Chaetal Type Diversity Increases During Evolution of Eunicida (Annelida)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title the Intertidal Biota of Volcanic Yankich Island (Middle
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository The Intertidal Biota of Volcanic Yankich Island (Middle Kuril Title Islands) Author(s) Kussakin, Oleg G.; Kostina, Elena E. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1996), 37(3-6): 201-225 Issue Date 1996-12-25 URL http://hdl.handle.net/2433/176267 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Pub!. Seto Mar. Bioi. Lab., 37(3/6): 201-225, 1996 201 The Intertidal Biota of Volcanic Y ankich Island (Middle Kuril Islands) 0LEG G. KUSSAKIN and ELENA E. KOSTINA Institute of Marine Biology, Academy of Sciences of Russia, Vladivostok 690041, Russia Abstract A description of the intertidal biota of volcanic Yankich Island (Ushishir Islands, Kuril Islands) is given. The species composition and vertical distribution pattern of the intertidal communities at various localities are described in relation to environmental factors, such as nature of the substrate, surf conditions and volcanic vent water. The macrobenthos is poor in the areas directly influenced by high tempera ture (20-40°C) and high sulphur content. There are no marked changes in the intertidal communities in the areas of volcanic springs that are characterised by temperature below 10°C and by the absence of sulphur compounds. In general, the species composi tion and distribution of the intertidal biota are ordinary for the intertidal zone of the middle Kuril Islands. But there are departures from the typical zonation of the intertidal biota. Also, mass populations of Balanus crenatus appear. -
A Phylogenetic Analysis of the Genus Eunice (Eunicidae, Polychaete, Annelida)
Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082© 2007 The Linnean Society of London? 2007 1502 413434 Original Article PHYLOGENY OF EUNICEJ. ZANOL ET AL. Zoological Journal of the Linnean Society, 2007, 150, 413–434. With 12 figures A phylogenetic analysis of the genus Eunice (Eunicidae, polychaete, Annelida) JOANA ZANOL1*, KRISTIAN FAUCHALD2 and PAULO C. PAIVA3 1Pós-Graduação em Zoologia, Museu Nacional/UFRJ, Quinta da Boa Vista s/n°, São Cristovão, Rio de Janeiro, RJ 20940–040, Brazil 2Department of Invertebrate Zoology, NMNH, Smithsonian Institution, PO Box 37012, NHB MRC 0163, Washington, DC 20013–7012, USA 3Departamento de Zoologia, Insituto de Biologia, Universidade Federal do Rio de Janeiro, CCS, Bloco A, Sala A0-104, Ilha do Fundão, Rio de Janeiro, RJ 2240–590, Brazil Received April 2006; accepted for publication December 2006 Species of Eunice are distributed worldwide, inhabiting soft and hard marine bottoms. Some of these species play sig- nificant roles in coral reef communities and others are commercially important. Eunice is the largest and most poorly defined genus in Eunicidae. It has traditionally been subdivided in taxonomically informal groups based on the colour and dentition of subacicular hooks, and branchial distribution. The monophyly of Eunice and of its informal subgroups is tested here using cladistic analyses of 24 ingroup species based on morphological data. In the phylo- genetic hypothesis resulting from the present analyses Eunice and its subgroups are paraphyletic; the genus may be divided in at least two monophyletic groups, Eunice s.s. and Leodice, but several species do not fall inside these two groups. -
Nereis Vexillosa Class: Polychaeta, Errantia
Phylum: Annelida Nereis vexillosa Class: Polychaeta, Errantia Order: Phyllodocida, Nereidiformia A large mussel worm Family: Nereididae, Nereidinae Taxonomy: One may find several subjective third setiger (Hilbig 1997). Posterior notopo- synonyms for Nereis vexillosa, but none are dial lobes gradually change into long strap- widely used currently. like ligules (Fig. 6), with dorsal cirrus inserted terminally (most important species characte- Description ristic). The parapodia of epitokous individuals Size: Individuals living in gravel are larger are modified for swimming and are wide and than those on pilings and sizes range from plate-like (Kozloff 1993). 150–300 mm in length (Johnson 1943; Rick- Setae (chaetae): Notopodia bear ho- etts and Calvin 1971; Kozloff 1993) and up mogomph spinigers anteriorly (Fig. 8d) that to 12 mm in width (Hartman 1968). gradually transition to few short homogomph Epitokous adults are much larger than sex- falcigers posteriorly (Fig. 8a). Both anterior ually immature individuals. For example, and posterior neuropodia have homo- and one year old heteronereids were at least 560 heterogomph spinigers (Fig. 8c, d) and heter- mm in length (Johnson 1943). ogomph falcigers (Fig. 8b) (Nereis, Hilbig Color: Body color grey and iridescent green, 1997). Acicula, or heavy internal black blue and red body color. Females have spines, are found on all noto- and neuropodia more a reddish posterior than males (Kozloff (Figs. 6). 1993). Eyes/Eyespots: Two pairs of small ocelli are General Morphology: Thick worms that are present on the prostomium (Fig. 2). rather wide for their length (Fig. 1). Anterior Appendages: Prostomium bears Body: More than 100 body segments are two small antennae and two massive palps normal for this species (Hartman 1968), the each with small styles. -
Foraging and Mobility in Three Species of Aciculata (Annelida: Polychaeta)
FORAGING AND MOBILITY IN THREE SPECIES OF ACICULATA (ANNELIDA: POLYCHAETA) PARDO, E. V. and AMARAL, A. C. Z. Departamento de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, C. P. 6109, CEP 13083-970, Campinas, São Paulo, Brazil Correspondence to: Erica Veronica Pardo, Departamento de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, C. P. 6109, CEP 13083-970, Campinas, São Paulo, Brazil, e-mail: [email protected] Received February 3, 2005 – Accepted August 22, 2005 – Distributed November 1, 2006 (With 1 figure) ABSTRACT Aspects of feeding, such as food capture and ingestion, as well as mobility of the polychaetes Eurythoe complanata, Marphysa formosa and Diopatra aciculata, from São Sebastião Channel (São Sebastião, state of São Paulo) were observed in laboratory conditions. Eurythoe complanata, a carnivorous species, fed exclusively on pieces of fish with the aid of strong muscular retractable lips, and detected the presence of food by chemical stimuli. Diopatra aciculata, an omnivorous species, captured and ingested different kinds of food with the aid of its jaws, generating a flow of water through its tube by which it detects the presence of food and oxygenates its gills. Marphysa formosa also used its jaws to bite and lacerate food. These species showed greater or lesser degrees of intolerance to light. Keywords: foraging, mobility, Aciculata, Polychaeta, Annelida. RESUMO Forrageamento e mobilidade em Polychaeta Alguns aspectos da atividade alimentar, tais como a captura e ingestão de alimento, bem como a mobilidade dos poliquetas Eurythoe complanata, Marphysa formosa e Diopatra aciculata, procedentes do Canal de São Sebastião (São Sebastião, SP), foram observados em laboratório. -
Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages. -
Cold-Water Coral Reefs
Jl_ JOINTpk MILJ0VERNDEPARTEMENTET— — natiireW M^ iA/i*/r ONEP WCMC COMMITTEE Norwegian Ministry of the Environment TTTTr Cold-water coral reefs Out of sight - no longer out of mind Andre Freiwald. Jan Helge Fossa, Anthony Grehan, Tony KosLow and J. Murray Roberts Z4^Z4 Digitized by tine Internet Arciiive in 2010 witii funding from UNEP-WCIVIC, Cambridge http://www.arcliive.org/details/coldwatercoralre04frei i!i_«ajuiti'j! ii-D) 1.-I fLir: 111 till 1 J|_ JOINT^ MILJ0VERNDEPARTEMENTET UNEP WCMC COMMITTEE Norwegta» Ministry of the Environment T» TT F Cold-water coral reefs Out of sight - no longer out of mind Andre Freiwald, Jan HeLge Fossa, Anthony Grehan, Tony Koslow and J. Murray Roberts a) UNEP WCMCH UNEP World Conservation Supporting organizations Monitoring Centre 219 Huntingdon Road Department of the Environment, Heritage and Local Cambridge CBS DDL Government United Kingdom National Parks and Wildlife Service Tel: +44 101 1223 2773U 7 Ely Place Fax; +W 101 1223 277136 Dublin 2 Email: [email protected] Ireland Website: www.unep-wcmc.org http://www.environ.ie/DOEI/DOEIhome nsf Director: Mark Collins Norwegian Ministry of the Environment Department for Nature Management The UNEP World Conservation Monitoring Centre is the PO Box 8013 biodiversity assessment and policy implementation arm of the Dep. N-0030 Oslo United Nations Environment Programme (UNEPI. the world's Norway foremost intergovernmental environmental organization. UNEP- http://wwwmilio.no WCMC aims to help decision makers recognize the value ol biodiversity to people everywhere, and to apply this knowledge to Defra all that they do. The Centre's challenge is to transform complex Department for Environment. -
Annelida: Dorvilleidae) Associated with the Coral Lophelia Pertusa (Anthozoa: Caryophylliidae)
ARTICLE A new species of Ophryotrocha (Annelida: Dorvilleidae) associated with the coral Lophelia pertusa (Anthozoa: Caryophylliidae) Vinicius da Rocha Miranda¹²; Andrielle Raposo Rodrigues¹³ & Ana Claudia dos Santos Brasil¹⁴ ¹ Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Ciências Biológicas e da Saúde (ICBS), Departamento de Biologia Animal, Laboratório de Polychaeta. Seropédica, RJ, Brasil. ² ORCID: http://orcid.org/0000-0002-4591-184X. E-mail: [email protected] (corresponding author) ³ ORCID: http://orcid.org/0000-0001-9152-355X. E-mail: [email protected] ⁴ ORCID: http://orcid.org/0000-0002-0611-9948. E-mail: [email protected] Abstract. Ophryotrocha is the most speciose genus within Dorvilleidae, with species occurring in a great variety of environments around the globe. In Brazil, records of Ophryotrocha are scarce and no specific identification is provided for any of the records. Herein we describe a new species of Dorvilleidae, Ophryotrocha zitae sp. nov. Adult and larval specimens were found in the axis of a fragment of the cold-water coral Lophelia pertusa, sampled off São Paulo’s coast, at a depth of 245 m. Both forms are described and illustrated. This new species resembles O. puerilis, O. adherens and O. eutrophila, but can be distinguished based on differences in its mandible and on chaetae shape and arrangement. Key-Words. Epibiont; Cold-water Coral; Deep-sea; Eunicida, Associated fauna. INTRODUCTION sette glands on the posterior region of the body (Ockelmann & Åkesson, 1990; Heggoy et al., 2007; The Family Dorvilleidae is comprised of 38 val‑ Paxton & Åkesson, 2011). These species also bear id genera, many of which are monospecific (Read, a complex buccal apparatus comprising a pair of 2016) and others, despite more specious, pres‑ mandibles and maxillae, the latter being either ent evident morphological homogeny (Rouse & “P‑type” or “K‑type”, and the presence of one or Pleijel, 2001). -
Metabarcoding in the Abyss: Uncovering Deep-Sea Biodiversity Through Environmental
Metabarcoding in the abyss : uncovering deep-sea biodiversity through environmental DNA Miriam Isabelle Brandt To cite this version: Miriam Isabelle Brandt. Metabarcoding in the abyss : uncovering deep-sea biodiversity through environmental DNA. Agricultural sciences. Université Montpellier, 2020. English. NNT : 2020MONTG033. tel-03197842 HAL Id: tel-03197842 https://tel.archives-ouvertes.fr/tel-03197842 Submitted on 14 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE M ONTPELLIER En Sciences de l'Évolution et de la Biodiversité École doctorale GAIA Unité mixte de recherche MARBEC Pourquoi Pas les Abysses ? L’ADN environnemental pour l’étude de la biodiversité des grands fonds marins Metabarcoding in the abyss: uncovering deep - sea biodiversity through environmental DNA Présentée par Miriam Isabelle BRANDT Le 10 juillet 2020 Sous la direction de Sophie ARNAUD-HAOND et Daniela ZEPPILLI Devant le jury composé de Sofie DERYCKE, Senior researcher/Professeur rang A, ILVO, Belgique Rapporteur -
Novel Mobbing Strategies of a Fish Population Against a Sessile
www.nature.com/scientificreports OPEN Novel mobbing strategies of a fish population against a sessile annelid predator Received: 10 December 2015 Jose Lachat & Daniel Haag-Wackernagel Accepted: 22 August 2016 When searching for food, foraging fishes expose themselves to hidden predators. The strategies that Published: 12 September 2016 maximize the survival of foraging fishes are not well understood. Here, we describe a novel type of mobbing behaviour displayed by foraging Scolopsis affinis. The fish direct sharp water jets towards the hidden sessile annelid predator Eunice aphroditois (Bobbit worm). We recognized two different behavioural roles for mobbers (i.e., initiator and subsequent participants). The first individual to exhibit behaviour indicating the discovery of the Bobbit directed, absolutely and per time unit, more water jets than the subsequent individuals that joined the mobbing. We found evidence that the mobbing impacted the behaviour of the Bobbit, e.g., by inducing retraction. S. affinis individuals either mob alone or form mobbing groups. We speculate that this behaviour may provide social benefits for its conspecifics by securing foraging territories forS. affinis. Our results reveal a sophisticated and complex behavioural strategy to protect against a hidden predator. Mobbing in the animal kingdom is described as an approach towards a potential predator followed by swoops or runs, sometimes involving a direct attack with physical contact by the mobber1. Mobbing is well characterized in birds, mammals, and even invertebrates1–5. Most of the reported mobbing behaviours initiated by a prey species involve directed harassment of a mobile predator1,3,6–9. Hidden, ambushing predators are a major threat to prey species. -
Lumbrineris Latreilli Audouin & Milne Edwards, 1833
Lumbrineris latreilli Audouin & Milne Edwards, 1833 AphiaID: 130248 . Lumbrineridae (Familia) Sinónimos Lumbriconereis edwardsii Claparède, 1863 Lumbriconereis fallax Quatrefages, 1866 Lumbriconereis floridana Ehlers, 1887 Lumbriconereis nardonis Grube, 1840 Lumbriconereis tingens Keferstein, 1862 Lumbrineris fallax Quatrefages, 1866 Lumbrineris floridana Ehlers, 1887 Zygolobus grubianus Claparède, 1864 Zygolobus grubianus Claparède, 1864 Referências additional source Fauchald, K. (1977). The polychaete worms, definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County: Los Angeles, CA (USA), Science Series. 28:1-188., available online at http://www.vliz.be/imisdocs/publications/123110.pdf [details] additional source Integrated Taxonomic Information System (ITIS). , available online at http://www.itis.gov [details] additional source Bellan, Gerard. (2001). Polychaeta, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels. 50: pp. 214-231. [details] additional source Brunel, P.; Bosse, L.; Lamarche, G. (1998). Catalogue of the marine invertebrates of the estuary and Gulf of St. Lawrence. Canadian Special Publication of Fisheries and Aquatic Sciences, 126. 405 p. [details] additional source Pettibone, M.H. 1952 MS. Checklist of Polychaeta of New England region. 32 p. 1 [details] additional source Day, J. H. (1967). [Errantia] A monograph on the Polychaeta of Southern Africa. Part 1. Errantia. British Museum (Natural History), London. pp. vi, 1–458, xxix., available online at https://doi.org/10.5962/bhl.title.8596 [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. -
Tube-Forming Polychaetes Enhance Invertebrate Diversity and Abundance in Sandy Sediments of Mozambique, Africa
African Journal of Marine Science 2011, 33(2): 327–332 Copyright © NISC (Pty) Ltd Printed in South Africa — All rights reserved AFRICAN JOURNAL OF MARINE SCIENCE ISSN 1814–232X EISSN 1814–2338 doi: 10.2989/1814232X.2011.600433 Short Communication Tube-forming polychaetes enhance invertebrate diversity and abundance in sandy sediments of Mozambique, Africa MS Thomsen1,2*, MF Muth3 and KJ McGlathery3 1 Marine Department, National Environmental Research Institute, University of Aarhus, PO Box 4000, Roskilde, Denmark 2 School of Plant Biology, University of Western Australia, Crawley 6009 WA, Australia 3 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd, Clark Hall, Charlottesville, VA 22904, USA * Corresponding author, e-mail: [email protected] Manuscript received March 2011; accepted May 2011 In marine soft-bottom systems, polychaetes can increase habitat complexity by constructing rigid tubes (e.g. several onuphid species) that contrast with surrounding topographically flat sediments. These structures can provide predation refuges and increase larval settlement and thereby increase the richness and abundance of fauna. We collected invertebrate samples from an intertidal flat with low onuphid tube density (2.7 m–2) in Mozambique and document that more organisms (70 times higher mollusc abundances) and more species (15 times more mollusc species) were found associated with solitary tubes of an onuphid polychaete compared with surrounding sand habitats. These results are in agreement with tube versus sand comparisons from soft-bottom systems in the North Atlantic where polychaete tube densities are often much higher. Keywords: habitat formation, onuphid polychaete, species richness, western Indian Ocean Introduction Species that form or modify habitat, often referred to as (Thomsen et al. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................