Iron up to 170 Gpa

Total Page:16

File Type:pdf, Size:1020Kb

Iron up to 170 Gpa Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa Adrien Denoeuda,b,1, Norimasa Ozakic,d, Alessandra Benuzzi-Mounaixa,b, Hiroyuki Uranishic, Yoshihiko Kondoc, Ryosuke Kodamac,d, Erik Brambrinka,b, Alessandra Ravasioa,b, Maimouna Bocouma,b, Jean-Michel Boudennea,b, Marion Harmande, François Guyote, Stephane Mazevetf, David Rileyg, Mikako Makitag, Takayoshi Sanoh, Youichi Sakawah, Yuichi Inubushii,j, Gianluca Gregorik, Michel Koeniga,b,l, and Guillaume Morarde aLaboratoire d’Utilisation de Lasers Intenses - CNRS, Ecole Polytechnique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris- Saclay, F-91128 Palaiseau Cedex, France; bSorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Laboratoire d’Utilisation des Lasers Intenses, place Jussieu, 75252 Paris Cedex 05, France; cGraduate School of Engineering, Osaka University, Osaka 5650871, Japan; dPhoton Pioneers Center, Osaka University, Osaka 5650871, Japan; eInstitut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités – Université Pierre et Marie Curie, CNRS, Muséum National d’Histoire Naturelle, Institut de Recherche pour le Développement, 75005 Paris, France; fLaboratoire Univers et Théories, Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon, France; gCentre for Plasma Physics, School of Maths & Physics, Queens University Belfast, Belfast BT7 1NN, Northern Ireland; hInstitute of Laser Engineering, Osaka University, Osaka 5650871, Japan; iRIKEN SPring-8 Center, Hyogo 679-5148, Japan; jJapan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan; kDepartment of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; and lInstitute for Academic Initiatives, Osaka University, Osaka 565-0871, Japan Edited by Vladimir E. Fortov, Russian Academy of Sciences, Moscow, and approved May 31, 2016 (received for review June 22, 2015) Investigation of the iron phase diagram under high pressure and difference in melting temperatures between different studies (1, 2, temperature is crucial for the determination of the composition 4, 26, 27). This ongoing controversy could be related to various of the cores of rocky planets and for better understanding the problems of gradients and inhomogeneities in the studied material generation of planetary magnetic fields. Here we present X-ray as well as of chemical reaction and thermal diffusion with the di- diffraction results from laser-driven shock-compressed single-crystal amonds. Moreover, static compression methods do not allow, so and polycrystalline iron, indicating the presence of solid hexagonal far, reaching in association with precise measurements pressures close-packed iron up to pressure of at least 170 GPa along the and temperatures over 300 GPa and 5,000 K, respectively. Indeed, principal Hugoniot, corresponding to a temperature of 4,150 K. This only a few data are actually available over 200 GPa and high EARTH, ATMOSPHERIC, is confirmed by the agreement between the pressure obtained from temperature on pure iron (11, 12). For all of these reasons, it thus AND PLANETARY SCIENCES the measurement of the iron volume in the sample and the inferred becomes necessary to perform dynamic compression to reach higher shock strength from velocimetry deductions. Results presented in temperature/pressure conditions of relevance for planetology. This this study are of the first importance regarding pure Fe phase can be done with high-power lasers by using shock or quasi-isen- diagram probed under dynamic compression and can be applied to tropic compression techniques (28, 29). Current discrepancies ob- study conditions that are relevant to Earth and super-Earth cores. served between shock and static studies of iron over 100 GPa have been attributed to nonequilibrium processes (30), casting doubts on X-ray diffraction | iron phase diagram | shock-compressed iron | the possibility of properly probing phase diagrams of geophysically Earth core | dynamic compression relevant materials using dynamic compression. Different features, such as overheating or presence of a new crystalline structure in iron ron is the main constituent of Earth and telluric planetary cores. just below the melting curve, have been described in shock experi- ITherefore, because of this geophysical interest, its phase diagram ments in contradiction with static experiments. Here we aim at under high pressure and temperature has been extensively studied by providing new data on this question by probing shock-compressed static (1–4) or dynamic (5–9) compression techniques. In particular, the determination of its melting curve at the Earth’sinner−outer core Significance boundary constrains the thermodynamics that governs Earth’s heat budget and dynamics such as the heat flux from the core to the mantle, Iron is the main constituent of the core of rocky planets; therefore, the power available for the geodynamo, and the planetary cooling rate understanding its phase diagram under extreme conditions is (10). Besides, the knowledge of the exact crystalline structure of iron at fundamental to model the planets’ evolution. Using dynamic appropriate pressures and temperatures is a key parameter to explain compression by laser-driven shocks, pressure and temperature seismological observations. On this point, contradictory results have conditions close to what is found in these cores can be reached. been published concerning the crystallographic structure of iron under However, it remains unclear whether phase boundaries determined Earth’s inner core conditions (360 GPa and ∼6,000 K). Recent static at nanosecond timescales agree with static compression. Here we compression on iron (11) and iron alloys (12) has highlighted the observed the presence of solid hexagonal close-packed iron at 170 stability of hexagonal-close-packed (hcp) structure under extreme GPaand4,150K,inapartoftheironphasediagram,whereeithera conditions, whereas previous studies investigated the potential stabili- different solid structure or liquid iron has been proposed. This X-ray zation of double hcp (dhcp) or body-centered cubic (bcc) structures diffraction experiment confirms that laser compression is suitable under high pressure and temperature (13–17). However, having an for studying iron at conditions of deep planetary interiors difficult hcp structure under Earth’s inner core conditions is mandatory to to achieve with static compression techniques. explain its anisotropic structure observed by seismology (18, 19). Iron and its alloys have been widely studied by static compression Author contributions: A.D., N.O., A.B.-M., H.U., Y.K., M.K., and G.M. designed research; A.D., N.O., A.B.-M., H.U., Y.K., E.B., A.R., M.B., M.H., M.M., T.S., Y.S., Y.I., and G.M. in associating large volume cells or diamond anvils cells (DAC) with performed research; N.O., A.B.-M., R.K., E.B., J.-M.B., F.G., S.M., D.R., G.G., M.K., and a probing synchrotron radiation source (20, 21). In addition to the G.M. contributed new reagents/analytic tools; A.D., H.U., and Y.K. analyzed data; and study of the solid−solid phase transitions, like bcc−face-centered A.D., N.O., and G.M. wrote the paper. cubic (fcc) in temperature and bcc−hcpinpressure,andtothe The authors declare no conflict of interest. measurement of some properties of these phases (11, 22, 23), X-ray This article is a PNAS Direct Submission. diffraction also allows the study of solid−liquid transitions (24) and 1To whom correspondence should be addressed. Email: [email protected]. measurement of liquid density (25). Static compression measure- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. ments of the melting curve of iron have led to over 1,000 K 1073/pnas.1512127113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1512127113 PNAS Early Edition | 1of5 Downloaded by guest on September 25, 2021 Fig. 1. (A) Experimental setup and target configuration at GEKKO XII target chamber. The incident angles of the shock drive beams (SD) and X-ray source beams (XS) were 30° from the normal to the target. The angular-resolved spectrometer was made by a defocused cylindrical Von Hamos geometry. The HOPG crystal and the image plate were surrounded by a 2-mm stainless steel box. (B) Magnified top view of the target. (C) Magnified bottom view of the target. X-rays from the Fe source target were collimated by the input and output pinholes of 200 μm diameter. Because the accuracy of the target fabrication was better than 10 μm, the X-ray beam irradiated appropriately the central region of shock wave driven by the SD beams (1-mm spot diameter). Moreover, to produce monochromatic laser plasma X-rays, we inserted a 125-μm-thick polyamide foil and a 10-μm-thick iron foil into the 1-mm gap between the pinholes. iron at the nanosecond and picosecond timescales using X-ray dif- of separating the different spectral components can significantly fraction (XRD), thus providing a direct measurement of its reduce the uncertainties in identifying the elastic signal contribution structure. and thus increase accuracy in structure determination. Structural XRD studies of iron at nanosecond or better time res- Two diffraction experiments were performed using different time olution have been, so far, focused on the low-pressure bcc−hcp durations for the X-ray probe. The nanosecond resolution XRD transition and on measuring the axial ratio (c/a) of the hcp phase at experiment was performed on the GEKKO XII laser facility at In- low pressure
Recommended publications
  • High-Power Laser Experiments to Study Collisionless Shock Generation Y
    EPJ Web of Conferences 59, 15001 (2013) DOI: 10.1051/epjconf/20135915001 C Owned by the authors, published by EDP Sciences, 2013 High-power laser experiments to study collisionless shock generation Y. S a k a w a 1,a, Y. Kuramitsu1, T. Morita1,T.Kato2, H. Tanji3,T.Ide3,K.Nishio4, M. Kuwada4, T. Tsubouchi3,H.Ide4,T.Norimatsu1, C. Gregory5,N.Woolsey5, K. Schaar6, C. Murphy6, G. Gregori6, A. Diziere7,A.Pelka7, M. Koenig7, S. Wang8,Q.Dong8,Y.Li8,H.-S.Park9,S.Ross9, N. Kugland9,D.Ryutov9, B. Remington9, A. Spitkovsky10, D. Froula11 and H.Takabe1 1 Institute of Laser Engineering, Osaka University 2-6, Yamadaoka, Suita 565-0871, Japan 2 Graduate School of Science, Hiroshima Univ., 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan 3 Graduate School of Engineering, Osaka University 2-1, Yamadaoka, Suita 565-0871, Japan 4 Graduate School of Science, Osaka University 1-1, Machikaneyama, Toyonaka 560-0043, Japan 5 Department of Physics, University of York, Heslington YO105DD, UK 6 Department of Physics, Oxford University, Oxford OX1 3PU, UK 7 LULI Ecole Polytechnique, 91128 Palaiseau Cedex, France 8 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 9 Lawrence Livermore National Lab, 7000 East Ave, Livermore, CA 94550, USA 10 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 11 Laboratory for Laser Energetics, 250 East River Road, Rochester, NY 14623, USA Abstract. A collisionless Weibel-instability mediated shock in a self-generated magnetic field is studied using two-dimensional particle-in-cell simulation [Kato and Takabe, Astophys. J.
    [Show full text]
  • Nd Lu Caf2 for High-Energy Lasers Simone Normani
    Nd Lu CaF2 for high-energy lasers Simone Normani To cite this version: Simone Normani. Nd Lu CaF2 for high-energy lasers. Physics [physics]. Normandie Université, 2017. English. NNT : 2017NORMC230. tel-01689866 HAL Id: tel-01689866 https://tel.archives-ouvertes.fr/tel-01689866 Submitted on 22 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Physique Préparée au sein de l’Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Étude de Cristaux de CaF2:Nd:Lu pour Lasers de Haute Énergie Présentée et soutenue par Simone NORMANI Thèse soutenue publiquement le 19 octobre 2017 devant le jury composé de M. Patrice CAMY Professeur, Université de Caen Normandie Directeur de thèse M. Alain BRAUD MCF HDR, Université de Caen Normandie Codirecteur de thèse M. Jean-Luc ADAM Directeur de Recherche, CNRS Rapporteur Mme. Patricia SEGONDS Professeur, Université de Grenoble Rapporteur M. Jean-Paul GOOSSENS Ingénieur, CEA Examinateur M. Maurizio FERRARI Directeur de Recherche, CNR-IFN Examinateur Thèse dirigée par Patrice CAMY et Alain BRAUD, laboratoire CIMAP Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Thesis for the Ph.D.
    [Show full text]
  • VI. Nuclear Fusion Energy
    R &D OF ENERGY TECHNOLOGIES ANNEX A VI‐NUCLEAR FUSION ENERGY ANNEX VI – NUCLEAR FUSION ENERGY 276 ‐ TABLE OF CONTENTS ‐ AVI‐1 Research and development opportunities for .......................... 278 fusion energy Ray Fonck AVI‐2 Fusion energy using Tokamaks ............................................... 282 Predhiman K. Kaw, AVI‐3 Physics issues on magnetically confined fusion plasmas ......... 289 Stellarator devices Carlos Hidalgo Carlos Hidalgo AVI‐4 Status Report on inertial fusion energy ................................... 294 Burton Richter AVI‐5 Report on laser fast ignition for inertial fusion energy............ 300 Kunioki Mima ANNEX VI – NUCLEAR FUSION ENERGY 277 Annex A – Section 6.1 AVI‐1 RESEARCH AND DEVELOPMENT OPPORTUNITIES FOR FUSION ENERGY Raymond Fonck University of Wisconsin – Madison The goal of the world fusion energy research programs is the development of practical energy production from the fusing of light nuclei, e.g., deuterium and tritium, in a hot ionized gas (or plasma). Fusion research is still in an overall concept development activity, and has not reached the stage for building a demonstration reactor. Its ultimate success of producing an economically attractive new energy source lies well into the future. The realization of an attractive fusion reactor concept will depend on future developments in fusion science and technology, economics, energy needs, national priorities, etc. Many outstanding scientific and technical issues have to be resolved, and it is premature to define the exact features required for an attractive energy source based on fusion. Nevertheless, some goals for achieving an attractive fusion energy concept are readily identified: optimize the plasma pressure and the energy confinement time; minimize the recirculating power needed for sustainment; and develop a simple and reliable plasma confinement configuration.
    [Show full text]
  • Laser-Driven Shock Compression of “Synthetic Planetary Mixtures” of Water, Ethanol, and Ammonia M
    Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia M. Guarguaglini, J.-A. Hernandez, T. Okuchi, P. Barroso, A. Benuzzi-Mounaix, M. Bethkenhagen, R. Bolis, E. Brambrink, M. French, Y. Fujimoto, et al. To cite this version: M. Guarguaglini, J.-A. Hernandez, T. Okuchi, P. Barroso, A. Benuzzi-Mounaix, et al.. Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia. Scientific Reports, Nature Publishing Group, 2019, 9, pp.10155. 10.1038/s41598-019-46561-6. hal-02272766 HAL Id: hal-02272766 https://hal.sorbonne-universite.fr/hal-02272766 Submitted on 28 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia Received: 23 April 2018 M. Guarguaglini 1,2, J.-A. Hernandez1,2, T. Okuchi 3, P. Barroso4, A. Benuzzi-Mounaix1,2, Accepted: 25 June 2019 M. Bethkenhagen 5, R. Bolis 1,2, E. Brambrink1,2, M. French5, Y. Fujimoto6, R. Kodama6,7,8, Published: xx xx xxxx M. Koenig1,2,7, F. Lefevre1, K. Miyanishi 8, N. Ozaki6,8, R.
    [Show full text]
  • History of Nuclear Fusion Research in Japan
    H-PTh-14 History of Nuclear Fusion Research in Japan Harukazu IGUCHI, Keisuke MATSUOKA1, Kazue KIMURA, Chusei NAMBA, and Shinzaburo MATSUDA2 Fusion Science Archives, National Institute for Fusion Science, Toki 509-5292, Japan 1 Prof. Emeritus of National Institute for Fusion Science, Japan. 2 Tokyo Institute of Technology, Tokyo 152-8550, Japan E-mail:[email protected] The atomic energy research was declassified worldwide at the International Conference on the Peaceful Uses of Atomic Energy in 1955. In the late 1950s there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan, leading to the conclusion that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Meanwhile, confinement studies were conducted specifically in USSR and USA with tokamaks and multipoles, respectively. In Japan, studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Successful results from tokamak researches in USSR encouraged scientists worldwide, which resulted in construction rush of tokamaks in Japan, too. However, dualistic fusion research framework established in 1960s has lasted until now; MOE for science and STA for development. World Trend in Early Days as a Background Extracted from “Presidential Address at the 1st International REVIEW OF EXPERIMENTAL The 3rd IAEA Conf. on Nuclear Fusion at Novosibirsk, 1968 Conference on the Peaceful Uses of Atomic Energy” by Mr.
    [Show full text]
  • Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics R
    XA0203243 80 Fusion Energy Conference 2002 . A bstracts IF- . Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics R. L. MlcCrory, University of Rochester, Laboratory for Laser Energetics, Rochester, USA Contact: rmc l~le. rochester.edut Abstract: Significant theoretical and experimental progress towards the validation of direct-drive inertial confinement fusion (ICF) has been recently made at the Laboratory for Laser Energetics (LLE). Direct- drive ICF offers the potential for high-gain implosions and is a leading candidate for an inertial fusion energy power plant. LLE's base-line direct-drive ignition design for NIF is an "all-DT" design that has a -D gain of -45 Recent calculations show that targets composed of foam shells, wicked with DT, can potentially achieve 1-D gains of r-1.00. LLE experiments are conducted on the OMEGA 60-beamn, 30-kJ, UV laser sysstem. Beam smoothing of OMEGA includes -THz, 2-D SSD and polarization smoothing. Cryogenic D2 and plastic shell (warm) spherical targets and a comprehensive suite of x-ray, nuclear, charged particle and optical diagnostics are used in these experiments. Future experiments will use cryogenic DT targets. XA0203244 IF-2 Recent Advances in Indirect Drive ICF Target Physics B. A. Harnmel, Lawrence Livermore National Laboratory, Livermore, CA, USA Contact: bhammel~1lnl.gov Abstract: The National Ignition Facility (NIF), currently under construction, will be used for the study of ignition physics in inertially confined targets, as well as basic
    [Show full text]
  • The US ICF Ignition Program and the Inertial Fusion Energy Program
    The US ICF Ignition Program and the Inertial Fusion Energy Program John Lindl - LLNL Presented to: Fusion Energy Program Leader 30-th EPS Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia University of California Lawrence Livermore National Laboratory July 7-11, 2003 *This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. Outline of Talk • The National Ignition Facility (NIF) • Indirect Drive • Direct Drive • Fast Ignition • IFE with Lasers • IFE with Ion Beams The National Ignition Facility The beampath infrastructure for all 192 beams is complete and the first four beams have been activated for experiments NIF Target Chamber upper hemisphere First four NIF beams installed on the target chamber Quad 31b beamtubes and optics are View from inside the target installed and operational chamber Target positioner and alignment system inside target chamber NIF has begun to commission its experimental systems and will begin 4 beam (1 quad) experiments this summer (Non-optimal crystals) Outline of Talk • The National Ignition Facility (NIF) • Indirect Drive • Direct Drive • Fast Ignition • IFE with Lasers • IFE with Ion Beams Recent ICF scientific interest has been in exploring the design space beyond the NIF baseline • Bigger ICF capsules are of particular interest • Bigger capsules are more robust, less sensitive to experimental conditions Bigger capsules offer: — Higher yield — More options for experimentation • Bigger capsules
    [Show full text]
  • Selection of a Toroidal Fusion Reactor Concept for a Magnetic Fusion Production Reactor 1
    Journal of Fusion Energy, Vol. 6, No. 1, 1987 Selection of a Toroidal Fusion Reactor Concept for a Magnetic Fusion Production Reactor 1 D. L. Jassby 2 The basic fusion driver requirements of a toroidal materials production reactor are consid- ered. The tokamak, stellarator, bumpy torus, and reversed-field pinch are compared with regard to their demonstrated performance, probable near-term development, and potential advantages and disadvantages if used as reactors for materials production. Of the candidate fusion drivers, the tokamak is determined to be the most viable for a near-term production reactor. Four tokamak reactor concepts (TORFA/FED-R, AFTR/ZEPHYR, Riggatron, and Superconducting Coil) of approximately 500-MW fusion power are compared with regard to their demands on plasma performance, required fusion technology development, and blanket configuration characteristics. Because of its relatively moderate requirements on fusion plasma physics and technology development, as well as its superior configuration of production blankets, the TORFA/FED-R type of reactor operating with a fusion power gain of about 3 is found to be the most suitable tokamak candidate for implementation as a near-term production reactor. KEY WORDS: Magnetic fusion production reactor; tritium production; fusion breeder; toroidal fusion reactor. 1. STUDY OBJECTIVES Section 2 of this paper establishes the basic requirements that the fusion neutron source must In this study we have identified the most viable satisfy. In Section 3, we compare various types of toroidal fusion driver that can meet the needs of a toroidal fusion concepts for which there has been at materials production facility to be operational in the least some significant development work.
    [Show full text]
  • S/4 Summary of Inertial Fusion
    S/4 Summary of Inertial Fusion J. Lindl Lawrence Livermore National Laboratory e-mail contact for main author: [email protected] Abstract. There has been rapid progress in inertial fusion since the last IAEA meeting. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers and ion beams. Two ignition facilities are under construction(NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in about 1 year. Ignition experiments are expected to begin in 7-9 years at both facilities. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF and LMJ. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets have been obtained at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko Petawatt facility.
    [Show full text]
  • Summary on Inertial Fusion Energy (IFE) Research
    Summary on Inertial Fusion Energy (IFE) Research K.Mima ILE, Osaka University, Suita, Osaka,Japan Abstract. Reviewed is the present status of the inertial confinement energy (IFE) research.. The highlights of the IFE presentations are as follows. Toward demonstrating ignition and burning of imploded plasmas, ignition facilities of mega jule class blue laser system are under construction at Lawrence Livermore National Laboratory and the CEA laboratory of Bordeaux. The central ignition by both indirect drive and direct drive will be explored by the middle of 2010’s. A new ignition concept so called “fast ingtion” has also investigated intensively in the last two years. Peta watt level (1pw~0.1pw output) CPA lasers have been used for heating solid targets and imploded plasmas. With 50J~500J/psec pulses, solid targets are found to be heated up to 300eV. They were measured by X-ray spectroscopy, neutron energy spectrum, and so on. Summarized are also researches on simulation code developments, target design and fabrication, heavy ion beam fusion, Z-pinch based X-ray source, and laser driver technology. 1. Introduction Since the high density compression has been demonstrated a decade ago, the objective of the IFE research shifted to generating hot spark in ultra-high density plasmas for ignition. In the past two years after the IAEA Yokohama conference, significant progresses in the implosion physics and engineering researches have been achieved toward demonstrating ignition of fusion burn. Namely, the engineering developments and constructions of the ignition facilities; National Ignition Facility (NIF) and Laser Mega Jule (LMJ) progressed [1] [2], and the simulation and experimental understandings on direct and indirect drive implosion physics and the fast ignition physics advanced at University of Rochester (LLE), Lawrence Livermore National Laboratory.
    [Show full text]
  • Nuclear Diagnostics for Inertial Confinement Fusion (ICF) Plasmas
    Plasma Physics and Controlled Fusion TOPICAL REVIEW Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas To cite this article: J A Frenje 2020 Plasma Phys. Control. Fusion 62 023001 View the article online for updates and enhancements. This content was downloaded from IP address 18.21.213.6 on 07/01/2020 at 20:53 Plasma Physics and Controlled Fusion Plasma Phys. Control. Fusion 62 (2020) 023001 (44pp) https://doi.org/10.1088/1361-6587/ab5137 Topical Review Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas J A Frenje Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America E-mail: [email protected] Received 12 December 2017, revised 13 September 2019 Accepted for publication 25 October 2019 Published 7 January 2020 Abstract The field of nuclear diagnostics for Inertial Confinement Fusion (ICF) is broadly reviewed from its beginning in the seventies to present day. During this time, the sophistication of the ICF facilities and the suite of nuclear diagnostics have substantially evolved, generally a consequence of the efforts and experience gained on previous facilities. As the fusion yields have increased several orders of magnitude during these years, the quality of the nuclear-fusion-product measurements has improved significantly, facilitating an increased level of understanding about the physics governing the nuclear phase of an ICF implosion. The field of ICF has now entered an era where the fusion yields are high enough for nuclear measurements to provide spatial, temporal and spectral information, which have proven indispensable to understanding the performance of an ICF implosion. At the same time, the requirements on the nuclear diagnostics have also become more stringent.
    [Show full text]
  • Academic Research on the Inertial Confinement Thermonuclear Fusion in Europe
    ELI summer school, August 26 – 30, 2019 Academic research on the inertial confinement thermonuclear fusion in Europe V. T. Tikhonchuk Centre Lasers Intenses et Applications, University of Bordeaux – CNRS – CEA, Talence, France ELI-Beamlines, Institute of Physics, CSR, Dolní Břežany, Czech Republic Principles of initial confinement fusion for energy production (IFE) IFE is a pulsed process: the energy is released in periodic pellet explosions • Standard power plant produces 1 GW = 1 GJ/s: 1 GW = 10 explosions in 1 s = 250 kg TNT/s = 3 mg DT/s • Typical target mass is 1 mg corresponds to a sphere R = 1 mm at normal density ρ = 0.25 g/cc Ignition conditions are imposed by the Lawson criterion: ρR > 0.3 g/cm2 at T = 5 keV It cannot be satisfied at normal conditions: compression and heating are needed • compression of the total fuel mass by using the ablation pressure: recoil effect • heating of a small part of the fuel: creation of a spark (hot spot) • combustion of the residual fuel August 30, 2019 Academic research on ICF in Europe 2 Three steps of the ICF process: • compression of the total fuel mass by using the ablation pressure: recoil effect • heating of a small part of the fuel: creation of a spark (hot spot) • combustion of the residual fuel • implosion time 10 ns • driver energy 1 MJ • ignition time 30 ps • gain 300 • acceleration 1013g • final energy 50 kJ • radius 100 µm • fusion energy • pressure 100 Mbar • efficiency 5% • pressure 300 Gbar 300 MJ • implosion velocity ~ • energy 10 kJ 400 km/s August 30, 2019 Academic research
    [Show full text]