Identification of Shell Colour Pigments in Marine Snails Clanculus Pharaonius and C

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Shell Colour Pigments in Marine Snails Clanculus Pharaonius and C RESEARCH ARTICLE Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda) S. T. Williams1*, S. Ito2, K. Wakamatsu2, T. Goral3, N. P. Edwards4, R. A. Wogelius4, T. Henkel4, L. F. C. de Oliveira5, L. F. Maia5, S. Strekopytov3, T. Jeffries3†, D. I. Speiser6,J. T. Marsden7 1 Natural History Museum, Department of Life Sciences, London, United Kingdom, 2 Department of Chemistry, Fujita Health University School of Health Sciences, 1–98 Dengakugakubo, Kutsukake-cho, a11111 Toyoake, Aichi, Japan, 3 Natural History Museum, Imaging and Analysis Centre, London, United Kingdom, 4 School of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester, United Kingdom, 5 NEEM Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil, 6 Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America, 7 Viapath, Reference Biochemistry Laboratories, King's College Hospital, London, United Kingdom † Deceased. OPEN ACCESS * [email protected] Citation: Williams ST, Ito S, Wakamatsu K, Goral T, Edwards NP, Wogelius RA, et al. (2016) Identification of Shell Colour Pigments in Marine Snails Clanculus Abstract pharaonius and C. margaritarius (Trochoidea; Gastropoda). PLoS ONE 11(7): e0156664. Colour and pattern are key traits with important roles in camouflage, warning and attraction. doi:10.1371/journal.pone.0156664 Ideally, in order to begin to understand the evolution and ecology of colour in nature, it is Editor: Geerat J. Vermeij, University of California, important to identify and, where possible, fully characterise pigments using biochemical UNITED STATES methods. The phylum Mollusca includes some of the most beautiful exemplars of biological Received: March 17, 2016 pigmentation, with the vivid colours of sea shells particularly prized by collectors and scien- Accepted: May 17, 2016 tists alike. Biochemical studies of molluscan shell colour were fairly common in the last cen- Published: July 1, 2016 tury, but few of these studies have been confirmed using modern methods and very few shell pigments have been fully characterised. Here, we use modern chemical and multi- Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, modal spectroscopic techniques to identify two porphyrin pigments and eumelanin in the transmitted, modified, built upon, or otherwise used shell of marine snails Clanculus pharaonius and C margaritarius. The same porphyrins were by anyone for any lawful purpose. The work is made also identified in coloured foot tissue of both species. We use high performance liquid chro- available under the Creative Commons CC0 public matography (HPLC) to show definitively that these porphyrins are uroporphyrin I and uro- domain dedication. porphyrin III. Evidence from confocal microscopy analyses shows that the distribution of Data Availability Statement: All relevant data are porphyrin pigments corresponds to the striking pink-red of C. pharaonius shells, as well as within the paper and its Supporting Information files. pink-red dots and lines on the early whorls of C. margaritarius and yellow-brown colour of Funding: STW gratefully acknowledges financial later whorls. Additional HPLC results suggest that eumelanin is likely responsible for black support from the Department of Life Sciences, Natural History Museum. LFCO and LFM thank the spots. We refer to the two differently coloured porphyrin pigments as trochopuniceus (pink- Brazilian agencies CNPq, CAPES and FAPEMIG for red) and trochoxouthos (yellow-brown) in order to distinguish between them. Trochopuni- financial support. STW’s visit to the King Abdullah ceus and trochoxouthos were not found in the shell of a third species of the same superfam- University of Science and Technology was funded by ily, Calliostoma zizyphinum, despite its superficially similar colouration, suggesting that this KAUST awards CRG-1-2012-BER-002 and 59130357 (to M.L. Berumen). DIS acknowledges species has different shell pigments. These findings have important implications for the funding from the National Science Foundation (IOS- study of colour and pattern in molluscs specifically, but in other taxa more generally, since 1457148). We acknowledge the Diamond Light PLOS ONE | DOI:10.1371/journal.pone.0156664 July 1, 2016 1/25 Identification of Gastropod Shell Pigments Source for synchrotron access granted under this study shows that homology of visible colour cannot be assumed without identification of proposal SP9488 and NPE is funded by NERC grant pigments. NE/J023426/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The remaining authors received no specific funding for this work. Introduction Competing Interests: The authors have declared that no competing interests exist. Colour plays an important role in the survival of many species, specifically in mate attraction, signalling, camouflage, thermoregulation, immunity and strengthening [1–4]. Colour can also offer a visible link between an external phenotype and its corresponding genotype, providing a model for the exploration of fundamental evolutionary processes [2]. In order to study how colour and pattern have evolved in any organism it is imperative to know which pigments are responsible for colouration and how these pigments originate [4–6]. There are several classes of biological pigments, and each can give rise to a range of colours that overlaps with those pro- duced by other pigment classes [4, 7]. As such, it is not possible to identify the pigment classes present in any organism purely by its visible colour, making it essential to identify pigments biochemically to avoid mistaking homoplasy for homology. Once a pigment is known, molecu- lar studies can be more targeted in identifying genes associated with its pigment [4]. Molluscs are often renowned for their highly colourful shells, and shell colour and pattern have proved to be highly tractable markers for use in studies on natural selection, in part because shells and shell fragments can be easily collected [4] (e.g. [8]). Recently, there has been growing interest in the molecular origins of shell colour (e.g. [9–12]). The biochemical nature of shell pigments was investigated by a number of researchers towards the end of the 1800s, reaching a peak in terms of number of studies in the mid-1900s (e.g. [5, 13–24]). Older studies identified two main classes of shell pigments: melanins and tetrapyrroles (which include por- phyrins and linear tetrapyrroles known as bile pigments or bilins) along with a number of other pigments that could not be fully characterised, some of which were complexed to pro- teins. More recent chemical studies are scarce, but have confirmed the presence of porphyrins, bilins and incompletely characterised pigments identified only as polyenes (organic com- pounds containing multiple double bonds) (e.g. [24–26]). However, the extraction and identification of pigments is extremely difficult. For example, in one recent study, more than 30 kg of shells of Haliotis discus hannai were required to obtain only 2.7 mg of purified pigment [24]. Such studies are likely only possible for species that are very large or the target of aquaculture (as in the case of Haliotis). In part because of the difficul- ties associated with chemical identification of shell pigments, many recent studies of shell pig- mentation have focused on using Resonance Raman Microspectrometry to examine whole shells. These studies have also found polyenes or polyenes bound to other molecules in shells, which are usually described as carotenoids, and occasionally as psittacofulvins (e.g. [7, 27–30]). Although little is known about the evolution of pigments in molluscs, it seems likely that pigment types are distributed in a phylogenetically relevant manner ([4, 15] and references therein). For instance, tetrapyrrole pigments such as porphyrins and bilins occur most com- monly in vetigastropods and have not been found in the shells of freshwater gastropods (other than some neritids) or land snails [20]. Conversely, polyenes (mostly thought to be caroten- oids) have been identified by Raman Microspectrometry primarily in shells of caenogastro- pods, hetereobranch gastropods and unionid bivalves [28, 29, 31–34]. In this study we use a variety of chemical and multi-modal spectroscopic techniques to iden- tify and characterise as fully as possible shell pigments in two nominal species of the vetigastro- pod genus, Clanculus (Trochoidea; Trochidae): Clanculus margaritarius (Philippi, 1846) (Fig 1A and 1B) and C. pharaonius (Linnaeus, 1758) (Fig 1C). Clanculus pharaonius shells are a PLOS ONE | DOI:10.1371/journal.pone.0156664 July 1, 2016 2/25 Identification of Gastropod Shell Pigments Fig 1. Photos of exemplar specimens. (A) Clanculus margaritarius A. Shell from Kitahama, Japan. Note that the specimen is sub adult. Specimen # 3. (B) Clanculus margaritarius B. Shell of an unlocalised specimen, NHMUK collection. Specimen # 10. (C) Clanculus pharaonius. Rose Reef, Thuwal, Saudi Arabia. Specimen # 4. (D) Calliostoma zizyphinum. Shetland Islands, United Kingdom. Specimen # 1. Scale bars = 5 mm, except in (D), where scale bar = 1 cm. doi:10.1371/journal.pone.0156664.g001 vivid pink-red with black and white spots and C. margaritarius
Recommended publications
  • REVISED Marine Molluscs in Nearshore Habitats of the United
    1 REVISED 2 3 Marine Molluscs in Nearshore Habitats of the United Arab Emirates: 4 Decadal Changes and Species of Public Health Significance 5 6 Raymond E. Grizzle1*, V. Monica Bricelj2, Rashid M. AlShihi3, Krystin M. Ward1, and 7 Donald M. Anderson4 8 9 1Jackson Estuarine Laboratory 10 University of New Hampshire 11 Durham, NH 03824, U.S.A. 12 [email protected] 13 14 2Department of Marine and Coastal Sciences 15 Haskin Shellfish Laboratory, Rutgers University, NJ 08349, U.S.A. 16 17 3Ministry of Climate Change and Environment 18 Marine Environment Research Centre, Umm Al Quwain, U.A.E. 19 20 4Biology Department, Woods Hole Oceanographic Institution 21 Woods Hole, MA 02543, U.S.A. 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 LRH: Grizzle, Bricelj, AlShihi, Ward, Anderson 41 42 RRH: Marine Molluscs in the United Arab Emirates 43 44 45 46 1 47 ABSTRACT 48 49 This paper describes the results of three qualitative surveys of marine molluscs conducted in 50 December 2010 and May 2011 and 2012 in nearshore benthic habitats along the Arabian Gulf and 51 Gulf of Oman coasts of the United Arab Emirates. Findings are compared to historical studies, 52 focusing on extensive surveys from the 1960s and 1970s. Molluscan species of public health 53 significance are identified based on their potential as vectors of algal toxins in light of the recent 54 occurrence of harmful algal blooms (HABs) in the region. Habitats sampled included intertidal 55 sand or gravel beaches, rocks and jetties, sheltered soft-sediment flats and mangroves, and shallow 56 subtidal coral reefs.
    [Show full text]
  • Ecología Poblacional De Cittarium Pica (Gastropoda: Trochidae) De San Andrés Isla, Reserva Internacional De Biósfera, Seaflower
    Ecología poblacional de Cittarium pica (Gastropoda: Trochidae) de San Andrés Isla, Reserva Internacional de Biósfera, Seaflower Jeimmy Paola Rico Mora1, José Ernesto Mancera-Pineda1 & Luis Alberto Guerra Vargas2 1. Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 N° 26-85 Bogotá, Colombia; [email protected], [email protected] 2. CORALINA Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina, Vía San Luis, Bigth, Km 26 San Andrés Isla, Colombia; [email protected] Recibido 09-IX-2016. Corregido 22-V-2017. Aceptado 23-VI-2017. Abstract: Population ecology of Cittarium pica (Gastropoda: Trochidae) of San Andrés Island, International Biosphere Reserve, Seaflower. Cittarium pica is a conspicuous gastropod of the rocky coastlines of the Caribbean. Given its importance in the diet of Caribbean communities, it has been over-exploited, even reaching extinction in some places, and the species has been included in the red lists of marine invertebrates in some countries. Its fishery in San Andres Island-Colombia is artisanal without any regulation, leading to a decrease in its population. Taking into account the socio-economic, cultural and ecological importance of C. pica and its vulnerability to extinction, it is urgent to develop management actions directed to increase the resilience of the species and its sustainability as a fishery resource. To assess the current population state of C. pica from San Andrés Island, we estimated size structure, sex structure, maturation size, and growth parameters, based on length-frequency data analysis. From September to December 2013, and January to March 2014, we randomly collected 458 individuals at eight representative sites of the rocky shores of the island.
    [Show full text]
  • Gastropods Morphometric Shell Landmarks Variation in Diyala River
    International Journal of Applied Research 2015; 1(10): 660-664 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Gastropods Morphometric Shell Landmarks variation Impact Factor: 5.2 IJAR 2015; 1(10): 660-664 in Diyala River Basin, Iraq www.allresearchjournal.com Received: 22-07-2015 Accepted: 24-08-2015 Khansaa S Farman, Emaduldeen A Almukhtar Khansaa S Farman Department of Biology, Abstract Collage of Science for Women, The present study was conducted to detected the variation in the shells of the Freshwater Gastropods Baghdad University Iraq. species of Diyala River Basin in Iraq. For this purpose the study area was divided to two sectors, Northern and Southern sectors. The morphological variation in the shells among common species to Emaduldeen A Almukhtar Northern and Southern sectors using a Geometric Morphometric technique were examined. Department of Biology, The most abundant species Theodoxus jordani, Melanopsis praemorsa, Lymnaea natalensis, and Collage of Science for Women, Planorbis gibbonsi were collected and their shells variation in the size and shape were measured. The Baghdad University Iraq. results showed significant difference in centroid size for M. praemorsa and L. natalensis while didn’t record in T. jordani and Poggibonsi. Also the study didn’t record significance variance of symmetrical for size and shape of the shell in all species. Key words: Geometric morphometric, Landmarks, Gastropods, Diyala river Introduction Diyala river is one of the most important tributaries of River Tigris, and is one of the main water bodies of Iraq. It runs through Iran and Iraq drains an area of 32600 km2 and about [2] 445 km.
    [Show full text]
  • Development of a Quantitative PCR Assay for the Detection And
    bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp.
    [Show full text]
  • Seashore Pocket Guide
    . y a B e e L d n a n i t r a M e b m o C , h t u o m n y L ) e v o b a ( . e m i t m e h t e v i g u o y f i e c i v e r c n e d d i h a m o r f t u o . a n i l l a r o c d n a e s l u d s a h c u s s d e e w a e s b a r C e l b i d E k u . v o g . k r a p l a n o i t a n - r o o m x e . w w w e r a t s a o c s ’ r o o m x E n o e f i l d l i w e r o h s a e s k c a b e v o m n e t f o l l i w s b a r c d n a h s i F . l l i t s y r e v g n i p e e k d e r r e v o c s i d n a c u o y s l o o p k c o r r o f k o o l o t s e c a l p e t i r u o v a f r u o f o e m o S , g n i h c t a w e m i t d n e p S .
    [Show full text]
  • Joseph Heller a Natural History Illustrator: Tuvia Kurz
    Joseph Heller Sea Snails A natural history Illustrator: Tuvia Kurz Sea Snails Joseph Heller Sea Snails A natural history Illustrator: Tuvia Kurz Joseph Heller Evolution, Systematics and Ecology The Hebrew University of Jerusalem Jerusalem , Israel ISBN 978-3-319-15451-0 ISBN 978-3-319-15452-7 (eBook) DOI 10.1007/978-3-319-15452-7 Library of Congress Control Number: 2015941284 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Contents Part I A Background 1 What Is a Mollusc? ................................................................................
    [Show full text]
  • The Diet and Predator-Prey Relationships of the Sea Star Pycnopodia Helianthoides (Brandt) from a Central California Kelp Forest
    THE DIET AND PREDATOR-PREY RELATIONSHIPS OF THE SEA STAR PYCNOPODIA HELIANTHOIDES (BRANDT) FROM A CENTRAL CALIFORNIA KELP FOREST A Thesis Presented to The Faculty of Moss Landing Marine Laboratories San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Arts by Timothy John Herrlinger December 1983 TABLE OF CONTENTS Acknowledgments iv Abstract vi List of Tables viii List of Figures ix INTRODUCTION 1 MATERIALS AND METHODS Site Description 4 Diet 5 Prey Densities and Defensive Responses 8 Prey-Size Selection 9 Prey Handling Times 9 Prey Adhesion 9 Tethering of Calliostoma ligatum 10 Microhabitat Distribution of Prey 12 OBSERVATIONS AND RESULTS Diet 14 Prey Densities 16 Prey Defensive Responses 17 Prey-Size Selection 18 Prey Handling Times 18 Prey Adhesion 19 Tethering of Calliostoma ligatum 19 Microhabitat Distribution of Prey 20 DISCUSSION Diet 21 Prey Densities 24 Prey Defensive Responses 25 Prey-Size Selection 27 Prey Handling Times 27 Prey Adhesion 28 Tethering of Calliostoma ligatum and Prey Refugia 29 Microhabitat Distribution of Prey 32 Chemoreception vs. a Chemotactile Response 36 Foraging Strategy 38 LITERATURE CITED 41 TABLES 48 FIGURES 56 iii ACKNOWLEDGMENTS My span at Moss Landing Marine Laboratories has been a wonderful experience. So many people have contributed in one way or another to the outcome. My diving buddies perse- vered through a lot and I cherish our camaraderie: Todd Anderson, Joel Thompson, Allan Fukuyama, Val Breda, John Heine, Mike Denega, Bruce Welden, Becky Herrlinger, Al Solonsky, Ellen Faurot, Gilbert Van Dykhuizen, Ralph Larson, Guy Hoelzer, Mickey Singer, and Jerry Kashiwada. Kevin Lohman and Richard Reaves spent many hours repairing com­ puter programs for me.
    [Show full text]
  • MCR LTER 3Yr Report 2007 V
    This document is a contribution of the Moorea Coral Reef LTER (OCE 04-17412) June 8, 2007 Schedule for MCR LTER Site Visit Sunday, July 8 Check into Sheraton Moorea Lagoon & Spa Afternoon Optional Moorea Terrestrial Tour 4:30-5:00 Gump Station Tour/Orientation 5:00-5:30 Snorkel Gear Setup for Site Team/Observers – Gump Dock 5:30-6:30 Welcome Cocktail – Gump House 6:30-7:30 Dinner – Gump Station 7:30-9:30 NSF Site Team Meeting – Gump Director’s Office 9:30 Return to Sheraton Monday, July 9 6:45 Pickup at Sheraton 7:00-7:45 Breakfast – Gump Station 7:45-11:45 Field Trip (Departing Gump Station; Review Team Dropped at Sheraton) 12:15 Pickup at Sheraton 12:30-1:30 Lunch – Gump Station 1:30-4:30 Research Talks – Library • MCR Programmatic Research Overview (Russ Schmitt) o Time Series Program (Andy Brooks) o Bio-Physical Coupling (Bob Carpenter) o Population & Community Dynamics (Sally Holbrook) o Coral Functional Biology (Pete Edmunds & Roger Nisbet) • Concluding Remarks (Russ Schmitt) 4:00-5:00 Grad Student/Post Doc Demonstrations – MCR Lab & Gump Wet Lab 5:00-6:30 Grad Student/Post Doc Hosted Poster Session/Cocktails – Library 6:30-7:30 Dinner – Gump Station 7:30 Return to Sheraton Tuesday, July 10 7:15 Pickup at Sheraton 7:30-8:30 Breakfast – Gump Station 8:30-12:00 Site Talks - Library • IM (Sabine Grabner) • Site Management & Institutional Relations (Russ Schmitt) • Education & Outreach (Michele Kissinger) • Network, Cross Site & International Activities (Sally Holbrook) 12:00-1:00 Lunch – Gump Station 1:00-5:30 Executive Session – Gump Director’s Office 5:30-6:45 Exit Interview - Library 6:45-9:30 Tahitian Feast & Dance Performance – Gump Station 9:30 Return to Sheraton Wednesday, July 11 7:00-8:00 Breakfast – Gump Station 8:00-12:00 Optional Field Trips 12:00-1:00 Lunch – Gump Station i ii Volume I.
    [Show full text]
  • Bitasion Les Habitations-Plantations Constituent Le Creuset Historique Et Symbolique Où Fut Fondu L’Alliage Original Que Sont Les Cultures Antillaises
    Kelly & Bérard Ouvrage dirigé par Bitasion Les habitations-plantations constituent le creuset historique et symbolique où fut fondu l’alliage original que sont les cultures antillaises. Elles sont le berceau des sociétés créoles contemporaines qui y ont puisé tant leur forte parenté que leur Bitasion - Archéologie des habitations-plantations des Petites Antilles diversité. Leur étude a été précocement le terrain de prédilection des historiens. Les archéologues antillanistes se consacraient alors plus volontiers à l’étude des sociétés précolombiennes. Ainsi, en dehors des travaux pionniers de J. Handler et F. Lange à la Barbade, c’est surtout depuis la fin des années 1980 qu’un véritable développement de l’archéologie des habitations-plantations antillaises a pu être observé. Les questions pouvant être traitées par l’archéologie des habitations-plantations sont extrêmement riches et multiples et ne sauraient être épuisées par la publication d’un unique ouvrage. Les différents chapitres qui composent ce livre dirigé par K. Kelly et B. Bérard n’ont pas vocation à tendre à l’exhaustivité. Ils nous semblent, par contre, être représentatifs, par la variété des questions abordée et la diversité des angles d’approche, de la dynamique actuelle de ce champ de la recherche. Cette diversité est évidemment liée à celle des espaces concernés: les habitations-plantations de cinq îles des Petites Antilles : Antigua, la Guadeloupe, la Dominique, la Martinique et la Barbade sont ici étudiées. Elle est aussi, au sein d’un même espace, due à la cohabitation de différentes pratiques universitaires. Nous espérons que cet ouvrage, tout en diffusant une information jusqu’à présent trop dispersée, sera le point de départ de nouveaux travaux.
    [Show full text]
  • Os Nomes Galegos Dos Moluscos 2020 2ª Ed
    Os nomes galegos dos moluscos 2020 2ª ed. Citación recomendada / Recommended citation: A Chave (20202): Os nomes galegos dos moluscos. Xinzo de Limia (Ourense): A Chave. https://www.achave.ga /wp!content/up oads/achave_osnomesga egosdos"mo uscos"2020.pd# Fotografía: caramuxos riscados (Phorcus lineatus ). Autor: David Vilasís. $sta o%ra est& su'eita a unha licenza Creative Commons de uso a%erto( con reco)ecemento da autor*a e sen o%ra derivada nin usos comerciais. +esumo da licenza: https://creativecommons.org/ icences/%,!nc-nd/-.0/deed.g . Licenza comp eta: https://creativecommons.org/ icences/%,!nc-nd/-.0/ ega code. anguages. 1 Notas introdutorias O que cont!n este documento Neste recurso léxico fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas) ! primeira edición d" Os nomes galegos dos moluscos é do ano #$%& Na segunda edición (2$#$), adicionáronse algunhas especies, asignáronse con maior precisión algunhas das denominacións vernáculas galegas, corrixiuse algunha gralla, rema'uetouse o documento e incorporouse o logo da (have. )n total, achéganse nomes galegos para *$+ especies de moluscos A estrutura )n primeiro lugar preséntase unha clasificación taxonómica 'ue considera as clases, ordes, superfamilias e familias de moluscos !'uí apúntanse, de maneira xeral, os nomes dos moluscos 'ue hai en cada familia ! seguir
    [Show full text]
  • Gastropoda) Living in Deep-Water Coral Habitats in the North-Eastern Atlantic
    Zootaxa 4613 (1): 093–110 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4613.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:6F2B312F-9D78-4877-9365-0D2DB60262F8 Last snails standing since the Early Pleistocene, a tale of Calliostomatidae (Gastropoda) living in deep-water coral habitats in the north-eastern Atlantic LEON HOFFMAN1,4, LYDIA BEUCK1, BART VAN HEUGTEN1, MARC LAVALEYE2 & ANDRÉ FREIWALD1,3 1Marine Research Department, Senckenberg am Meer, Südstrand 40, Wilhelmshaven, Germany 2NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Texel, Netherlands 3MARUM, Bremen University, Leobener Strasse 8, Bremen, Germany 4Corresponding author. E-mail: [email protected] Abstract Three species in the gastropod genus Calliostoma are confirmed as living in Deep-Water Coral (DWC) habitats in the NE Atlantic Ocean: Calliostoma bullatum (Philippi, 1844), C. maurolici (Seguenza, 1876) and C. leptophyma Dautzenberg & Fischer, 1896. Up to now, C. bullatum was only known as fossil from Early to Mid-Pleistocene outcrops in DWC-related habitats in southern Italy; our study confirmed its living presence in DWC off Mauritania. A discussion is provided on the distribution of DWC-related calliostomatids in the NE Atlantic and the Mediterranean Sea from the Pleistocene to the present. Key words: Mollusca, Calliostoma, deep-water coral associations, NE Atlantic Ocean, Mediterranean Sea, systematics Introduction The Senckenberg Institute and the Royal Netherlands Institute for Sea Research (NIOZ) investigate the geophysi- cal, geological and biological characteristics of scleractinian-dominated Deep-Water Coral (DWC) habitats in the world.
    [Show full text]
  • Cittarium Pica (West Indian Topshell) Superfamily: Trochoidea (Top Snails) Class: Gastropoda (Snails and Slugs) Phylum: Mollusca (Molluscs)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Cittarium pica (West Indian Topshell) Superfamily: Trochoidea (Top Snails) Class: Gastropoda (Snails and Slugs) Phylum: Mollusca (Molluscs) Fig. 1. West Indian topshell, Cittarium pica. [http://www.gastropods.com/4/Shell_24.shtml, downloaded 30 March 2015] TRAITS. Littoral (part of the sea close to the shore) gastropod commonly referred to as the West Indian topshell or whelks, C. pica attains the size of 10cm with its shell having black and white markings (Fig. 1). The shell is conical (Sartwell, 2013) with younger specimens being mostly white, but may have a greenish/yellowish tinge due to the staining of blue-green algae (Randall, 1964). The inner shell surface is nacreous (mother of pearl). There are patterns of coarse checkering of alternating white and black per whorl (turn) of the shell. C. pica has a muscular foot which assists in its slow crawling and holding on to rocks. UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION. Cittarium pica is widely distributed throughout the West Indies, the Central and South American coast from upper Yucatan to Trinidad. The occurrence of C. pica in Florida and Bermuda were found as fossils. An attempt to reintroduce the species in Bermuda was made but was not successful. It is believed that the species in these areas died out in very recent times (Randall, 1964). The entire distribution range is in the Caribbean. HABITAT AND ACTIVITY. C. pica is found on rocky shorelines of tropical and temperate waters. These are commonly found in the intertidal and shallow sub tidal zones (as seen in Fig.
    [Show full text]