Here Were a Number of Sources of Introductory Information Giving the Basics of Decompression Theory

Total Page:16

File Type:pdf, Size:1020Kb

Here Were a Number of Sources of Introductory Information Giving the Basics of Decompression Theory Contents Introduction .....................................................................................................................................1 Chapter 1 Historical Perspective .....................................................................................................7 Robert Boyle (1627 - 1691)................................................................................................................7 Rediscovery .......................................................................................................................................8 Caissons Disease ...............................................................................................................................8 Paul Bert (1833-1886) .....................................................................................................................10 John Scott Haldane (1860-1936) .....................................................................................................12 US Navy ...........................................................................................................................................15 Robert Workman ..............................................................................................................................17 Professor Albert Bühlmann (1923–1994)..........................................................................................17 Chapter 2 Decompression Principles ............................................................................................21 Overview .........................................................................................................................................21 The Air we Breathe ..........................................................................................................................22 The Effects of Pressure ....................................................................................................................24 Dalton’s Law ....................................................................................................................................25 The Lungs........................................................................................................................................26 Henry’s Law .....................................................................................................................................29 Diffusion ..........................................................................................................................................30 Gas Transport ..................................................................................................................................31 Perfusion .........................................................................................................................................33 Saturation ........................................................................................................................................34 Tissue compartments ......................................................................................................................35 Half times ........................................................................................................................................36 Supersaturation ...............................................................................................................................38 Critical supersaturation ....................................................................................................................40 Controlling ratio - M-Values .............................................................................................................40 Ascent rates ....................................................................................................................................43 No-Stop dives ..................................................................................................................................47 Bubble Formation ............................................................................................................................48 Silent Bubbles ..................................................................................................................................48 Safety stops .....................................................................................................................................50 Decompression stops ......................................................................................................................52 Oxygen Window ...............................................................................................................................57 Chapter 3 Decompression Illness .................................................................................................61 Burst Lung .......................................................................................................................................61 Arterial Gas Embolism (AGE) ............................................................................................................62 Interstitial Emphysema ....................................................................................................................62 Pneumothorax .................................................................................................................................63 Decompression Sickness .................................................................................................................63 Decompression Classification ..........................................................................................................63 Reclassification of DCS and AGE ......................................................................................................68 Signs and Symptoms .......................................................................................................................69 Symptoms of the Bends by Frequency ............................................................................................70 Time of Onset of Symptoms ............................................................................................................70 Predisposing Factors ........................................................................................................................71 Dehydration .....................................................................................................................................71 Dive profiles.....................................................................................................................................73 Repetitive Diving ..............................................................................................................................75 Temperature ....................................................................................................................................76 Obesity ............................................................................................................................................76 Exercise ...........................................................................................................................................77 Smoking ..........................................................................................................................................79 Age ..................................................................................................................................................80 Flying after diving ............................................................................................................................80 Reverse profile .................................................................................................................................82 Previous injury .................................................................................................................................84 PFO .................................................................................................................................................84 Lung Shunts ....................................................................................................................................88 Doppler Bubble Detection ................................................................................................................89 Medical implications of DCI ..............................................................................................................91 First Aid ...........................................................................................................................................93 Oxygen ............................................................................................................................................94 5 Minute Neurological Exam ............................................................................................................96 Recompression ................................................................................................................................99 In Water Recompression ................................................................................................................105 Omitted Decompression .................................................................................................................108 Chapter 4 Saturation Diving ........................................................................................................111
Recommended publications
  • History of Hyperbaric Medicine ROBERT S
    American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida How Did We Get From Here History of Hyperbaric Medicine ROBERT S. MICHAELSON, DO, MPH MARCH 14, 2015 To Here 3 History of Hyperbaric Medicine Discuss history of diving Discovery of the atmosphere Five major milestones in the development of hyperbaric medicine Triger’s caisson Eads and Brooklyn Bridge Haldane and staged decompression Rescue of the USS Squalus Donnell and Norton 5 Gourd Breathing About 375 AD Diving as a Profession Salvage Operations From as early as 9th century BC Pay scale based on depth of dive Military Operations Early attempts to bore into hull of ships or attach crude explosives to vessels Confined to shallow waters and for short duration dives Very Hard to be Stealthy and Effective T-1 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida DivingHood by Flavius Vegetius Renatus about 375 AD in Leonardo’s (1452-1519) Design For Swim Fins Epitome Institutionum Rei Militaris Diving Rig of Niccolo Tartaglia Canon Recovery Mid-1600’s about 1551 Probably First Diving Bell Mid-1600’s T-2 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida T-3 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida Diving as a Profession Salvage Operations From as early as 9th century BC Pay scale based on depth on dive Military Operations Early attempts to bore into hull of ships or attach crude explosives to vessels Confined to shallow waters and for short duration dives Very Hard to be Stealthy and Effective Diving Bell-1664 Klingert’s Diving Suit -1797 The Vasa, a Swedish ship sunk within a This equipment is the first to be called mile of her maidenvoyage in 1628.
    [Show full text]
  • Role and Important of Hydrogen in Plant Metabolism
    Kheyrodin and Kheyrodin, World J. Biol. Med. Science Volume 4 (3) 13-20, 2017 Indexed, Abstracted and Cited: Index Copernicus International (Poland), ISRA Journal Impact Factor, International Impact Factor Services (IIFS), Directory of Research Journals Indexing (DRJI), International Institute of Organized Research and Scientific Indexing Services, Cosmos Science Foundation (South-East Asia), International Innovative Journal Impact Factor, Einstein Institute for Scientific Information {EISI}, Directory of Open Access Scholarly Resources, Science Indexing Library (UAE), Swedish Scientific Publication (Sweden), citefactor.org journals indexing, Directory Indexing of International Research Journals World Journal of Biology and Medical Sciences Published by Society for Advancement of Science® ISSN 2349-0063 (Online/Electronic) Volume 4, Issue-3, 13-20, July to September, 2017 Journal Impact Factor: 4.197 WJBMS 04/03/119/2017 All rights reserved www.sasjournals.com A Double Blind Peer Reviewed Journal / Refereed Journal [email protected]/[email protected] REVIEW ARTICLE Received: 04/08/2017 Revised: 04/09/2017 Accepted: 05/09/2017 Role and Important of Hydrogen in Plant Metabolism Hamid Kheyrodin and *Sadaf Kheyrodin Faculty of Desert Science, Semnan University, Iran *Urban Planning in Mashad Azad University, Iran ABSTRACT Hydrogen is the simplest and most abundant element in the entire universe. According to astrophysicist David Palmer, about 75 percent of all the known elemental matter that exists is composed of hydrogen. The nucleus of a hydrogen atom is made out of a single proton, which is a positively charged particle. One electron orbits around the outside of the nucleus. Neutrons, which can be found in all other elements, do not exist in the most common form of hydrogen.Hydrogen peroxide (H2O2) is produced predominantly in plant cells during photosynthesis and photorespiration, and to a lesser extent, in respiration processes.
    [Show full text]
  • Nitrox CONFIRME
    Formation théorique NITROX Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Sommaire de la formation • Rappels • La réglementation • La crise Hyperoxique l’effet Paul Bert l’effet Lorrain Smith • La table NOAA • Le compteur SNC • Les UPDT ou OTU • Les autres effets physiologiques La syncope Hypoxique Effet vasoconstricteur de l’O2 • La fabrication des mélanges Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Composition de l’air L'air sec au voisinage du sol est approximativement composé de: • 78,08 % d’azote, • 20,95 % d’oxygène, • moins de 1 % d'autres gaz dont : • argon 0,93%, • néon 0,0018%, • krypton 0,00011%, • xénon 0,00009% • dioxyde de carbone 0,033 %. Il contient aussi des traces d'hydrogène 0,000072%, mais aussi d'ozone et de radon. Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Composition de l’air Nous considérons que la composition de l’air est la suivante : - Oxygène (O²) 21 % - Azote (N²) 79 % Convention d’appellation Par convention, on désigne ce mélange en citant en premier sa teneur en O² puis sa teneur en N², on obtient une indication du type : O²/N² ou XX / YY . un mélange définit comme suit : 40/60 Désigne un NITROX contenant 40 % d’O² et 60 % de N² Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Limites et contraintes Liés à l’augmentation de la pression partielle d’oxygène (PpO²) - Limitation de la profondeur maximum par rapport à l’air( PpO²max = 1,6b .) - Limitation variable de la profondeur en fonction du mélange respiré - Risque d’accident hyperoxique si les profondeurs planchées ou la durée d’utilisation sont dépassés, - Manipulation plus contraignante et plus dangereuse, - Nécessite un matériel spécifique ( compresseur, équipement spécifique si Nitrox > 40/60) - Planification des plongées obligatoires et plus complexes - Prix de revient plus élevé que l’air.
    [Show full text]
  • Hyperbaric Physiology the Rouse Story Arrival at Recompression
    Hyperbaric Physiology The Rouse Story • Oct 12, 1992, off the New Jersey coast • father/son team of experienced divers • explore submarine wreck in 230 ft (70 m) • breathing compressed air • trapped in wreck & escaped with no time for decompression Chris and Chrissy Rouse Arrival at recompression Recompression efforts facility • Both divers directly ascend to dive boat • Recompression starts about 3 hrs after • Helicopter arrives at boat in 1 hr 27 min ascent • Bronx Municipal Hospital recompression facility – put on pure O2 and compressed to 60 ft – Chris (39 yrs) pronounced dead • extreme pain as circulation returned – compressed to 165 ft, then over 5.5 hrs – Chrissy (22 yrs) gradually ascended back to 30 ft., lost • coherent and talking consciousness • paralysis from chest down • no pain – back to 60 ft. Heart failure and death • blood sample contained foam • autopsy revealed that the heart contained only foam Medical Debriefing Gas Laws • Boyle’s Law • Doctors conclusions regarding their – P1V1 = P2V2 treatment • Dalton’s Law – nothing short of recompression to extreme – total pressure is the sum of the partial pressures depths - 300 to 400 ft • Henry’s Law – saturation treatment lasting several days – the amt of gas dissolved in liquid at any temp is – complete blood transfusion proportional to it’s partial pressure and solubility – deep helium recompression 1 Scuba tank ~ 64 cf of air Gas problems during diving Henry, 1 ATM=33 ft gas (10 m) dissovled = gas Pp & tissue • Rapture of the deep (Nitrogen narcosis) solubility • Oxygen
    [Show full text]
  • Scuba Diving History
    Scuba diving history Scuba history from a diving bell developed by Guglielmo de Loreno in 1535 up to John Bennett’s dive in the Philippines to amazing 308 meter in 2001 and much more… Humans have been diving since man was required to collect food from the sea. The need for air and protection under water was obvious. Let us find out how mankind conquered the sea in the quest to discover the beauty of the under water world. 1535 – A diving bell was developed by Guglielmo de Loreno. 1650 – Guericke developed the first air pump. 1667 – Robert Boyle observes the decompression sickness or “the bends”. After decompression of a snake he noticed gas bubbles in the eyes of a snake. 1691 – Another diving bell a weighted barrels, connected with an air pipe to the surface, was patented by Edmund Halley. 1715 – John Lethbridge built an underwater cylinder that was supplied via an air pipe from the surface with compressed air. To prevent the water from entering the cylinder, greased leather connections were integrated at the cylinder for the operators arms. 1776 – The first submarine was used for a military attack. 1826 – Charles Anthony and John Deane patented a helmet for fire fighters. This helmet was used for diving too. This first version was not fitted to the diving suit. The helmet was attached to the body of the diver with straps and air was supplied from the surfa 1837 – Augustus Siebe sealed the diving helmet of the Deane brothers’ to a watertight diving suit and became the standard for many dive expeditions.
    [Show full text]
  • Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC
    Environmental Extremes: Alternobaric Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC RICHARD A. SCHEURING, DO, MS*; WILLIAM RAINEY JOHNSON, MD†; GEOFFREY E. CIARLONE, PhD‡; DAVID KEYSER, PhD§; NAILI CHEN, DO, MPH, MASc¥; and FRANCIS G. O’CONNOR, MD, MPH¶ INTRODUCTION DEFINITIONS MILITARY HISTORY AND EPIDEMIOLOGY Altitude Aviation Undersea Operations MILITARY APPLIED PHYSIOLOGY Altitude Aviation Undersea Operations HUMAN PERFORMANCE OPTIMIZATION STRATEGIES FOR EXTREME ENVIRONMENTS Altitude Aviation Undersea Operations ONLINE RESOURCES FOR ALTERNOBARIC ENVIRONMENTS SUMMARY *Colonel, Medical Corps, US Army Reserve; Associate Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sci- ences, Bethesda, Maryland †Lieutenant, Medical Corps, US Navy; Undersea Medical Officer, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland ‡Lieutenant, Medical Service Corps, US Navy; Research Physiologist, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland §Program Director, Traumatic Injury Research Program; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¥Colonel, Medical Corps, US Air Force; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¶Colonel (Retired), Medical Corps, US Army; Professor and former Department Chair, Military and Emergency Medicine, Uniformed Services University of the Health Sciences,
    [Show full text]
  • Metabolism Picton, 2019
    History of Science Metabolism Picton, 2019 Metabolism An Experiment on a Bird in the Air Pump Joseph Wright of Derby, 1768 In a previous presentation we followed studies of how the human body works up to the 17th Century. As the Scientific Revolution proceeded the old dogmas such as the humors were cast aside and experiments became the way to understand the processes of life. The painting shows the new scientific approach to understanding life. The scientist removes air from a glass container and shows that the bird can no longer live without air. The painting was based on one of the experiments conducted in by Robert Boyle (1627-1691) and published in 1660. Oxygen in the air is essential to human life. Metabolism is the name given to the chemical reactions that occur in living organisms. It derives from the Greek meta (beyond) and ballein (throw) – it signifies the changes that are effected. It is composed of anabolism (ana, upward) – the production of new compounds – and catabolism (cato, down) – the breakdown of compounds. From the Wikipedia notes on the painting The witnesses display various emotions: one of the girls worriedly watches the fate of the bird, while the other is too upset to observe and is comforted by her father; two gentlemen (one of them dispassionately timing the experiment) and a boy look on with interest, while the young lovers to the left of the painting are absorbed only in each other. The scientist himself looks directly out of the picture, as if challenging the viewer to judge whether the pumping should continue, killing the bird, or whether the air should be replaced and the cockatoo saved.
    [Show full text]
  • Medical News. Regulations for the M.B
    605 interested in the welfare of Epsom College, which he did so Smith, M.B. Liverp., Liverpool University; Frank Harold much to Stephens, St. Mary’s Hospital; Hugh Stott, Guy’s Hospital; Gilbert promote. Francis Syms, Guy’s Hospital; Wilfrid Reginald Taylor, St. Mary’s Dr. Galton leaves a widow and five daughters. The funeral Hospital; Ernest William Toulmin, St. Mary’s Hospital; took place at Shirley cemetery on Feb. llth. The ceremony Nusserwanji Hormasji Vakeel, Bombay University and St. Bar- attended old friends and and tholomew’s Hospital; Cuthbert Ferguson Walker, B.A., Royal was largely by patients many University of Ireland. Galway, Belfast, and St. Mary’s Hospital; medical men from London and his neighbourhood, amongst Alan Geoffrpy Wells, St. Mary’s Hospital; Ernest Godfrey Wheat, those present being Mr. Edmund Owen, Mr. Frederic Cambridge University and King’s College Hospital; James Norman Durham, Dr. Henry Hetley, Mr. J. B. Lamb (secretary of Wheeler, B.A. Cantab., Cambridge University and St. Thomas’s Mr. and Hospital; Edward Barton Cartwright White, London Hospital ; Epsom College), G. C. Parnell, Mr. J. Sidney Turner, William Cecil Wigan, Oxford University and St. Bartholomew’s Mr. E. Oswald Oxford Williams, St. Bartholomew’s Hos- Reynolds Ray. - Hospital; Cyril pital ; Rajaiya Robert Williams, L.R.C.P. & S. Edin., Edinburgh, Madras, and University College Hospital; John Samuel Williamson, DEATHS OF EMINENT FOREIGN MEDICAL MEN.-The deaths St. Bartholomew’s Hospital; and William Louis Rene Wood, L.S.A. of the following eminent foreign medical men are announced : Leeds University. - Dr. Martin Bloch, formerly assistant to the late Professor Diplomas of M.R.C.S.
    [Show full text]
  • The Development of the Chlorinity-Salinity Concept in Oceanography
    AN ABSTRACT OF THE THESIS OF WILLIAM JOHN WALLACE, JR. for the Ph. D. (Name) (Degree) in GENERAL SCIENCE presented on April 7,1971 (Major) (Date) Title: THE DEVELOPMENT OF THE CHLORINITY-SALINITY CONCEPT INOCEANOGRAM Redacted for Privacy Abstract approved: Vert J. Moris This study traces the historical foundations of the concept of constant ionic proportionality and the equation (Salinity[S°700] = 1.805 Chlorinity [C1700] + 0.030) which has been in general use in ocean- ography since 1902 until 1969 and which is based upon this constancy, The notion that the constituents present in sea water exist in constant proportions was first clearly stated by Marcet in 1819.The germ of the idea may be found, however, in the worksof Bergmann in the late eighteenth century and implied in other works.Maury, in the mid-nineteenth century, popularized the concept and Forchhammer, in 1865, strengthened this idea by quantifying it and introducing the use of the "coefficient" of chlorine to determine salinity,Although he determined a slightly different value for the coefficient, Dittmar regarded his analysis of the sea water samples from the Challenger expedition as a vindication of Forchhammer's work.Knudsen, Forch and Sorensen, in 1902 gave a lengthy gravimetric definition for salinity based on the analysis of nine water samples.As this proce- dural definition was in practice too time-consuming to perform, the above equation was presented which relates the determination of salinity to that of chlorinity.The work of Knudsen, Forch and Sorensen, and that of Dittmar before them, wasaccepted as demonstrating the constancy of ionic proportionality, and the equation was a cornerstone of chemical oceanographyfrom 1902 to 1958.
    [Show full text]
  • Adm Issue 10 Finnished
    4x4x4x4 Four times a year Four times the copy Four times the quality Four times the dive experience Advanced Diver Magazine might just be a quarterly magazine, printing four issues a year. Still, compared to all other U.S. monthly dive maga- zines, Advanced Diver provides four times the copy, four times the quality and four times the dive experience. The staff and contribu- tors at ADM are all about diving, diving more than should be legally allowed. We are constantly out in the field "doing it," exploring, photographing and gathering the latest information about what we love to do. In this issue, you might notice that ADM is once again expanding by 16 pages to bring you, our readers, even more information and contin- ued high-quality photography. Our goal is to be the best dive magazine in the history of diving! I think we are on the right track. Tell us what you think and read about what others have to say in the new "letters to bubba" section found on page 17. Curt Bowen Publisher Issue 10 • • Pg 3 Advanced Diver Magazine, Inc. © 2001, All Rights Reserved Editor & Publisher Curt Bowen General Manager Linda Bowen Staff Writers / Photographers Jeff Barris • Jon Bojar Brett Hemphill • Tom Isgar Leroy McNeal • Bill Mercadante John Rawlings • Jim Rozzi Deco-Modeling Dr. Bruce Wienke Text Editor Heidi Spencer Assistants Rusty Farst • Tim O’Leary • David Rhea Jason Richards • Joe Rojas • Wes Skiles Contributors (alphabetical listing) Mike Ball•Philip Beckner•Vern Benke Dan Block•Bart Bjorkman•Jack & Karen Bowen Steve Cantu•Rich & Doris Chupak•Bob Halstead Jitka Hyniova•Steve Keene•Dan Malone Tim Morgan•Jeff Parnell•Duncan Price Jakub Rehacek•Adam Rose•Carl Saieva Susan Sharples•Charley Tulip•David Walker Guy Wittig•Mark Zurl Advanced Diver Magazine is published quarterly in Bradenton, Florida.
    [Show full text]
  • Cotton Mather's Relationship to Science
    Georgia State University ScholarWorks @ Georgia State University English Theses Department of English 4-16-2008 Cotton Mather's Relationship to Science James Daniel Hudson Follow this and additional works at: https://scholarworks.gsu.edu/english_theses Part of the English Language and Literature Commons Recommended Citation Hudson, James Daniel, "Cotton Mather's Relationship to Science." Thesis, Georgia State University, 2008. https://scholarworks.gsu.edu/english_theses/33 This Thesis is brought to you for free and open access by the Department of English at ScholarWorks @ Georgia State University. It has been accepted for inclusion in English Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. COTTON MATHER’S RELATIONSHIP TO SCIENCE by JAMES DANIEL HUDSON Under the Direction of Dr. Reiner Smolinski ABSTRACT The subject of this project is Cotton Mather’s relationship to science. As a minister, Mather’s desire to harmonize science with religion is an excellent medium for understanding the effects of the early Enlightenment upon traditional views of Scripture. Through “Biblia Americana” and The Christian Philosopher, I evaluate Mather’s effort to relate Newtonian science to the six creative days as recorded in Genesis 1. Chapter One evaluates Mather’s support for the scientific theories of Isaac Newton and his reception to natural philosophers who advocate Newton’s theories. Chapter Two highlights Mather’s treatment of the dominant cosmogonies preceding Isaac Newton. The Conclusion returns the reader to Mather’s principal occupation as a minister and the limits of science as informed by his theological mind. Through an exploration of Cotton Mather’s views on science, a more comprehensive understanding of this significant early American and the ideological assumptions shaping his place in American history is realized.
    [Show full text]
  • Pressure Vs. Volume and Boyle's
    Pressure vs. Volume and Boyle’s Law SCIENTIFIC Boyle’s Law Introduction In 1642 Evangelista Torricelli, who had worked as an assistant to Galileo, conducted a famous experiment demonstrating that the weight of air would support a column of mercury about 30 inches high in an inverted tube. Torricelli’s experiment provided the first measurement of the invisible pressure of air. Robert Boyle, a “skeptical chemist” working in England, was inspired by Torricelli’s experiment to measure the pressure of air when it was compressed or expanded. The results of Boyle’s experiments were published in 1662 and became essentially the first gas law—a mathematical equation describing the relationship between the volume and pressure of air. What is Boyle’s law and how can it be demonstrated? Concepts • Gas properties • Pressure • Boyle’s law • Kinetic-molecular theory Background Open end Robert Boyle built a simple apparatus to measure the relationship between the pressure and volume of air. The apparatus ∆h ∆h = 29.9 in. Hg consisted of a J-shaped glass tube that was Sealed end 1 sealed at one end and open to the atmosphere V2 = /2V1 Trapped air (V1) at the other end. A sample of air was trapped in the sealed end by pouring mercury into Mercury the tube (see Figure 1). In the beginning of (Hg) the experiment, the height of the mercury Figure 1. Figure 2. column was equal in the two sides of the tube. The pressure of the air trapped in the sealed end was equal to that of the surrounding air and equivalent to 29.9 inches (760 mm) of mercury.
    [Show full text]