INTERNATIONAL MAGAZINE on SEA Andldsidlm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Memoirs of the National Museum of Victoria 31
^MEMOIRS of the NATIONAL I MUSEUM of VICTORIA 18 May 1970 %^ Registered at the G.P.O., Me MEMOIRS of the NATIONAL MUSEUM OF VICTORIA MELBOURNE AUSTRALIA No. 31 Director J. McNally Deputy Director and Editor Edmund D. Gill PUBLISHED BY ORDER OF THE TRUSTEES 18 MAY 1970 NATIONAL MUSEUM OF VICTORIA Trustees Sir Robert Blackwood, MCE BEE FIE Aust (Chairman) Henry G. A. Osborne, BAgrSc (Deputy Chairman) James C. F. Wharton, BSc (Treasurer) Professor E. S. Hills, PhD (Lond) Hon DSc (Dunelm) DSc FIC FAA FRS Professor S. Sunderland, CMG MD BS DSc FRACP FRACS FAA The Hon. Sir Alistair Adam, MA LLM Sir Henry Somerset, CBE MSc FRACI MAIMM W. L. Drew, Secretary to Trustees Staff Director: John McNally, ED MSc Deputy Director: Edmund D. Gill, BA BD FGS FRGS Administration: A. G. Parsons (in charge) D. E. Quinn E. J. Peat G. H. Russell Patricia Rogers Nancie Wortley Gwenda Bloom Scientific Staff Geology and Palaeontology: Curator of Fossils: T. A. Darragh, MSc DipEd Curator of Minerals: A. W. Beasley, MSc PhD DIC Assistant Curator of Fossils: K. N. Bell, BSc DipEd Assistant: R. J. Evans Vertebrate Zoology: BSc (Hons) Curator of Vertebrates : Joan M. Dixon, Curator of Birds: A. R. McEvey, BA Assistant: A. J. Coventry Invertebrate Zoology: Curator of Insects: A. Neboiss, MSc FRES Curator of Invertebrates: B. J. Smith, BSc PhD Assistants: Elizabeth M. Matheson Ryllis J. Plant Anthropology: Curator of Anthropology: A. L. West, BA Dip Soc Stud Assistant: J. A. S. Holman Library: Librarian: Joyce M. Shaw, BA Assistant: Margret A. Stam, DipFDP Display and Preparation Staff: G. -
Identification of Shell Colour Pigments in Marine Snails Clanculus Pharaonius and C
RESEARCH ARTICLE Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda) S. T. Williams1*, S. Ito2, K. Wakamatsu2, T. Goral3, N. P. Edwards4, R. A. Wogelius4, T. Henkel4, L. F. C. de Oliveira5, L. F. Maia5, S. Strekopytov3, T. Jeffries3†, D. I. Speiser6,J. T. Marsden7 1 Natural History Museum, Department of Life Sciences, London, United Kingdom, 2 Department of Chemistry, Fujita Health University School of Health Sciences, 1–98 Dengakugakubo, Kutsukake-cho, a11111 Toyoake, Aichi, Japan, 3 Natural History Museum, Imaging and Analysis Centre, London, United Kingdom, 4 School of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester, United Kingdom, 5 NEEM Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil, 6 Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America, 7 Viapath, Reference Biochemistry Laboratories, King's College Hospital, London, United Kingdom † Deceased. OPEN ACCESS * [email protected] Citation: Williams ST, Ito S, Wakamatsu K, Goral T, Edwards NP, Wogelius RA, et al. (2016) Identification of Shell Colour Pigments in Marine Snails Clanculus Abstract pharaonius and C. margaritarius (Trochoidea; Gastropoda). PLoS ONE 11(7): e0156664. Colour and pattern are key traits with important roles in camouflage, warning and attraction. doi:10.1371/journal.pone.0156664 Ideally, in order to begin to understand the evolution and ecology of colour in nature, it is Editor: Geerat J. Vermeij, University of California, important to identify and, where possible, fully characterise pigments using biochemical UNITED STATES methods. -
Abbreviation Kiel S. 2005, New and Little Known Gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar
1 Reference (Explanations see mollusca-database.eu) Abbreviation Kiel S. 2005, New and little known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar. AF01 http://www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/ForschungImadagaskar.htm (11.03.2007, abstract) Bandel K. 2003, Cretaceous volutid Neogastropoda from the Western Desert of Egypt and their place within the noegastropoda AF02 (Mollusca). Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 87, p 73-98, 49 figs., Hamburg (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Kiel S. & Bandel K. 2003, New taxonomic data for the gastropod fauna of the Uzamba Formation (Santonian-Campanian, South AF03 Africa) based on newly collected material. Cretaceous research 24, p. 449-475, 10 figs., Elsevier (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Emberton K.C. 2002, Owengriffithsius , a new genus of cyclophorid land snails endemic to northern Madagascar. The Veliger 45 (3) : AF04 203-217. http://www.theveliger.org/index.html Emberton K.C. 2002, Ankoravaratra , a new genus of landsnails endemic to northern Madagascar (Cyclophoroidea: Maizaniidae?). AF05 The Veliger 45 (4) : 278-289. http://www.theveliger.org/volume45(4).html Blaison & Bourquin 1966, Révision des "Collotia sensu lato": un nouveau sous-genre "Tintanticeras". Ann. sci. univ. Besancon, 3ème AF06 série, geologie. fasc.2 :69-77 (Abstract). www.fossile.org/pages-web/bibliographie_consacree_au_ammon.htp (20.7.2005) Bensalah M., Adaci M., Mahboubi M. & Kazi-Tani O., 2005, Les sediments continentaux d'age tertiaire dans les Hautes Plaines AF07 Oranaises et le Tell Tlemcenien (Algerie occidentale). -
Identification of Haem Pathway Genes Associated with the Synthesis of Porphyrin Shell Color in Marine Snails
Colorful seashells: Identification of haem pathway genes Title associated with the synthesis of porphyrin shell color in marine snails Williams, Suzanne T.; Lockyer, Anne E.; Dyal, Patricia; Author(s) Nakano, Tomoyuki; Churchill, Celia K. C.; Speiser, Daniel I. Citation Ecology and Evolution (2017), 7(23): 10379-10397 Issue Date 2017-12 URL http://hdl.handle.net/2433/259324 © 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the Right terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University Received: 4 August 2017 | Revised: 19 September 2017 | Accepted: 20 September 2017 DOI: 10.1002/ece3.3552 ORIGINAL RESEARCH Colorful seashells: Identification of haem pathway genes associated with the synthesis of porphyrin shell color in marine snails Suzanne T. Williams1 | Anne E. Lockyer2 | Patricia Dyal3 | Tomoyuki Nakano4 | Celia K. C. Churchill5 | Daniel I. Speiser6 1Department of Life Sciences, Natural History Museum, London, UK Abstract 2Institute of Environment, Health and Very little is known about the evolution of molluskan shell pigments, although Societies, Brunel University London, Uxbridge, Mollusca is a highly diverse, species rich, and ecologically important group of animals UK comprised of many brightly colored taxa. The marine snail genus Clanculus was cho- 3Core Research Laboratories, Natural History Museum, -
Ecological Functions of Tetrodotoxin in a Deadly Polyclad Flatworm
Ecological functions of tetrodotoxin in a deadly polyclad flatworm Raphael Ritson-Williams*†, Mari Yotsu-Yamashita‡, and Valerie J. Paul* *Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, FL 34949; and ‡Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved November 21, 2005 (received for review July 19, 2005) The deadly neurotoxin tetrodotoxin (TTX) is found in a variety of Table 1. Species eaten͞not eaten by planocerid sp. 1 animal phyla and, because of its toxicity, is most often assumed to Family Genus and species deter predation. On the tropical Pacific island of Guam, we found an undescribed flatworm (planocerid sp. 1) that contains high Arcidae Barbatia tenella (2) levels of TTX and its analogs. Through ecological experiments, we Buccinidae Cantharus undosus (1) show that TTXs do not protect these flatworms from some pred- Trochidae Clanculus atropurpureus (2) ators but instead are used to capture mobile prey. TTX is known to Cypraeidae Cypraea annulus (1) have multiple ecological functions, which has probably led to its Cypraeidae Cypraea caputserpentis (3) widespread presence among prokaryotes and at least 10 metazoan Cypraeidae Cypraea carneola (1) phyla. Cypraeidae Cypraea cribraria (1) Cypraeidae Cypraea erosa (2) prey-capture ͉ chemical ecology Cypraeidae Cypraea fimbriata (5) Cypraeidae Cypraea helvola (4) Cypraeidae Cypraea isabella (3) he ecological functions of tetrodotoxin (TTX, Fig. 1a) and its Cypraeidae Cypraea moneta (10) analogs have rarely been tested even though it has been T Cypraeidae Cypraea punctata (3) isolated and characterized since 1965 (1; reviewed in ref. -
The Biodiversity of Marine Gastropods of Thailand in the Late Decade
Malaysian Journal of Science 32 (SCS Sp Issue) : 47-64 (2013) The Biodiversity of Marine Gastropods of Thailand in the Late Decade. Kitithorn Sanpanich1*and Teerapong Duangdee2 1Institute of Marine Science, Burapha University, Tambon Saensook, Amphur Moengchonburi, Chonburi, 20131 Thailand. 2Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900 Thailand. *[email protected] (Corresponding author) ABSTRACT This study is mainly based on the collection of marine gastropods along the east coast of the Gulf of Thailand which had been carried out along the coastline in 55 sites from the province of Chonburi to Trad during April 2005 – December 2009. As many habitats as possible were examined at each sites from sandy beaches, muddy sand, rocky shore, and coral reefs. A total of 306 species of gastropods were collected and had been classifi ed in53families 116genera.The most widespread species were Planaxis sulcatus (Planaxidae) and Polinices mammilla (Naticidae) found in 37 sites, followed by Echinolittorina malaccana (Littorinidae) in 35 sites. The highest diversity was 187 species in Trat whereas Koh Mark had the most abundance in this area. The lowest diversity was in Chanthaburi, 88 species, whereas Koh Nomsoa was the most abundant site.The diversity of gastropods in Chonburi was 152 species, whereas Koh Samaesarn and Koh Juang were the most abundant site. 137 species had been found in Rayong and Koh Munnai was the most abundant site. The data from this study had been compared with the resent studies in the late decade from the west coast of the Gulf of Thailand and Andaman Sea.The total gastropods in the late decade were 454 species 205 genera 69 families. -
Mollusca) in the Coastal Waters of the North Aegean Sea (Edremit Bay-Dardanelles)
Indian Journal of Geo Marine Sciences Vol. 47 (04), April 2018, pp. 877-883 Distribution and ecology of prosobranch gastropods (mollusca) in the coastal waters of the north aegean sea (edremit bay-dardanelles) Mehmet Culha1* & Muharrem Emre Sahin2 1Department of Hydrobiology, Faculty of Fisheries, Izmir Katip Celebi University, Balatcık, Cigli, Izmir/Turkey 2Fisheries and Aquaculture division, Mugla Dırectorate of Provincial Food Agriculture and Livestock, Mentese, Mugla/Turkey *[E.Mail: [email protected]] Received 08 June 2016; revised 04 October 2016 The highest number of species and individual is at Ayvalik station with a number of 29 species and 773 individuals, and the lowest number of species and specimens was recorded in Altinoluk with a number of 15 and 220, respectively. Yet, Bittium reticulatum is the most common species with 444 number of individuals and Alvania discors, Cerithiopsis pulvis, Clanculus corallinus, Galeodea echinophora, Scripta Mitrella are the least common type of species with a one individual for each one. Ecologies, distributions and seasonal comparisons of species; similarity analyses, physicochemical variables of stations and seasons; and index of diversity were also reported in the present study. [Keywords: Prosobranchia; Gastropoda; community structure; Edremit bay; Dardanelles] Introduction class Gastropoda (706 species), followed by Bivalvia In the Mediterranean Sea, benthic mollusk have (279 species), Cephalopoda (50 species), been used as descriptors of the sublittoral soft bottom Polyplacophora (17 species), Scaphopoda (10 benthic communities in association with their species), Caudofoveata (2species) and Solenogastres ecological relevance to water quality variations from (1species). Among the coasts of Turkey, the highest unpolluted to moderately and grossly polluted bays number of molluscan species was recorded from the with the impact of hypoxia and sedimentation linked Aegean Sea (825 species)5. -
Checklist of the Mollusca of Cocos (Keeling) / Christmas Island Ecoregion
RAFFLES BULLETIN OF ZOOLOGY 2014 RAFFLES BULLETIN OF ZOOLOGY Supplement No. 30: 313–375 Date of publication: 25 December 2014 http://zoobank.org/urn:lsid:zoobank.org:pub:52341BDF-BF85-42A3-B1E9-44DADC011634 Checklist of the Mollusca of Cocos (Keeling) / Christmas Island ecoregion Siong Kiat Tan* & Martyn E. Y. Low Abstract. An annotated checklist of the Mollusca from the Australian Indian Ocean Territories (IOT) of Christmas Island (Indian Ocean) and the Cocos (Keeling) Islands is presented. The checklist combines data from all previous studies and new material collected during the recent Christmas Island Expeditions organised by the Lee Kong Chian Natural History Museum (formerly the Raffles Museum of Biodiversty Resarch), Singapore. The checklist provides an overview of the diversity of the malacofauna occurring in the Cocos (Keeling) / Christmas Island ecoregion. A total of 1,178 species representing 165 families are documented, with 760 (in 130 families) and 757 (in 126 families) species recorded from Christmas Island and the Cocos (Keeling) Islands, respectively. Forty-five species (or 3.8%) of these species are endemic to the Australian IOT. Fifty-seven molluscan records for this ecoregion are herein published for the first time. We also briefly discuss historical patterns of discovery and endemism in the malacofauna of the Australian IOT. Key words. Mollusca, Polyplacophora, Bivalvia, Gastropoda, Christmas Island, Cocos (Keeling) Islands, Indian Ocean INTRODUCTION The Cocos (Keeling) Islands, which comprise North Keeling Island (a single island atoll) and the South Keeling Christmas Island (Indian Ocean) (hereafter CI) and the Cocos Islands (an atoll consisting of more than 20 islets including (Keeling) Islands (hereafter CK) comprise the Australian Horsburgh Island, West Island, Direction Island, Home Indian Ocean Territories (IOT). -
Chitons and Gastropods (Haliotidae Through Adeorbidae) from the Western Pacific Islands
Chitons and Gastropods (Haliotidae Through Adeorbidae) From the Western Pacific Islands GEOLOGICAL SURVEY PROFESSIONAL PAPER 531 Chitons and Gastropods (Haliotidae Through Adeorbidae) From the Western Pacific Islands By HARRY S. LADD GEOLOGICAL SURVEY PROFESSIONAL PAPER 531 Description and preliminary paleoecologic in terpretations of fossil moll usks from seven island groups UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library ut' Oongivw, catalog-curd Xo. GS 66-257 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.25 (paper cover) CONTENTS Page Page Abstract ________________ __ - 1 Paleontology Continued Introduction - 1 Paleoecology ____ 11 Area and localities 1 Faunal relations _ 15 Purpose and scope ____ .. - 1 Systematic paleontology . 20 Earlier references to fossil mollusks _______ ______ 3 Chitons ________ - 21 Palau ____________________________- 3 Schizochitonidae _ _ 21 Mariana Islands ___________________ 3 Chitonidae _______________ ______ 23 Marshall Islands __________ _ _ 3 Acanthochitonidae _ ___ 24 Ellice Islands _____________________ 3 Gastropods ______ 25 Funafuti ________________________. 3 Haliotidae _ 25 Scissurellidae .. 26 New Hebrides _____________________ 3 Fissurellidae ________ 27 Fiji ______________________________ 4 Patellidae __________________-_ 32 Tonga ____________________________ 5 Trochidae ____________-__ - 33 Collections __________________________ 5 Stomatellidae ________ . 41 Acknowledgments _______-_______________ 6 Angariidae (Delphinulidae) 42 Geology ________________________________ 6 Turbinidae _______ - 43 Stratigraphy _________. 6 Phasianellidae ________ _ _ 53 Eocene ____________. Neritopsidae ______________ _ 55 Oligocene ____________ Neritidae _______________________- 55 Miocene ___________. Littorinidae _ 59 Iravadiidae ________________ ___ 59 Post-Miocene ________. Rissoidae ______________________ 60 Pliocene ________. -
Prosobranch Gastropods of Guam
Micronesica 35-36:244-270. 2003 Prosobranch gastropods of Guam BARRY D. SMITH Marine Laboratory University of Guam Mangilao, Guam 96923 U.S.A. email: [email protected] Abstract—Based on records from invertebrate collections at the University of Guam, specimens cataloged at other institutions, and the published literature, there are 895 species of prosobranch gastropods from Guam. The vast majority of the species are marine, but terrestrial and aquatic prosobranchs are included. Most the species recorded to date are conspicuous, epibenthic species from shallow reef habitats, but some species have been taken from depths up to 400 m. Microgastropods less than 7 mm in size have been poorly investigated to date. Comparison of prosobranch gastropods from Guam and Enewetak reveal that some 56% of the species occurring at Enewetak are found in Guam. Introduction Molluscs have been collected in Guam since the arrival of the earliest inhabitants (Thompson, 1945). Despite the long history of European contact with the island, scant attention was given to systematic investigation of the fauna until the collections of Quoy and Gaimard (1824–1826; 1830–1834). Hidalgo (1904– 1905) was the first to produce a catalog that included molluscs from Guam, but his emphasis was mostly on the Philippine Islands fauna. This catalog was followed by a series of unpublished lists produced by shell collectors and shell club members during the last several decades. Synoptic collections of molluscs from Guam and Micronesia were started by faculty of the University of Guam in the mid-1960s. These collections are housed in the Richard E. Dickinson Memorial Mollusc Collection at the University of Guam Marine Laboratory. -
Introduced Marine and Estuarine Mollusks of North America: an End-Of-The-20Th-Century Perspective
Journal of Shellfish Research, Vol. 11. N o. 2. 489-505. 1992 INTRODUCED MARINE AND ESTUARINE MOLLUSKS OF NORTH AMERICA: AN END-OF-THE-20TH-CENTURY PERSPECTIVE JAMES T. CARLTON Maritime Studies Program Williams College-Mystic Seaport 50 Greenmanville Avenue Mystic, Connecticut 06355 ABSTRACT A review of the introduced marine and estuarine (brackish water) bivalves and prosobranch and pulmonate gastropods of the Atlantic, Gulf and Pacific coasts of North America reveals an established fauna of 36 non-indigenous species. Sixteen species are native to temperate or tropical coasts of North America, and have been transported to regions of the continent where they did not occur in historical time; the remaining 20 species are from Europe, the Mediterranean, South America, the Indo-Pacific, and the northwestern Pacific. The movement of Pacific (Japanese) and Atlantic commercial oysters to the Pacific coast, and ship fouling, boring, and ballast water releases, have been the primary human-mediated dispersal mechanisms. Regional patterns are striking: 30 species are established on the Pacific coast, 8 on the Atlantic coast, and 1 on the Gulf coast (three species occur on both coasts); 19 (63%) of the Pacific species occur in San Francisco Bay alone. These patterns may be linked to a combination of human-mediated dispersal mechanisms and regional geological-biological Pleistocene history: at least 27 species of Japanese and Atlantic coast mollusks were introduced to the American Pacific coast by the oyster industry, in large part into geologically young regions with low native molluscan diversity. With the exception of a few species, there is little experimental elucidation of the ecological impact of the introduced marine mollusks in North America. -
Trochidae (Archaeogastropoda) from the Campanian of Torallola in Northern Spain
Trochidae (Archaeogastropoda) from the Campanian of Torallola in northern Spain Geologisch-Paliiontologisches Institut und Museum, Universitiit Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany. E-mail.·[email protected];[email protected] KrEL, S. & BANDEL, K. 2001. Trochidae (Archaeogastropoda) from the Campanian of Torallola in nothern Spain. Acta Geologica Polonica, Sl (2), 137-154. Warszawa 30 species of the archaeogastropod family Trochidae are described from the Campanian of the southern Pyrenees, 15 of them are new. The new genus Amphigibbula is introduced and the genus Chilodontoidea is renamed as Hudledonta. Apparently several trochid lineages with living species can be traced back into the Late Cretaceous. This regards the Eucyclinae, Margaritinae, and Solariellinae, and the Tegulinae with some reservations. Among the groups examined here, only the members of the Trochinae appear to be of rather different character than their mod- ern representatives. The fossil record of the Umboniinae can go far beyond that of the Late Cretaceous and connect even to Palaeozoic genera. The 15 new species are: Eucyclomphalus reminiscencius, Calliotropis torallolensis, Calliotropis seguris, Ilerdus pyrenaeus, Eucycloscala cretacea, Hudledonta nicolae, Danilia kosslerae, Margarites kasei, Margarites nielseni, Margarites kowalkei, Tectus quinteroi, Thoristella marshalli, Suavotrochus ponsi, Ethalia vinxae, and Protorotella herberti. is not infrequently the case in the carbonate environment, rock diagenesis usually has resulted in a hard limestone, The Late Cretaceous was a time when numerous from which fossils are difficult to extract. modem gastropod groups made their first appearance The sediments of the Puimanyons Olisthostrom and subsequently radiated (SOHL 1987). In contrast, near Torallola in northern Spain are the result of a archaeogastropods of this period are rarely described and series of events when entire shorelines became instable, reports on them are scattered throughout the literature.