Information Circular 85. Washington State Earthquake Hazards

Total Page:16

File Type:pdf, Size:1020Kb

Information Circular 85. Washington State Earthquake Hazards WASHING1rON STATE EARTHQUAKE:HAZARDS by LINDA LAWRANCE NOS , ANTHONY QAMAR, AND GERALD W. THORSEN WASHING TON DIVISION OF GEOLOGY AND EARTH RESOURCE INFORMATION CIRCULAR 85 1988 WASHINGTON STATE DEPARTMENT OF Natural Resources Brian Boyle - Commissioner of Public Lands Art Stearns - Supervisor Division of Geology and Earth Resources Raymond Lasmanis, State Geologist Cover photo: Damage to an unreinforced masonry building in downtown Centralia in 1949. A man was killed by the falling upper walls of this two-story corner building. Unreinforced masonry walls, gables, cornices, and partitions were the most seriously damaged structures in the 1949 and 1965 earthquakes. Inferior mortar and inadequate ties between walls and floors compounded the damage. (Photo from the A. E. Miller Col­ lection, University of Washington Archives) -- WASHING TON ST ATE EARTHQUAKE HAZARDS by LINDA LAWRANCE NOSON, ANTHONY QAMAR, AND GERALD W. THORSEN WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES INFORMATION CIRCULAR 85 1988 • . ' NaturalWASHING10N STATE Resources DEPARTMENT OF Brtan Boyle • Commasloner 01 P\lbllc Lands Art Steorns • Supervisor Divisfon 0 1 Geology and Earth Resources Raymond Lasmanis. State Geo!ogisl The authors gratefully acknowledge review of the manuscript of this publication by members of the Geophysics Program. University of Washington. This report is available from: Publications Washington Department of N arural Resources Division of Geology and Earth Resources Mail Stop PY-12 Olympia, WA 98504 The printing of this report was supported by U.S. Geological Survey Earthquake Hazards Reduction Program Agreement No. 14-08-0001-A0509. This publication is free, but please add $1.00 to each order for postage and handling. Make checks or money orders payable to the Department of Natural Resources. Because we have a limited number of copies, please write or telephone ((206) 459-6372] the Division if you wish to place a large order. The contents of this book are not copyrighted. However, copies may not be reproduced for sale. This book is printed on acid-free paper. Printed in the United States of America. CONTENTS Summary ....... ....... ..... .. .. .. .. .. ... ................................. .. .. ..... .. .. .. l Introduction ... ......... .. .... .. .. .. .. .. ........... .. ............................. ..... .. ... 3 What are earthquakes? ..... ... .. ..... .. .. ........... .. .. .. .. ........................ ... .. ..... 5 How are earthquakes measured? . ....................................................... .... .... 11 What causes earthquakes? .. ... ............................................... ..... ............. 15 Plate tectonics theory .. ... ..................................................... ........ .... 15 Plate tectonics and earthquakes in the northwestern United States ................................. .... 15 Where do earthquakes in Washington occur? ..... .. ....................... ......... .................21 Washington's largest reported earthquakes ............................. .. ........... ............2 1 Earthquakes recorded by the University of Washington seismograph network ............... .. .. .. .. .. .2 1 When and where will the next big earthquake occur? .... ... .. .. ...................... .. ....... .. ... .27 What causes damage? .......... .. .. .. ... .. ... ...... .................... ... .. .. ............ 29 Direct causes . .. .. ... ..................................................... .... .............29 Secondary causes of earthquake damage .... .. ......... .. .................... .. ........ ... 30 Where has earthquake damage occurred in Washington State? ............... ..... .. .. ................. .49 1872 North Cascades earthquake ................................. ..... .. .. .. ............... ... .49 1936 Milton-Freewater earthquake ......................................... .. ... .............. 49 1939 Puget Sound earthquake . .. .. .... .. ............................. .. ............. ..49 1945 Puget/Cascades border region earthquake ........................ .. .. .. .. ...... ...........49 1946 Puget Sound earthquake . ..... ........... ........................ .. .. .. .. ............49 1949 Olympia and 1965 Seattle-Tacoma Puget Sound earthquakes . .. .. ... ......... ........... .. .. 50 How can we reduce earthquake losses in Washington? . .. .. .. .. ... .......... ................ ... ... 53 Understanding earthquake risk . .. .. ... ... .. ........ .......................... .. ...........53 Risk reduction .. ..... ..................................... .... .. ..................... .. .. 59 Risk reduction policy ........................................ ... ........................ ..6 1 Glossary .............. ........ ...................... .........................................63 References cited ....................................... .. ..................... ... .. ...... 67 Selected catalogs containing information about earthquakes in Washington and adjacent areas ...............73 Publications of the Federal Emergency Management Agency ................... ..... ....... ........ 77 ILLUSTRATIONS Figure 1. Block diagrams of fault types .... ....................... .. .. .. ........... .... ........ 5 Figure 2. Diagrams of near-surface ground motions produced by seismic waves . .. ...... .. ... ...... ... ... 6 Figure 3. Map showing location of active seismograph stations in the Pacific Northwest in 1987 . .. ..... .. ...... 7 Figure 4. Sketch of components and dimensions of a typical remost seismograph station . .. ............... ..... 8 Figure 5. Seismograms illustrating the range of ground motions commonly recorded in Washington and Oregon ... : .9 Figure 6. Method for calculating epicentral distance and magnitude of an earthquake ......... ............... 12 Figure 7. Isoseismal map for the Seattle-Tacoma earthquake of 1965 ............. ............... .. .. ..... 14 Figure 8. Map showing relation between major tectonic plates and earthquakes ........... ... .......... 16 Figure 9. Cutaway view of the Earth ............. ......................... .. ... ................... 17 Figure 10. Diagram illustrating three types of plate boundaries ............................... ............ 17 Figure 11. Cross sections of Washington showing plate convergence and earthquake hypocenter locations ...... 18 Figure 12. Map showing epicenters of selected earthquakes in the Pacific Northwest since 1960 . .. .. .......... 19 Figure 13. Map showing epicenters and dates of the largest Pacific Northwest earthquakes between 1872 and 1987 .23 Figure 14. Map showing epicenters of Washington earthquakes recorded from 1982 to 1987 (Mc~ 2.0) ......... 24 iii ILLUSTRATIONS, continued Figure 15. Map showing faults in Washington known to be active or thought to have been active in the last 10,000 years .......................... .. .. ..................... .. .........25 Figure 16. Aerial view of the Saddle Mountain faults near Lake Cushman, Olympic Peninsula ....... .... ... 30 Figure 17. Photograph showing evidence for subsidence in coastal Washington, buried marsh ............... ... 31 Figure 18. Photograph showing evidence for subsidence in coastal Washington, ghost forest ... ............... 31 Figure 19. Photograph of a landslide in fill near Olympia, 1965 .............. ................. ..........32 Figure 20. Photograph of landslide, Tacoma Narrows, 1949 .............................................. 34 Figure 21. Photograph of road damage caused by liquefaction, Olympia, 1965 ........................... .. 34 Figure 22. Photograph of sand blows, Olympia, 1965 . .................. .. ............................... 35 Figure 23. Tide gage records showing tsunami waves from the 1964 Alaska earthquake . ................ ....... 37 Figure 24. Map showing tsunami damage in coastal Washington from the 1964 Alaska earthquake ............38, 39 Figure 25. Photograph of stripped dunes, coastal Washington ............................................. 39 Figure 26. Diagram showing structural components of a building ....... ............ ............. ....... 40 Figure 27. Photograph showing failure of unreinforced masonry during the 1965 earthquake . .. ........... .... .40 Figure 28. Photograph of damage at the Fisher Flouring Mills, 1965 ..... .. ............................... .41 Figure 29. Photograph of collapsed roof, Puyallup High School, 1949 ... .. ............ .. .................. .42 Figure 30. Photograph of a collapsed parapet wall, Olympia, 1949 . .. ........... .........................43 Figure 31. Photograph of a damaged chimney, Kelso, 1949 ......... .................. .. .. ...............44 Figure 32. Photograph of fallen light fixtures in an Olympia school, 1965 . .............. .. ...............44 Fig\Jfe 33. Photograph of fallen library shelves, 1949 ....................................................44 Figure 34. Photograph of Boeing Company tapes scattered by the 1965 earthquake ........... .. ... ......... .45 Figure 35. Photograph of windows broken in a Tacoma store by the 1965 earthquake ........................ .45 Figure 36. Photograph of government files disturbed by the 1965 earthquake ................ .............. .45 Figure 37. Photograph of damaged radio tower, 1949 ................... .. ...............................46 Figure 38. Photograph of damage at Lower Van Norman Dam, California, 1971 ..............................47 Figure 39. Photograph of shifted ground in Seattle, 1965 ............... .. ................ ...............
Recommended publications
  • New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement
    Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 974-1002, August 1994 New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement by Donald L. Wells and Kevin J. Coppersmith Abstract Source parameters for historical earthquakes worldwide are com­ piled to develop a series of empirical relationships among moment magnitude (M), surface rupture length, subsurface rupture length, downdip rupture width, rupture area, and maximum and average displacement per event. The resulting data base is a significant update of previous compilations and includes the ad­ ditional source parameters of seismic moment, moment magnitude, subsurface rupture length, downdip rupture width, and average surface displacement. Each source parameter is classified as reliable or unreliable, based on our evaluation of the accuracy of individual values. Only the reliable source parameters are used in the final analyses. In comparing source parameters, we note the fol­ lowing trends: (1) Generally, the length of rupture at the surface is equal to 75% of the subsurface rupture length; however, the ratio of surface rupture length to subsurface rupture length increases with magnitude; (2) the average surface dis­ placement per event is about one-half the maximum surface displacement per event; and (3) the average subsurface displacement on the fault plane is less than the maximum surface displacement but more than the average surface dis­ placement. Thus, for most earthquakes in this data base, slip on the fault plane at seismogenic depths is manifested by similar displacements at the surface. Log-linear regressions between earthquake magnitude and surface rupture length, subsurface rupture length, and rupture area are especially well correlated, show­ ing standard deviations of 0.25 to 0.35 magnitude units.
    [Show full text]
  • I. Convergent Plate Boundaries (Destructive Margins) (Colliding Plates)
    I. Convergent plate boundaries (destructive margins) (colliding plates) 1. Plates collide, an ocean trench forms, lithosphere is subducted into the mantle 2. Types of convergence—three general classes, created by two types of plates —denser oceanic plate subsides into mantle SUBDUCTION --oceanic trench present where this occurs -- Plate descends angle average 45o a. Oceanic-continental convergence 1. Denser oceanic slab sinks into the asthenosphere—continental plate floats 2. Pockets of magma develop and rise—due to water added to lower part of overriding crust—100-150 km depth 3. Continental volcanic arcs form a. e.g., Andes Low angle, strong coupling, strong earthquakes i. Nazca plate ii. Seaward migration of Peru-Chile trench b. e.g., Cascades c. e.g., Sierra Nevada system example of previous subduction b. Oceanic-oceanic convergence 1. Two oceanic slabs converge HDEW animation Motion at Plate Boundaries a. one descends beneath the other b. the older, colder one 2. Often forms volcanoes on the ocean floor 3. Volcanic island arcs forms as volcanoes emerge from the sea 200-300 km from subduction trench TimeLife page 117 Philippine Arc a. e.g., Aleutian islands b. e.g., Mariana islands c. e.g., Tonga islands all three are young volcanic arcs, 20 km thick crust Japan more complex and thicker crust 20-35 km thick c. Continental-continental convergence— all oceaninc crust is destroyed at convergence, and continental crust remains 1. continental crust does not subside—too buoyant 2. two continents collide—become ‘sutured’ together 3. Can produce new mountain ranges such as the Himalayas II. Transform fault boundaries 1.
    [Show full text]
  • Plate Tectonics Says That Earth’S Plates Move Because of Convection Currents in the Mantle
    Bellringer Which ocean is getting smaller and which ocean is getting bigger due to subduction and sea floor spreading? Plate Tectonic Theory Notes How Plates Move • Earth’s crust is broken into many jagged pieces. The surface is like the shell of a hard-boiled egg that has been rolled. The pieces of Earth’s crust are called plates. Plates carry continents, oceans floors, or both. How Plates Move • The theory of plate tectonics says that Earth’s plates move because of convection currents in the mantle. Currents in the mantle carry plates on Earth’s surface, like currents in water carry boats on a river, or Cheerios in milk. How Plates Move • Plates can meet in three different ways. Plates may pull apart, push together, or slide past each other. Wherever plates meet, you usually get volcanoes, mountain ranges, or ocean trenches. Plate Boundaries • A plate boundary is where two plates meet. Faults form along plate boundaries. A fault is a break in Earth’s crust where blocks of rock have slipped past each other. Plate Boundaries • Where two plates move apart, the boundary is called a divergent boundary. • A divergent boundary between two oceanic plates will result in a mid-ocean ridge AND rift valley. (SEE: Sea-Floor Spreading) • A divergent boundary between two continental plates will result in only a rift valley. This is currently happening at the Great Rift Valley in east Africa. Eventually, the Indian Ocean will pour into the lowered valley and a new ocean will form. Plate Boundaries • Where two plates push together, the boundary is called a convergent boundary.
    [Show full text]
  • Washington State Seismic Mitigation Policy Gap Analysis
    Washington State Seismic Mitigation Policy Gap Analysis A Cross‐State Comparison Scott B. Miles, Ph.D. Brian D. Gouran, L.G. October, 2010 Prepared for Washington State Division of Emergency Management Resilience Institute Working Paper 2010_2 1 Washington State Gap Analysis; S. Miles & B. Gouran Resilience Institute Working Paper 2010_2 October, 2010 This document was prepared under an award from FEMA, Department of Homeland Security. Points of view or opinions expressed in this document are those of the authors and do not necessarily represent the official position or policies of FEMA or the US Department of Homeland Security. Washington State Gap Analysis; S. Miles & B. Gouran Resilience Institute Working Paper 2010_2 October, 2010 EXECUTIVE SUMMARY The purpose of this study is to understand how Washington State compares with other states with respect to state‐level seismic mitigation policies. This facilitates the identification of potential Washington State policy gaps that might be filled with policies similar to those of other states. This study was accomplished by compiling, synthesizing, and analyzing state‐level policies listed in the mitigation plan of 47 states (3 could not be obtained by the completion of the study). A catalog of describing each of the compiled policies – legislation or executive orders – was assembled. A spreadsheet database was created in order to synthesize, search, and analyze the policies. Quantitative analysis was conducted using a cross‐state analysis and two different computed indicators based on seismic risk and policy count. The cross‐state analysis facilitate a broad assessment of Washington State’s policy coverage given its seismic risk, as well as identification of policies from states with more seismic mitigation policies that Washington State.
    [Show full text]
  • Canada's Earthquakes
    Document generated on 09/26/2021 12:45 p.m. Geoscience Canada Canada’s Earthquakes: ‘The Good, the Bad, and the Ugly’ J. F. Cassidy, G. C. Rogers, M. Lamontagne, S. Halchuk and J. Adams Volume 37, Number 1, January 2010 Article abstract Much of Canada is ‘earthquake country’. Tiny earthquakes (that can only be URI: https://id.erudit.org/iderudit/geocan37_1art01 recorded by seismographs) happen every day. On average, earthquakes large enough to be felt occur every week in Canada, damaging earthquakes are years See table of contents to decades apart, and some of the world’s largest earthquakes are typically separated by intervals of centuries. In this article, we provide details on the most significant earthquakes that have been recorded in, or near, Canada, Publisher(s) including where and when they occurred, how they were felt, and the effects of those earthquakes. We also provide a brief review of how earthquakes are The Geological Association of Canada monitored across Canada and some recent earthquake hazard research. It is the results of this monitoring and research, which provide knowledge on ISSN earthquake hazard, that are incorporated into the National Building Code of Canada. This, in turn, will contribute to reduced property losses from future 0315-0941 (print) earthquakes across Canada. 1911-4850 (digital) Explore this journal Cite this article Cassidy, J. F., Rogers, G. C., Lamontagne, M., Halchuk, S. & Adams, J. (2010). Canada’s Earthquakes:: ‘The Good, the Bad, and the Ugly’. Geoscience Canada, 37(1), 1–16. All rights reserved © The Geological Association of Canada, 2010 This document is protected by copyright law.
    [Show full text]
  • Santa Monica Mountains National Recreation Area Geologic Resources Inventory Report
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Santa Monica Mountains National Recreation Area Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2016/1297 ON THE COVER: Photograph of Boney Mountain (and the Milky Way). The Santa Monica Mountains are part of the Transverse Ranges. The backbone of the range skirts the northern edges of the Los Angeles Basin and Santa Monica Bay before descending into the Pacific Ocean at Point Mugu. The ridgeline of Boney Mountain is composed on Conejo Volcanics, which erupted as part of a shield volcano about 15 million years ago. National Park Service photograph available at http://www.nps.gov/samo/learn/photosmultimedia/index.htm. THIS PAGE: Photograph of Point Dume. Santa Monica Mountains National Recreation Area comprises a vast and varied California landscape in and around the greater Los Angeles metropolitan area and includes 64 km (40 mi) of ocean shoreline. The mild climate allows visitors to enjoy the park’s scenic, natural, and cultural resources year-round. National Park Service photograph available at https://www.flickr.com/photos/ santamonicamtns/albums. Santa Monica Mountains National Recreation Area Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2016/1297 Katie KellerLynn Colorado State University Research Associate National Park Service Geologic Resources Division Geologic Resources Inventory PO Box 25287 Denver, CO 80225 September 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics.
    [Show full text]
  • Active Continental Margin
    Encyclopedia of Marine Geosciences DOI 10.1007/978-94-007-6644-0_102-2 # Springer Science+Business Media Dordrecht 2014 Active Continental Margin Serge Lallemand* Géosciences Montpellier, University of Montpellier, Montpellier, France Synonyms Convergent boundary; Convergent margin; Destructive margin; Ocean-continent subduction; Oceanic subduction zone; Subduction zone Definition An active continental margin refers to the submerged edge of a continent overriding an oceanic lithosphere at a convergent plate boundary by opposition with a passive continental margin which is the remaining scar at the edge of a continent following continental break-up. The term “active” stresses the importance of the tectonic activity (seismicity, volcanism, mountain building) associated with plate convergence along that boundary. Today, people typically refer to a “subduction zone” rather than an “active margin.” Generalities Active continental margins, i.e., when an oceanic plate subducts beneath a continent, represent about two-thirds of the modern convergent margins. Their cumulated length has been estimated to 45,000 km (Lallemand et al., 2005). Most of them are located in the circum-Pacific (Japan, Kurils, Aleutians, and North, Middle, and South America), Southeast Asia (Ryukyus, Philippines, New Guinea), Indian Ocean (Java, Sumatra, Andaman, Makran), Mediterranean region (Aegea, Cala- bria), or Antilles. They are generally “active” over tens (Tonga, Mariana) or hundreds (Japan, South America) of millions of years. This longevity has consequences on their internal structure, especially in terms of continental growth by tectonic accretion of oceanic terranes, or by arc magmatism, but also sometimes in terms of continental consumption by tectonic erosion. Morphology A continental margin generally extends from the coast down to the abyssal plain (see Fig.
    [Show full text]
  • Earthquake Losses to Single-Family Dwellings: California Experience
    Earthquake Losses to Single-Family Dwellings: California Experience U.S. GEOLOGICAL SURVEY BULLETIN 1939-A Prepared in cooperation with the State of California Department of Insurance /§ L ---. =. i wt. 9<m III Cover: Damage caused by the 1933 Long Bench California, earthquake. Photograph by Harold Er^le, 1933. Chapter A Earthquake Losses to Single-Family Dwellings: California Experience By KARL V. STEINBRUGGE and ST. ALGERMISSEN Prepared in cooperation with the State of California Department of Insurance U.S. GEOLOGICAL SURVEY BULLETIN 1939 ESTIMATION OF EARTHQUAKE LOSSES TO HOUSING IN CALIFORNIA DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. UNITED STATES GOVERNMENT PRINTING OFFICE: 1990 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Catalog-in-Publication Data Steinbrugge, Karl V. Earthquake losses to single-family dwellings. (U.S. Geological Survey bulletin ; 1939-A) (Estimation of earthquake losses to housing in California) "Prepared in cooperation with the State of California Department of Insurance." Includes bibliographical references. Supt. of Docs, no.: I 19.3:1939-A 1. Insurance, Earthquake California. 2. Earthquakes California. I. Algermissen, Sylvester Theodore, 1932- . II. California. Dept. of Insurance. III. Title. IV. Series. V. Series:
    [Show full text]
  • Copyright © by SIAM. Unauthorized Reproduction of This Article Is Prohibited. 82 PHILIPPE GUYENNE and DAVID P
    SIAM J. SCI. COMPUT. c 2007 Society for Industrial and Applied Mathematics Vol. 30, No. 1, pp. 81–101 A HIGH-ORDER SPECTRAL METHOD FOR NONLINEAR WATER WAVES OVER MOVING BOTTOM TOPOGRAPHY∗ † ‡ PHILIPPE GUYENNE AND DAVID P. NICHOLLS Abstract. We present a numerical method for simulations of nonlinear surface water waves over variable bathymetry. It is applicable to either two- or three-dimensional flows, as well as to either static or moving bottom topography. The method is based on the reduction of the problem to a lower-dimensional Hamiltonian system involving boundary quantities alone. A key component of this formulation is the Dirichlet–Neumann operator which, in light of its joint analyticity properties with respect to surface and bottom deformations, is computed using its Taylor series representation. We present new, stabilized forms for the Taylor terms, each of which is efficiently computed by a pseu- dospectral method using the fast Fourier transform. Physically relevant applications are displayed to illustrate the performance of the method; comparisons with analytical solutions and laboratory experiments are provided. Key words. gravity water waves, bathymetry, pseudospectral methods, Dirichlet–Neumann operators, boundary perturbations AMS subject classifications. 76B15, 76B07, 65M70, 35S30 DOI. 10.1137/060666214 1. Introduction. Accurate modeling of surface water wave dynamics over bot- tom topography is of great importance to coastal engineers and has drawn considerable attention in recent years. Here are just a few applications: linear [16, 33] and nonlinear wave shoaling [25, 24, 28, 27], Bragg reflection [35, 15, 36, 14, 30, 33, 4], harmonic wave generation [3, 17, 18], and tsunami generation [37, 22].
    [Show full text]
  • Draft Minority Report to “Improving Natural Gas Safety in Earthquakes”
    Draft Minority Report to “Improving natural gas safety in earthquakes,” Prepared by Carl L. Strand For the ASCE-25 Task Committee on Earthquake Safety Issues for Gas Systems and the California Seismic Safety Commission July 10, 2002 I appreciate the opportunity of serving as a Member of the ASCE-25 Task Committee on Earthquake Safety Issues for Gas Systems. Ours was a consensus committee in the sense that efforts were made to achieve a consensus among the members on the wording of the Committee’s reports, which include a 1-page insert for the Seismic Safety Commission’s (SSC’s) “Homeowners’ guide to earthquake safety,” and a 40—50 page report. However, as is often the case with consensus committees, there was considerable disagreement on many of the issues that were raised. It is traditional in such cases for those in the minority to express their disagreements in a minority report, which is published at the end of the report that was approved by the majority. The Forward to this minority report—submitted as a letter to the SSC on June 26, 2002—summarizes my deep concerns about the majority report and the insert to the homeowners’ guide. This is a first draft of the minority report. It is my intention to revise it following the Hearing on July 11th, which will give me an opportunity to correct any errors, incorporate any additional comments raised during the Hearing that I believe should be included, and consider any suggestions that are made that might improve the document. If the majority report is revised, I may find it appropriate to delete certain sections of the minority report.
    [Show full text]
  • Fragility Functions of Manufactured Houses Under Earthquake Loads
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Civil and Environmental Engineering Theses, Dissertations, and Student Research Civil and Environmental Engineering 7-2021 Fragility Functions of Manufactured Houses under Earthquake Loads Shuyah Tani Aurore Ouoba University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/civilengdiss Part of the Civil Engineering Commons, Other Civil and Environmental Engineering Commons, and the Structural Engineering Commons Ouoba, Shuyah Tani Aurore, "Fragility Functions of Manufactured Houses under Earthquake Loads" (2021). Civil and Environmental Engineering Theses, Dissertations, and Student Research. 170. https://digitalcommons.unl.edu/civilengdiss/170 This Article is brought to you for free and open access by the Civil and Environmental Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Civil and Environmental Engineering Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FRAGILITY FUNCTIONS OF MANUFACTURED HOUSES UNDER EARTHQUAKE LOADS by Shuyah T. A. Ouoba A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Civil Engineering Under the Supervision of Professor Christine E. Wittich Lincoln, Nebraska July, 2021 FRAGILITY FUNCTIONS OF MANUFACTURED HOUSES UNDER EARTHQUAKE LOADS Shuyah T. A. Ouoba, M.S University of Nebraska, 2021 Advisor: Christine E. Wittich Manufactured homes are factory-built homes made of wooden structural members, then transported and installed on a given site. Manufactured housing is used in many countries, such as in Australia, and in New Zealand but remain mostly popular in the United States.
    [Show full text]
  • Engineering Geology in Washington, Volume I Washington Diviaion of Geology and Euth Resources Bulletin 78
    ENGINEERING GEOLOGY IN WASHINGTON Volume I RICHARD W. GALSTER, Chairman Centennial Volume Committee Washington State Section, Association of Engineering Geologists WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES BULLETIN 78 1989 Prepared in cooperation with the Washington State Section of the A~ociation or Engineering Geologists ''WNatural ASHINGTON STATE Resources DEPARTMENT OF Brian Boyle • Commlssloner 01 Public Lands Ari Stearns - Sup,,rvuor Division of Geology and Earth Resources Raymond LcumanJs. Slate Geologist The use of brand or trade names in this publication is for pur­ poses of identification only and does not constitute endorsement by the Washington Division of Geology and Earth Resources or the Association of Engineering Geologists. This report is for sale (as the set of two volumes only) by: Publications Washington Department of Natural Resources Division of Geology and Earth Resources Mail Stop PY-12 Olympia, WA 98504 Price $ 27.83 Tax 2.17 Total $ 30.00 Mail orders must be prepaid; please add $1.00 to each order for postage and handling. Make checks or money orders payable to the Department of Natural Resources. This publication is printed on acid-free paper. Printed in the United States of America. ii VOLUME I DEDICATION . ................ .. .. ...... ............ .......................... X FOREWORD ........... .. ............ ................... ..... ................. xii LIST OF AUTHORS ............................................................. xiv INTRODUCTION Engineering Geology in Washington: Introduction Richard W. Galster, Howard A. Coombs, and Howard H. Waldron ................... 3 PART I: ENGINEERING GEOLOGY AND ITS PRACTICE IN WASHINGTON Geologic Factors Affecting Engineered Facilities Richard W. Galster, Chapter Editor Geologic Factors Affecting Engineered Facilities: Introduction Richard W. Galster ................. ... ...................................... 17 Geotechnical Properties of Geologic Materials Jon W. Koloski, Sigmund D. Schwarz, and Donald W.
    [Show full text]