [email protected] Website: www.pisces.co.za IMPACTS ON MARINE FAUNA – Proposed Offshore Prospecting Operations in Sea Concession 6C, West Coast, South Africa TABLE OF CONTENTS 1. GENERAL INTRODUCTION ................................................................................ 1 1.1. Scope of Work ................................................................................... 1 1.2. Approach to the Study.......................................................................... 2 2. DESCRIPTION OF THE PROPOSED PROJECT ............................................................ 3 2.1. Geophysical Surveys ............................................................................ 3 2.2. Exploration Sampling ........................................................................... 4 2.2.1 Coring (vibrocoring) .................................................................. 4 2.2.2
    [Show full text]
  • First Study on the Ecology of Sepia Australis in the Southern Benguela Ecosystem
    THE VELIGER © CMS, Inc., 1992 The Veliger 35(4):384-395 (October 1, 1992) First Study on the Ecology of Sepia australis in the Southern Benguela Ecosystem by M. R. LIPINSKl 1 Zoology Depanment. Cni\ersity of Cape Town, Ronclebosch 7700. South Africa .\1. A. COMPAGNO ROELEVELD South African .\luseurn. P.O. Box 61, Cape Town 8000, South Africa and C. J. AUGUSTYN Sea Fisheries Research Institute, Private Bag X2, Roggebaai 8012, South .-\frica Abstract. Sepia austra/1s is most abundant in the eastern South :\tlantic between Luderitz and St. Helena Bay (about 27-33°5 in 100-200 rn). There seerns to be no link between the variation in abundance of S. australls and that of its most important predator, the shallow-water Cape hake, Merluccius capensls. The variations in abundance of S. austra/ls and one of its rnost important prey species, the stomat0pod crustacean Pterygosquilla armata caper/j/s, sho\,· simultaneous changes, suggesting that both species respond to the same environmemal factors. I\lantle length. total weight. gonad \,·eight, and sex ratio of Sepia australi, \·ary from year to year ancl by region off the west coast of southern .'\frica ..-\nimals from the south coast (eastward of Cape Point) were very different: length-\,·eight relationships \,·ere found tO be sirnilar in slope and intercept for both f sexes and within each sex bet\,·een years and regions of the west coast, but different for the south coast. INTRODUCTIO'.\ dorsal rnantle length (.\!L) slightly above 80 mm. Little is known about this species other than its systematic po­ Sepia auslrali, is one of the most common sepiids in the sition and distribution range; its importance in the eco­ Benguela ecosystem of southern Africa (in this instance system is only now being assessed (LIPINSKI et al., 1991, from Luderitz to Agulhas Bank, Figure 1; for definitions and unpublished data; Roeleveld et al., unpublished data).
    [Show full text]
  • Biogeographic Atlas of the Southern Ocean
    Census of Antarctic Marine Life SCAR-Marine Biodiversity Information Network BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN CHAPTER 7. BIOGEOGRAPHIC PATTERNS OF FISH. Duhamel G., Hulley P.-A, Causse R., Koubbi P., Vacchi M., Pruvost P., Vigetta S., Irisson J.-O., Mormède S., Belchier M., Dettai A., Detrich H.W., Gutt J., Jones C.D., Kock K.-H., Lopez Abellan L.J., Van de Putte A.P., 2014. In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 328-362. EDITED BY: Claude DE BROYER & Philippe KOUBBI (chief editors) with Huw GRIFFITHS, Ben RAYMOND, Cédric d’UDEKEM d’ACOZ, Anton VAN DE PUTTE, Bruno DANIS, Bruno DAVID, Susie GRANT, Julian GUTT, Christoph HELD, Graham HOSIE, Falk HUETTMANN, Alexandra POST & Yan ROPERT-COUDERT SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN The “Biogeographic Atlas of the Southern Ocean” is a legacy of the International Polar Year 2007-2009 (www.ipy.org) and of the Census of Marine Life 2000-2010 (www.coml.org), contributed by the Census of Antarctic Marine Life (www.caml.aq) and the SCAR Marine Biodiversity Information Network (www.scarmarbin.be; www.biodiversity.aq). The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosys- tem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems). Edited by: Claude De Broyer (Royal Belgian Institute
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Phylum: Mollusca Class: Cephalopoda
    PHYLUM: MOLLUSCA CLASS: CEPHALOPODA Authors Rob Leslie1 and Marek Lipinski2 Citation Leslie RW and Lipinski MR. 2018. Phylum Mollusca – Class Cephalopoda In: Atkinson LJ and Sink KJ (eds) Field Guide to the Ofshore Marine Invertebrates of South Africa, Malachite Marketing and Media, Pretoria, pp. 321-391. 1 South African Department of Agriculture, Forestry and Fisheries, Cape Town 2 Ichthyology Department, Rhodes University, Grahamstown, South Africa 321 Phylum: MOLLUSCA Class: Cephalopoda Argonauts, octopods, cuttlefish and squids Introduction to the Class Cephalopoda Cephalopods are among the most complex and The relative length of the arm pairs, an important advanced invertebrates. They are distinguished from identiication character, is generally expressed as the rest of the Phylum Mollusca by the presence an arm formula, listing the arms from longest to of circumoral (around the mouth) appendages shortest pair: e.g. III≥II>IV>I indicates that the two commonly referred to as arms and tentacles. lateral arm pairs (Arms II and III) are of similar length Cephalopods irst appeared in the Upper Cambrian, and are longer than the ventral pair (Arms IV). The over 500 million years ago, but most of those dorsal pair (Arms I) is the shortest. ancestral lineages went extinct. Only the nautiluses (Subclass Nautiloidea) survived past the Silurian (400 Order Vampyromorpha (Vampire squids) million years ago) and are today represented by only This order contains a single species. Body sac-like, two surviving genera. All other living cephalopods black, gelatinous with one pair (two in juveniles) of belong to the Subclass Coleoidea that irst appeared paddle-like ins on mantle and a pair of large light in the late Palaeozoic (400-350 million years ago).
    [Show full text]
  • Recent Cephalopoda Primary Types
    Ver. 2 March 2017 RECENT CEPHALOPOD PRIMARY TYPE SPECIMENS: A SEARCHING TOOL Compiled by Michael J. Sweeney Introduction. This document was first initiated for my personal use as a means to easily find data associated with the ever growing number of Recent cephalopod primary types. (Secondary types (paratypes, etc) are not included due to the large number of specimens involved.) With the excellent resources of the National Museum of Natural History, Smithsonian Institution and the help of many colleagues, it grew in size and became a resource to share with others. Along the way, several papers were published that addressed some of the problems that were impeding research in cephalopod taxonomy. A common theme in each paper was the need to locate and examine types when publishing taxonomic descriptions; see Voss (1977:575), Okutani (2005:46), Norman and Hochberg (2005b:147). These publications gave me the impetus to revive the project and make it readily available. I would like to thank the many individuals who assisted me with their time and knowledge, especially Clyde Roper, Mike Vecchione, Eric Hochberg and Mandy Reid. Purpose. This document should be used as an aid for finding the location of types, type names, data, and their publication citation. It is not to be used as an authority in itself or to be cited as such. The lists below will change over time as more research is published and ambiguous names are resolved. It is only a search aid and data from this document should be independently verified prior to publication. My hope is that this document will make research easier and faster for the user.
    [Show full text]
  • Environmental Management Programme for an Exploration Right in the Northern Cape Ultra-Deep Licence Area in the Orange Basin, West Coast of South Africa
    ENVIRONMENTAL MANAGEMENT PROGRAMME FOR AN EXPLORATION RIGHT IN THE NORTHERN CAPE ULTRA-DEEP LICENCE AREA IN THE ORANGE BASIN, WEST COAST OF SOUTH AFRICA Prepared for: Petroleum Agency South Africa On behalf of: OK Energy Limited Prepared by: CCA Environmental (Pty) Ltd OE01SS/EMP/1 APRIL 2014 ENVIRONMENTAL MANAGEMENT PROGRAMME FOR AN EXPLORATION RIGHT IN THE NORTHERN CAPE ULTRA-DEEP LICENCE AREA IN THE ORANGE BASIN, WEST COAST OF SOUTH AFRICA Prepared for: Petroleum Agency South Africa Tygerpoort Building, 7 Mispel Street BELLVILLE, 7779 On behalf of: OK Energy Limited 3229 N Peebly Midwest City, Oklahoma UNITED STATES, 73110 Prepared by: CCA Environmental (Pty) Ltd Contact person: Eloise Costandius Unit 35 Roeland Square, Drury Lane CAPE TOWN, 8001 Tel: (021) 461 1118 / 9 Fax (021) 461 1120 E-mail: [email protected] EO01SS/EMP/1 APRIL 2014 OK Energy: Proposed exploration programme in the Northern Cape Ultra-deep Licence Area, West Coast of South Africa EXPERTISE OF ENVIRONMENTAL ASSESSMENT PRACTITIONER NAME Jonathan Crowther RESPONSIBILITY ON PROJECT Project leader and quality control. DEGREE B.Sc. Hons (Geol.), M.Sc. (Env. Sci.) PROFESSIONAL REGISTRATION Pr.Sci.Nat., CEAPSA EXPERIENCE IN YEARS 26 Jonathan Crowther has been an environmental consultant since 1988 and is currently the Managing Director of CCA Environmental (Pty) Ltd. He has expertise in a wide range of environmental disciplines, including Environmental Impact Assessments (EIA), Environmental Management Plans / Programmes, Environmental Planning & Review, Environmental EXPERIENCE Control Officer, Public Consultation & Facilitation. He has project managed a large number of offshore oil and gas EIAs for various exploration and production activities in South Africa and Namibia.
    [Show full text]
  • Note to Users
    NOTE TO USERS This reproduction is the best copy available. The naîural history of ButhypoZyppus arcticus (Prosch), a deep-sea octopus. by James B. Wood Submitted in partial fdfdhent of the requirements for the degree of Doctor of PhiIosophy DaIhousie University Hahhq Nova Scotia April2000 O Copyright by James B. Wood, 2000 National Library Bibliothèque nationale I+I,canada du Canada Acquisitions and Acquisitions et Bibiiographic Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON K1A ON4 Ottawa ON KIA ON4 Canada Canada Your file Votre r8fërence Our fi& Notre raférence The author has granted a non- L'auteur a accordé une licence non exclusive Licence allowing the exclusive permettant à la National Library of Canada to Bibliothéque nationale du Canada de reproduce, Ioan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfom, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/^, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts f?om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Dedicated to Deborah and David Wood and In memory of Mi. J. Gregory Table of contents List of figures and tables ............................................... vü Abstract ............................................................ xi List of abbreviations and symbois wd..................................... W Achowledgments ................................................... xiii Prefàce ........................................................... xiv Chapter1.Introduction ................................................
    [Show full text]