Robert Boyle1

Total Page:16

File Type:pdf, Size:1020Kb

Load more

1 Primary Source 8.5 ROBERT BOYLE1 Robert Boyle (1627–1673), the fourteenth child of the Earl of Cork, spent a majority of his life conducting scientific research, especially in chemistry and physics. He was a founding member of the Royal Society (1663), an early and particularly influential learned society. Using an air pump, he performed countless experiments on the nature of air and gasses. He is primarily known for the discovery of his namesake law, which describes the inversely proportional relationship between pressure and volume of any gas (assuming constant temperature). The passage below is taken from a public lecture by Thomas Edward Thorpe (1845–1925), a British chemist. Click here for a link to the text. The last experiment that Boyle describes is one of the most important and striking in the whole series, since by means of it he demonstrated how dependent the boiling point of a liquid upon the atmospheric pressure is. Having boiled some water “a pretty while that by the heat it might be freed from the latitant air,” he placed it, whilst still hot, within the receiver, when, on exhaustion, it again began to boil “as if it had stood over a very quick fire. .2 Once, when the air had been drawn out, the liquor did, upon a single exsuction, boil so long with prodigiously vast bubbles that the effervescence lasted almost as long as was requisite for the rehearsing of a Pater Noster.3 “This experiment,” he says, “seems to teach that the air by its stronger or weaker pressure in ay very much modify (as the school men4 speak) divers of the operations of that vehement and tumultuous agitation of the small parts of bodies, wherein the nature of heat seems chiefly, if not solely, to consist.” Such is a very rapid and a very imperfect summary of this great work. I have purposely quoted very largely from it, for I wished to show you, in Boyle’s own words, how wonderfully near much of the philosophy of the seventeenth century is to that which we are too apt to regard as the outcome of the nineteenth. It is impossible to exaggerate the importance of Boyle’s labours; they served to give a marvelous sharpness to the notions of that time concerning the materiality of the air and of the phenomena which depend upon its elasticity. The work exhibits in an eminent degree Boyle’s character as an investigator, his quick perception and receptive mind, his great power of co-ordination, his insight, his logic, his patient care and scrupulous accuracy. It exhibits, too, his weakness; for it must be admitted that it is wanting in that grasp of principle and faculty of generalisation which we see in the work of the illustrious author of the Novum Organum5. It lacks, too, the Forsclierblick6 and power of divination so characteristic of the genius of Newton. But to say 1 Edward Thorpe, Essays in Historical Chemistry (London: Macmillan and Co., 1911), 20-25. 2 Omission in original text. 3 The Lord’s Prayer. 4 Scholastic philosophers of the Middle Ages. 5 A philosophical work on logic written by Francis Bacon. 6 German for “researcher’s eye.” 2 that Boyle is only inferior to Bacon and Newton is to assign him one of the first niches in the Walhalla of the heroes of science. But Boyle’s work, as I have before hinted, was not allowed to go forth unchallenged; and the Elaterists7 were quickly taken to task, on the one hand by one Franciscus Linus8, and on the other by a far more important personage Thomas Hobbes, of Malmesbury. Hobbes has been styled the subtlest dialectician of his time, and a master of precise and luminous language; too frequently, however, that language lost more in elegance than it gained in force. Hobbes, although not a professed Peripatetic9 or a Cartesian, was a very pronounced Plenist.10 He utterly failed to see any virtue in the new philosophy, and the disparagement of the Gresham set, or “the experimentarian philosophers,” as he sneeringly called them, was the chief design of his Dialogus Physicus de Natura Aeris,11 the book in which he attempts to write down Boyle and his work. Boyle hated contention; but he and his friends felt that the new doctrines were at stake. It is unnecessary for me to take up your time by examining Mr. Hobbes’s arguments or Boyle’s refutation of them; it is sufficient to say that Mr. Hobbes, who had, with singular indiscretion, laid himself open by quoting Vespasian’s law, “That it is unlawful to give ill language first but civil and lawful to return it” was taught politeness and much sound philosophy. The world will willingly let the Dialogus die, or remember it only in connection with Boyle’s Examen of it. We cannot, however, so summarily dismiss Franciscus Linus. Linus sets out to prove that the mercury in the Torricellian experiment12 is upheld not by the pressure of the air but by a certain nondescript internal cord; and Boyle undertakes to show that this hypothesis of an internal funiculus,13 which he remarks, with quiet humour, “seems to some more difficult to conceive than any of the phenomena in controversy is to be explained without it, is ‘partly precarious, partly unintelligible, partly insufficient, and besides needless.’” Indeed the matter is scarcely worth mention except for the circumstance that it gave an occasion to Boyle to return to the question, which we have seen had already interested him, of the relation between the volume and the pressure of the air. In the answer to Linus he gives two new experiments touching the measure of the force of the spring of air compressed and dilated. The account of these memorable experiments must be given in Boyle’s own words; “We took a long glass tube, which, by a dexterous hand and the help of a lamp, was in such a manner crooked at the bottom, that the part turned up was almost parallel to the rest of the tube, and the orifice of this shorter leg of the syphon (if I may so call the whole instrument) being hermetically sealed, the length of it was divided into inches (each of which was subdivided into eight parts) by a straight list of paper, which, containing those divisions, was carefully pasted all along it. Then putting in as much quicksilver as served to fill the arch or bended part of the syphon that the mercury standing in a level might reach in one leg to the bottom of the divided paper, and just to the 7 Elaterists, or “elastick philosophers,” like Boyle, accounted for physical phenomena with reference to the elasticity of air. 8 A Jesuit scientist who challenged Newton’s theories and Boyle’s law of gases. 9 Aristotelian. 10 One who believes that all space is full of matter. 11 A work that attacked Boyle and others who were forming a society for scientific research. 12 The rise in the liquid of a tube, as in the barometer, is due to atmospheric pressure. 13 Latin for “slender rope.” 3 same height or horizontal line in the other, we took care, by frequently inclining the tube, so that the air might freely pass from one leg into the other by the sides of the mercury (we took, I say, care), that the air at last included in the shorter cylinder should be of the same laxity with the rest of the air about it. This done, we began to pour quicksilver into the longer leg of the syphon, which, by its weight pressing up that in the shorter leg, did by degrees straighten the included air; and continuing this pouring in of quicksilver till the air in the shorter leg was by condensation reduced to take up but half the space it possessed (I say possessed, not filled) before, we cast out eyes upon the longer leg of the glass, upon which we likewise pasted a slip of paper carefully divided into inches and parts, and we observed, not without delight and satisfaction, that the quicksilver in that longer part of the tube was 29 inches higher than the other. Now this observation does both very well agree with and confirm our hypothesis, will be easily discerned by him that takes notice of what we teacher and Monsieur Pascal and our English friend’s [Mr. Townley’s] experiments prove, that the greater the weight is that leans upon the air, the more forcible is its endeavor of dilution, and consequently its power of resistance (as other springs are stronger then bent by greater weights). For this being considered, it will appear to agree rarely well with the hypothesis, and that as according to it the air in that degree of density, and correspondent measure of resistance, to which the weight of the incumbent atmosphere had brought it, was unable to counter balance and resist the pressure of the mercurial cylinder of about 29 inches, as we are taught by the Torricellian experiment; so here the same air being brought to a degree of density about twice as great as that it had before, obtains a spring twice as strong as formerly. As may appear by its being able to sustain or resist a cylinder of 29 inches in the longer tube, together with the weight of the atmospherical cylinder that leaned upon those 29 inches of mercury; and, as we just now inferred from the Torricellian experiment, was equivalent to them.” At this stage in the experiments the tube broke, and it was only after several mischances that Boyle was able to complete his observations.
Recommended publications
  • History of Hyperbaric Medicine ROBERT S

    History of Hyperbaric Medicine ROBERT S

    American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida How Did We Get From Here History of Hyperbaric Medicine ROBERT S. MICHAELSON, DO, MPH MARCH 14, 2015 To Here 3 History of Hyperbaric Medicine Discuss history of diving Discovery of the atmosphere Five major milestones in the development of hyperbaric medicine Triger’s caisson Eads and Brooklyn Bridge Haldane and staged decompression Rescue of the USS Squalus Donnell and Norton 5 Gourd Breathing About 375 AD Diving as a Profession Salvage Operations From as early as 9th century BC Pay scale based on depth of dive Military Operations Early attempts to bore into hull of ships or attach crude explosives to vessels Confined to shallow waters and for short duration dives Very Hard to be Stealthy and Effective T-1 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida DivingHood by Flavius Vegetius Renatus about 375 AD in Leonardo’s (1452-1519) Design For Swim Fins Epitome Institutionum Rei Militaris Diving Rig of Niccolo Tartaglia Canon Recovery Mid-1600’s about 1551 Probably First Diving Bell Mid-1600’s T-2 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida T-3 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida Diving as a Profession Salvage Operations From as early as 9th century BC Pay scale based on depth on dive Military Operations Early attempts to bore into hull of ships or attach crude explosives to vessels Confined to shallow waters and for short duration dives Very Hard to be Stealthy and Effective Diving Bell-1664 Klingert’s Diving Suit -1797 The Vasa, a Swedish ship sunk within a This equipment is the first to be called mile of her maidenvoyage in 1628.
  • Role and Important of Hydrogen in Plant Metabolism

    Role and Important of Hydrogen in Plant Metabolism

    Kheyrodin and Kheyrodin, World J. Biol. Med. Science Volume 4 (3) 13-20, 2017 Indexed, Abstracted and Cited: Index Copernicus International (Poland), ISRA Journal Impact Factor, International Impact Factor Services (IIFS), Directory of Research Journals Indexing (DRJI), International Institute of Organized Research and Scientific Indexing Services, Cosmos Science Foundation (South-East Asia), International Innovative Journal Impact Factor, Einstein Institute for Scientific Information {EISI}, Directory of Open Access Scholarly Resources, Science Indexing Library (UAE), Swedish Scientific Publication (Sweden), citefactor.org journals indexing, Directory Indexing of International Research Journals World Journal of Biology and Medical Sciences Published by Society for Advancement of Science® ISSN 2349-0063 (Online/Electronic) Volume 4, Issue-3, 13-20, July to September, 2017 Journal Impact Factor: 4.197 WJBMS 04/03/119/2017 All rights reserved www.sasjournals.com A Double Blind Peer Reviewed Journal / Refereed Journal [email protected]/[email protected] REVIEW ARTICLE Received: 04/08/2017 Revised: 04/09/2017 Accepted: 05/09/2017 Role and Important of Hydrogen in Plant Metabolism Hamid Kheyrodin and *Sadaf Kheyrodin Faculty of Desert Science, Semnan University, Iran *Urban Planning in Mashad Azad University, Iran ABSTRACT Hydrogen is the simplest and most abundant element in the entire universe. According to astrophysicist David Palmer, about 75 percent of all the known elemental matter that exists is composed of hydrogen. The nucleus of a hydrogen atom is made out of a single proton, which is a positively charged particle. One electron orbits around the outside of the nucleus. Neutrons, which can be found in all other elements, do not exist in the most common form of hydrogen.Hydrogen peroxide (H2O2) is produced predominantly in plant cells during photosynthesis and photorespiration, and to a lesser extent, in respiration processes.
  • Scuba Diving History

    Scuba Diving History

    Scuba diving history Scuba history from a diving bell developed by Guglielmo de Loreno in 1535 up to John Bennett’s dive in the Philippines to amazing 308 meter in 2001 and much more… Humans have been diving since man was required to collect food from the sea. The need for air and protection under water was obvious. Let us find out how mankind conquered the sea in the quest to discover the beauty of the under water world. 1535 – A diving bell was developed by Guglielmo de Loreno. 1650 – Guericke developed the first air pump. 1667 – Robert Boyle observes the decompression sickness or “the bends”. After decompression of a snake he noticed gas bubbles in the eyes of a snake. 1691 – Another diving bell a weighted barrels, connected with an air pipe to the surface, was patented by Edmund Halley. 1715 – John Lethbridge built an underwater cylinder that was supplied via an air pipe from the surface with compressed air. To prevent the water from entering the cylinder, greased leather connections were integrated at the cylinder for the operators arms. 1776 – The first submarine was used for a military attack. 1826 – Charles Anthony and John Deane patented a helmet for fire fighters. This helmet was used for diving too. This first version was not fitted to the diving suit. The helmet was attached to the body of the diver with straps and air was supplied from the surfa 1837 – Augustus Siebe sealed the diving helmet of the Deane brothers’ to a watertight diving suit and became the standard for many dive expeditions.
  • Metabolism Picton, 2019

    Metabolism Picton, 2019

    History of Science Metabolism Picton, 2019 Metabolism An Experiment on a Bird in the Air Pump Joseph Wright of Derby, 1768 In a previous presentation we followed studies of how the human body works up to the 17th Century. As the Scientific Revolution proceeded the old dogmas such as the humors were cast aside and experiments became the way to understand the processes of life. The painting shows the new scientific approach to understanding life. The scientist removes air from a glass container and shows that the bird can no longer live without air. The painting was based on one of the experiments conducted in by Robert Boyle (1627-1691) and published in 1660. Oxygen in the air is essential to human life. Metabolism is the name given to the chemical reactions that occur in living organisms. It derives from the Greek meta (beyond) and ballein (throw) – it signifies the changes that are effected. It is composed of anabolism (ana, upward) – the production of new compounds – and catabolism (cato, down) – the breakdown of compounds. From the Wikipedia notes on the painting The witnesses display various emotions: one of the girls worriedly watches the fate of the bird, while the other is too upset to observe and is comforted by her father; two gentlemen (one of them dispassionately timing the experiment) and a boy look on with interest, while the young lovers to the left of the painting are absorbed only in each other. The scientist himself looks directly out of the picture, as if challenging the viewer to judge whether the pumping should continue, killing the bird, or whether the air should be replaced and the cockatoo saved.
  • The Development of the Chlorinity-Salinity Concept in Oceanography

    The Development of the Chlorinity-Salinity Concept in Oceanography

    AN ABSTRACT OF THE THESIS OF WILLIAM JOHN WALLACE, JR. for the Ph. D. (Name) (Degree) in GENERAL SCIENCE presented on April 7,1971 (Major) (Date) Title: THE DEVELOPMENT OF THE CHLORINITY-SALINITY CONCEPT INOCEANOGRAM Redacted for Privacy Abstract approved: Vert J. Moris This study traces the historical foundations of the concept of constant ionic proportionality and the equation (Salinity[S°700] = 1.805 Chlorinity [C1700] + 0.030) which has been in general use in ocean- ography since 1902 until 1969 and which is based upon this constancy, The notion that the constituents present in sea water exist in constant proportions was first clearly stated by Marcet in 1819.The germ of the idea may be found, however, in the worksof Bergmann in the late eighteenth century and implied in other works.Maury, in the mid-nineteenth century, popularized the concept and Forchhammer, in 1865, strengthened this idea by quantifying it and introducing the use of the "coefficient" of chlorine to determine salinity,Although he determined a slightly different value for the coefficient, Dittmar regarded his analysis of the sea water samples from the Challenger expedition as a vindication of Forchhammer's work.Knudsen, Forch and Sorensen, in 1902 gave a lengthy gravimetric definition for salinity based on the analysis of nine water samples.As this proce- dural definition was in practice too time-consuming to perform, the above equation was presented which relates the determination of salinity to that of chlorinity.The work of Knudsen, Forch and Sorensen, and that of Dittmar before them, wasaccepted as demonstrating the constancy of ionic proportionality, and the equation was a cornerstone of chemical oceanographyfrom 1902 to 1958.
  • Cotton Mather's Relationship to Science

    Cotton Mather's Relationship to Science

    Georgia State University ScholarWorks @ Georgia State University English Theses Department of English 4-16-2008 Cotton Mather's Relationship to Science James Daniel Hudson Follow this and additional works at: https://scholarworks.gsu.edu/english_theses Part of the English Language and Literature Commons Recommended Citation Hudson, James Daniel, "Cotton Mather's Relationship to Science." Thesis, Georgia State University, 2008. https://scholarworks.gsu.edu/english_theses/33 This Thesis is brought to you for free and open access by the Department of English at ScholarWorks @ Georgia State University. It has been accepted for inclusion in English Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. COTTON MATHER’S RELATIONSHIP TO SCIENCE by JAMES DANIEL HUDSON Under the Direction of Dr. Reiner Smolinski ABSTRACT The subject of this project is Cotton Mather’s relationship to science. As a minister, Mather’s desire to harmonize science with religion is an excellent medium for understanding the effects of the early Enlightenment upon traditional views of Scripture. Through “Biblia Americana” and The Christian Philosopher, I evaluate Mather’s effort to relate Newtonian science to the six creative days as recorded in Genesis 1. Chapter One evaluates Mather’s support for the scientific theories of Isaac Newton and his reception to natural philosophers who advocate Newton’s theories. Chapter Two highlights Mather’s treatment of the dominant cosmogonies preceding Isaac Newton. The Conclusion returns the reader to Mather’s principal occupation as a minister and the limits of science as informed by his theological mind. Through an exploration of Cotton Mather’s views on science, a more comprehensive understanding of this significant early American and the ideological assumptions shaping his place in American history is realized.
  • Pressure Vs. Volume and Boyle's

    Pressure Vs. Volume and Boyle's

    Pressure vs. Volume and Boyle’s Law SCIENTIFIC Boyle’s Law Introduction In 1642 Evangelista Torricelli, who had worked as an assistant to Galileo, conducted a famous experiment demonstrating that the weight of air would support a column of mercury about 30 inches high in an inverted tube. Torricelli’s experiment provided the first measurement of the invisible pressure of air. Robert Boyle, a “skeptical chemist” working in England, was inspired by Torricelli’s experiment to measure the pressure of air when it was compressed or expanded. The results of Boyle’s experiments were published in 1662 and became essentially the first gas law—a mathematical equation describing the relationship between the volume and pressure of air. What is Boyle’s law and how can it be demonstrated? Concepts • Gas properties • Pressure • Boyle’s law • Kinetic-molecular theory Background Open end Robert Boyle built a simple apparatus to measure the relationship between the pressure and volume of air. The apparatus ∆h ∆h = 29.9 in. Hg consisted of a J-shaped glass tube that was Sealed end 1 sealed at one end and open to the atmosphere V2 = /2V1 Trapped air (V1) at the other end. A sample of air was trapped in the sealed end by pouring mercury into Mercury the tube (see Figure 1). In the beginning of (Hg) the experiment, the height of the mercury Figure 1. Figure 2. column was equal in the two sides of the tube. The pressure of the air trapped in the sealed end was equal to that of the surrounding air and equivalent to 29.9 inches (760 mm) of mercury.
  • 1 Introduction

    1 Introduction

    Cambridge University Press 978-0-521-88707-6 - An Introduction to the Chemistry of the Sea: Second Edition Michael E. Q. Pilson Excerpt More information 1 Introduction A complete working model of the earth is still a rather distant goal. HOLLAND 1978 Those magnificent pictures of Earth from space, among the most humanly important and evocative results from the placing of manned and unmanned satellites in orbit during the last several decades, have shown us that underneath the clouds most of the world is blue. Viewed in this way from space, Earth is seen as a planet covered mostly by water, and most of that water is seawater. This thin layer of water, covering 71% of Earth, affects or controls much of its climate and chemistry. The blue color of the sea tells us that most sunlight on the ocean is absorbed and not reflected. The absorption of sunlight warms the planet. The warmth evaporates water, especially from the tropical ocean. Water in the atmosphere is a greenhouse gas, and this also helps to warm Earth. Some atmos- pheric water forms clouds; by reflecting sunlight clouds help to cool Earth. The balance between heating and cooling is always changing as clouds form and dissipate, so exact calculation of the balance is difficult. The water in the ocean is a vast reservoir of heat, which buffers and slows global change. Both the currents in the ocean and the winds in the atmosphere carry heat from low latitudes, where there is a net input, towards the poles, where there is a net loss of heat to space.
  • Measurement of Human Metabolism

    Measurement of Human Metabolism

    Measurement of Human Metabolism BY ROBERT BRYCHTA, ERICA WOHLERS, JON MOON, AND KONG CHEN besity is one of the most prevalent chronic diseases globally, especially in the United States. While the United States gained an early lead in unneces- sary weight gain, most other countries are quickly closing the gap. The lat- Oest U.S. National Health and Nutrition Examination Survey (NHANES, http://www.cdc.gov/nchs/nhanes.htm) documents that about one third of adults in the United States are now overweight [a body-mass index (BMI) between 25 and 30 kg/m2] and another one third (61 million) are considered obese (BMI > 30 kg/m2). Being obese is a strong risk factor for cardiovascular diseases, type 2 diabetes, osteoporosis, some cancers, and depression. The economic impact of this condition is staggering: in 2008, more than 147 billion dollars were spent just in the United States for medical costs related to obesity. Time lost from work and spending on weight loss costs even more. Obesity is influenced to some extent by genetic and environmental fac- tors. However, two centuries of research has repeatedly confirmed that the basic principle of energy balance (Figure 1) governs the accumula- tion of fat. Obesity results from years of slightly higher energy intake from food than energy expended (EE). The path to obesity leads from a positive energy balance of approximately 100–125 kcal per day to between 2 and 6 kg of weight gain per year (Figure 2; [1]). In other words, you can become overweight by eating just one or two cookies or drinking a can of sugar soda a day.
  • Stag Hill Campus

    Stag Hill Campus

    A B C D E F G H The S A3 W Chase 1 Legend E Alresford Road A31 ( M3 ) Bus Stop Stag Hill N Portsmouth 1 Bus Route 1 Walk to Manor Park/Tesco Manor Park Campus Campus Hill £ Cash machine/ATM Stag Cathedral e C a los thedral C 2 Campus 2 Entrance Campus Guildford Entrance P Park P 5 3 Guildford 2 GSA Railway Station 8 P 9 Campus P 1 P M 4 Entrance i P d 7 P P d 6 P l e 3 TB t 3 Town Centre o 1 NC n via Walnut 6 8 P Tree Close 15 2 IFH 6 £ ATI 13 P 14 11 PATS P 8 P 7 P P 7 12 6 5GIC 5 £ 4 R 9 9 1 1 £ LT 4 AZ 3 o Yorkies a 4 9 d Bridge P AY AD 5 16 P 7 AC AX 17 5 3 AW P AA P AB P 8 DK 2 Academic Buildings 4 18 4 Residences AA Thomas Telford Building – AA rooms BC Visitors AB Frank Whittle Building – AB rooms 1 Battersea Court P P S BB 2 Cathedral Court AC Lewis Carroll Building – AC rooms Student Services and Facilities 3 Guildford Court AD Elizabeth Fry Building – AD rooms BA I 4 International House 1 Accommodation Office AP Austin Pearce Building – AP rooms, 10 – Philip Marchant Building 5 Millennium House AP ATI Daphne Jackson Building – ATI rooms 2 Additional Learning Support AW Joseph Lister Building – AW rooms 6 Stag Hill Court – Library & Learning Centre P AX Edward Jenner Building – AX rooms 7 Surrey Court 3 Careers Service – Philip Marchant Building AY Dorothy Hodgkin Building – AY rooms 5 8 Twyford Court MS 4 Cashiers – Senate House 5 AZ Robert Boyle Building – AZ rooms 9 University Court P5 A QCentreA Only for Wellbeing BA Arthur C Clarke Building – BA rooms 2 6 Chaplaincy Offices – Wey Flat, Surrey Court 3 BB Alan Turing Building
  • Alfonso Mucci Department of Earth and Planetary Sciences EPSC-542

    Alfonso Mucci Department of Earth and Planetary Sciences EPSC-542

    Department of Earth and Planetary Sciences EPSC-542 Chemical Oceanography Tuesday and Thursday: 11:35AM-12:55PM FDA-348 Alfonso Mucci [email protected] Frank Dawson Adams (FDA) - 201 Teaching Assistant Pascle Daoust ([email protected]) FDA-349 2/66 EPSC-542 Chemical Oceanography Course outline Week Subject 1 Introduction -organization (course description and schedule), books, evaluation scheme. 2 History of chemical oceanography The ocean as a stratified body of water Origin and evolution of the early ocean 2/3 Seawater composition -Definition of salinity/chlorinity and concept of constant relative proportions -Determination of salinity -Salinity distribution in the ocean -Validity of the law of constant relative proportions 3 Properties of water -Isotopic composition -Anomalous physical properties of water -The structure of liquid water -Influence of solutes on the structure of water 4 The behaviour of electrolytes and non-electrolytes in solution -Electrostriction -Speciation and ion-pairing 4/5 Minor elements -Concept of residence time -Distribution of minor elements in the ocean 3/66 Course outline (continued) 6 Micronutrient elements -Phosphate and the phosphorus cycle -Nitrogen and the nitrogen cycle -The ocean's internal cycle -The horizontal segregation of elements in the deep-sea 7/8 Dissolved gases -Solubility of gases in seawater -The rate of gas exchange between the atmosphere and ocean -Disequilibrium between the atmosphere and ocean -Dissolved oxygen distribution in the ocean 9/10 CO2 and the carbonate system -The chemistry of the CO2-H2O system -pH measurements in seawater -Buffer capacity of seawater -The solubility and distribution of carbonate minerals in marine sediments 11/12 Deep-sea sediments -Origin of deep-sea sediments (e.g weathering, transport, authigenic and biogenic production) -Components of deep-sea sediments (e.g.
  • July 1999 SOCIETY HSS in Pittsburgh

    July 1999 SOCIETY HSS in Pittsburgh

    ISSN 0739-4934 NEWSLETTER I {!STORY OFSOENCE VOLUME 28 NUMBER 3 July 1999 SOCIETY HSS in Pittsburgh ittsburgh is called "the city with an entrance" and HSS members who have Pnot visited the area will soon understand the significance of this phrase. As you emerge from the Fort Pitt tunnel on the drive in from the airport, Pittsburgh's compact downtown will be spread before you, its gleaming 11-by­ l l block area dispelling persistent notions of a coal-smeared town. The downtown area, also called the "Golden Triangle," (pictued at right) marks the union of Pittsburgh's three rivers, the Monongahela, the Allegheny, and the Ohio, with the poimofintersection marked by Point State Park, which features jogging trails and a spectacular fountain, fed by a little-known fourth river. To the east ofPoint State Park is Oakland, Pittsburgh's academic center, where Andrew Carnegie and others used their fortunes to $20 and the ride to the hotel takes about 35 build a cultural district of world renown, minutes. You will use the Oliver Street stop including the Carnegie Museums and the for the shuttle, a short block from the hotel. A CONTENTS Cathedral of Learning. (All ofwhich are a short cab ride averages $28 to $38, depending on July 1999 bus ride from the conference hotel.) Located the traffic. Also, the port authority operates a just across from Oakland, in Schenley Park, is bus, Airport Flyer 28X, $1.95 one way, which the Phipps Conservatory and its two and one­ has two downtown stops. Check at the airport Cover Story 1 half acres of exotic flora.