Table S1. Gene List Genes Chr Genes Chr Genes Chr Genes Chr SEPT9

Total Page:16

File Type:pdf, Size:1020Kb

Table S1. Gene List Genes Chr Genes Chr Genes Chr Genes Chr SEPT9 Table S1. Gene List Genes Chr Genes Chr Genes Chr Genes Chr SEPT9 17 EIF2AK3 2 MAPK14 6 RASSF5 1 AAK1 2 EIF2AK4 15 MAPK15 8 RAVER2 1 AATK 17 EIF2B5 3 MAPK3 16 RAX2 19 ABCA1 9 EIF3J 15 MAPK4 18 RB1 13 ABL1 9 EIF4A2 3 MAPK6 15 RBBP4 1 ABL2 1 EIF4B 12 MAPK7 17 RBBP5 1 ACTR2 2 EIF4E 4 MAPK8 10 RBBP8 18 ACVR1 2 EIF4E1B 5 MAPK8IP1 11 RBL1 20 ACVR1B 12 EIF4E2 2 MAPK8IP2 22 RBL2 16 ACVR1C 2 EIF4EBP1 8 MAPK8IP3 16 RBPJ 4 ACVR2A 2 ELF3 1 MAPK9 5 RBPJL 20 ACVR2B 3 ELF4 X MAPKAPK2 1 RBX1 22 ACVRL1 12 ELK1 X MAPKAPK3 3 RCHY1 4 ADAM17 2 ELK3 12 MAPKAPK5 12 REEP5 5 ADAM29 4 ELK4 1 MAPRE1 20 REL 2 ADAMTS15 11 EML4 2 MAPRE3 2 RELA 11 ADAMTS18 16 ENDOD1 11 MAPT 17 RELB 19 ADAMTSL3 15 ENDOG 9 MARK1 1 RET 10 ADCK1 14 EP300 22 MARK2 11 RFC1 4 ADCK2 7 EPAS1 2 MARK3 14 RFC2 7 ADCK3 1 EPCAM 2 MARK4 19 RFC3 13 ADCK4 19 EPHA1 7 MAST1 19 RFC4 3 ADCK5 8 EPHA10 1 MAST2 1 RFC5 12 ADORA1 1 EPHA2 1 MAST3 19 RFNG 17 ADRBK1 11 EPHA3 3 MAST4 5 RFWD2 1 ADRBK2 22 EPHA4 2 MASTL 10 RFX2 19 AGK 7 EPHA5 4 MATK 19 RHEB 7 AIFM1 X EPHA6 3 MAX 14 RHO 3 AIFM2 10 EPHA7 6 MBIP 14 RHOA 3 AIM1 6 EPHA8 1 MCC 5 RHOC 1 AIMP2 7 EPHB1 3 MCF2L2 3 RHOQ 2 AIP 11 EPHB2 1 MCL1 1 RICTOR 5 AKAP4 X EPHB3 3 MCM2 3 RIOK1 6 AKT1 14 EPHB4 7 MCM3 6 RIOK2 5 AKT1S1 19 EPHB6 7 MCM4 8 RIOK3 18 AKT2 19 EPS8 12 MCM5 22 RIPK1 6 AKT3 1 ERBB2 17 MCM6 2 RIPK2 8 ALK 2 ERBB3 12 MCM7 7 RIPK3 14 ALKBH1 14 ERBB4 2 MCM8 20 RIPK4 21 ALKBH2 12 ERC2 3 MDM2 12 RMI1 9 ALKBH3 11 ERCC1 19 MDM4 1 RNASEL 1 ALMS1 2 ERCC2 19 MECOM 3 RNF213 17 ALPK1 4 ERCC3 2 MED12 X RNF220 1 ALPK2 18 ERCC4 16 MED12L 3 ROCK1 18 ALPK3 15 ERCC5 13 MEF2C 5 ROCK2 2 AMH 19 ERCC6 10 MELK 9 ROR1 1 AMHR2 12 ERCC6L X MEN1 11 ROR2 9 ANAPC1 2 EREG 4 MERTK 2 ROS1 6 ANAPC10 4 ERGIC3 20 MET 7 RPA1 17 ANAPC11 17 ERN1 17 MFSD4 1 RPA2 1 ANAPC13 3 ERN2 16 MGMT 10 RPA3 7 ANAPC16 10 ERO1L 14 MGST1 12 RPA4 X ANAPC2 9 ESCO2 8 MINK1 17 RPGR X ANAPC4 4 ESPL1 12 MITF 3 RPGRIP1 14 ANAPC5 12 ESR1 6 MKKS 20 RPGRIP1L 16 ANAPC7 12 ETFA 15 MKNK1 1 RPRM 2 ANGPTL4 19 ETS1 11 MKNK2 19 RPS6 9 ANK1 8 EVL 14 MKRN2 3 RPS6KA1 1 ANK2 4 EWSR1 22 MKS1 17 RPS6KA2 6 ANKK1 11 EXO1 1 MLH1 3 RPS6KA3 X ANKRD29 18 EXOC4 7 MLH3 14 RPS6KA4 11 APAF1 12 EXOC7 17 MLK7-AS1 2 RPS6KA5 14 APC 5 EXOG 3 MLKL 16 RPS6KA6 X APC2 19 EXT1 8 MLL 11 RPS6KB1 17 APH1A 1 EXT2 11 MLL2 12 RPS6KB2 11 APOPT1 14 EYA4 6 MLL3 7 RPS6KC1 1 APPL1 3 EZH1 17 MLL5 7 RPS6KL1 14 AR X EZH2 7 MLST8 16 RPTOR 17 ARAF X FADD 11 MMP1 11 RRAS 19 AREG 4 FAM123B X MMP2 16 RRAS2 11 AREGB 4 FAM20C 7 MMP7 11 RRM1 11 ARFRP1 20 FANCA 16 MMP9 20 RRM2 2 ARHGEF39 9 FANCC 9 MOK 14 RRM2B 8 ARID1A 1 FANCD2 3 MOS 8 RSPO1 1 ARIH2 3 FANCE 6 MPL 1 RUNX1 21 ARL13B 3 FANCF 11 MRAS 3 RUNX1T1 8 ARL4C 2 FANCG 9 MRE11A 11 RUVBL1 3 ARL6 3 FARP1 13 MSH2 2 RXRA 9 ARNT 1 FARP2 2 MSH3 5 RXRB 6 ARNT2 15 FAS 10 MSH6 2 RXRG 1 ARPC3 12 FASLG 1 MSN X RYK 3 ARPC4 3 FASN 17 MST1 3 SBK1 16 ARPC5 1 FASTK 7 MST1R 3 SBK2 19 ARRB1 11 FAT3 11 MTAP 9 SCEL 13 ARRB2 17 FBXL14 12 MTOR 1 SCYL1 11 ASAP1 8 FBXW11 5 MUC1 1 SCYL2 12 ASCC1 10 FBXW7 4 MUSK 9 SCYL3 1 ASH1L 1 FER 5 MUTYH 1 SDHB 1 ASH2L 8 FES 15 MVP 16 SDHD 11 ASPSCR1 17 FGF1 5 MXD1 2 SEC31A 4 ASXL1 20 FGF10 5 MXI1 10 SENP2 3 ATF1 12 FGF11 17 MYC 8 SERPINB5 18 ATF2 2 FGF12 3 MYCBP2 13 SERPINE1 7 ATF4 22 FGF13 X MYCL1 1 SESN1 6 ATM 11 FGF14 13 MYCN 2 SESN2 1 ATP5S 14 FGF16 X MYCNOS 2 SESN3 11 ATP8B1 18 FGF17 8 MYD88 3 SETD1A 16 ATR 3 FGF18 5 MYLK 3 SETD1B 12 ATRX X FGF19 11 MYLK2 20 SETD2 3 AURKA 20 FGF2 4 MYLK3 16 SETD3 14 AURKB 17 FGF20 8 MYLK4 6 SETD4 21 AURKC 19 FGF21 19 MYO18B 22 SETD5 3 AXIN1 16 FGF22 19 MYO3A 10 SETD6 16 AXIN2 17 FGF23 12 MYO3B 2 SETD7 4 AXL 19 FGF3 11 MYT1 20 SETD8 12 B9D1 17 FGF4 11 NBN 8 SETDB1 1 BACH1 21 FGF5 4 NCK1 3 SETDB2 13 BAD 11 FGF6 12 NCK2 2 SETMAR 3 BAG2 6 FGF7 15 NCOA4 10 SFN 1 BAI1 8 FGF8 10 NCOR1 17 SFRP1 8 BAI3 6 FGF9 13 NCOR2 12 SFRP2 4 BAIAP2 17 FGFR1 8 NCSTN 1 SFRP4 7 BAP1 3 FGFR2 10 NDC80 18 SFRP5 10 BARD1 2 FGFR3 4 NDP X SGCB 4 BAX 19 FGFR4 5 NDUFV3 21 SGK1 6 BBC3 19 FGR 1 NEDD9 6 SGK2 20 BBS2 16 FH 1 NEK1 4 SGK3 8 BBS4 15 FIGF X NEK10 3 SGOL1 3 BBS5 2 FKBP1A 20 NEK11 3 SGOL2 2 BBS7 4 FLCN 17 NEK2 1 SH2B2 7 BBS9 7 FLNA X NEK3 13 SH2D2A 1 BCKDK 16 FLNB 3 NEK4 3 SH2D7 15 BCL2 18 FLNC 7 NEK5 13 SHC1 1 BCL2L1 20 FLOT1 6 NEK6 9 SHC2 19 BCL2L11 2 FLOT2 17 NEK7 1 SHC3 9 BCL2L14 12 FLT1 13 NEK8 17 SHC4 15 BCL2L2 14 FLT3 13 NEK9 14 SHFM1 7 BCL6 3 FLT3LG 19 NEMF 14 SHH 7 BCL9 1 FLT4 5 NF1 17 SHISA5 3 BCR 22 FN1 2 NF2 22 SHOX X BDNF 11 FOS 14 NFAT5 16 SIAH1 16 BID 22 FOSL1 11 NFATC1 18 SIK1 21 BIRC2 11 FOXC1 6 NFATC2 20 SIK2 11 BIRC3 11 FOXC2 16 NFATC3 16 SIK3 11 BIRC5 17 FOXL2 3 NFATC4 14 SIN3A 15 BLK 8 FOXM1 12 NFKB1 4 SIN3B 19 BLM 15 FOXO1 13 NFKB2 10 SIX4 14 BMP1 8 FOXO3 6 NFKBIA 14 SKP1 5 BMP10 2 FOXO4 X NFKBIE 6 SKP2 5 BMP15 X FPGT-TNNI3K 1 NGF 1 SLC26A1 4 BMP2 20 FRAT1 10 NKD1 16 SLC29A1 6 BMP2K 4 FRAT2 10 NKD2 5 SLC2A1 1 BMP4 14 FRK 6 NKX2-1 14 SLC2A4 17 BMP5 6 FRZB 2 NKX3-1 8 SLK 10 BMP6 6 FST 5 NLK 17 SMAD1 4 BMP7 20 FTO 16 NODAL 10 SMAD2 18 BMP8A 1 FYB 5 NOG 17 SMAD3 15 BMP8B 1 FYN 6 NOS2 17 SMAD4 18 BMPR1A 10 FZD1 7 NOS3 7 SMAD5 5 BMPR1B 4 FZD10 12 NOSIP 19 SMAD6 15 BMPR2 2 FZD2 17 NOSTRIN 2 SMAD7 18 BMX X FZD3 8 NOTCH1 9 SMAD9 13 BOC 3 FZD4 11 NOTCH2 1 SMARCA4 19 BORA 13 FZD5 2 NOTCH2NL 1 SMARCB1 22 BRAF 7 FZD6 8 NOTCH3 19 SMARCD1 12 BRCA1 17 FZD7 2 NOTCH4 6 SMARCE1 17 BRCA2 13 FZD8 10 NPHP1 2 SMC1A X BRD2 6 FZD9 7 NPHP3 3 SMC1B 22 BRD3 9 FZR1 19 NPHP4 1 SMC3 10 BRD4 19 GAB1 4 NPM1 5 SMG1 16 BRDT 1 GABRA6 5 NPR1 1 SMO 7 BRIP1 17 GADD45A 1 NPR2 9 SMURF1 7 BRSK1 19 GADD45B 19 NR4A1 12 SMURF2 17 BRSK2 11 GADD45G 9 NRAS 1 SMYD1 2 BTC 4 GAK 4 NRBP1 2 SMYD2 1 BTK X GALNS 16 NRBP2 8 SMYD3 1 BTRC 10 GAS1 9 NRG1 8 SMYD4 17 BUB1 2 GATA1 X NRG2 5 SMYD5 2 BUB1B 15 GATA2 3 NRG3 10 SNAI1 20 BUB3 10 GATA3 10 NRG4 15 SNAI2 8 C10orf137 10 GCK 7 NSD1 5 SNRK 3 C16orf53 16 GDF5 20 NTF3 12 SNTB1 8 C8orf4 8 GDF6 8 NTF4 19 SNW1 14 C9orf96 9 GDF7 2 NTHL1 16 SNX25 4 CAB39 2 GDNF 5 NTRK1 1 SNX4 3 CAB39L 13 GLI1 12 NTRK2 9 SOCS1 16 CACYBP 1 GLI2 2 NTRK3 15 SOCS2 12 CAD 2 GLI3 7 NUAK1 12 SOCS3 17 CALM1 14 GMNN 6 NUAK2 1 SOCS4 14 CALM2 2 GMPS 3 NUF2 1 SORBS1 10 CALM3 19 GNA12 7 NUMA1 11 SOS1 2 CALML3 10 GNAQ 9 NUMB 14 SOS2 14 CALML5 10 GNAS 20 NUMBL 19 SOST 17 CALML6 1 GNG12 1 NUP98 11 SOX17 8 CAMK1 3 GPR141 7 OBSCN 1 SP1 12 CAMK1D 10 GRAP2 22 ODC1 2 SPAG5 17 CAMK1G 1 GRB10 7 OFD1 X SPAG5-AS1 17 CAMK2A 5 GRB2 17 OGG1 3 SPC24 19 CAMK2B 7 GRK1 13 OPRM1 6 SPC25 2 CAMK2D 4 GRK4 4 ORC1 1 SPEG 2 CAMK2G 10 GRK5 10 ORC2 2 SPHK1 17 CAMK4 5 GRK6 5 ORC3 6 SPHK2 19 CAMKK1 17 GRK7 3 ORC4 2 SPI1 11 CAMKK2 12 GSG2 17 ORC5 7 SPINK1 5 CAMKV 3 GSK3A 19 ORC6 16 SPINK7 5 CAMP 3 GSK3B 3 OSR1 2 SPRED1 15 CAPG 2 GSTP1 11 OXSR1 3 SPTBN2 11 CAPN1 11 GSX2 4 P2RX7 12 SRC 20 CAPN2 1 GTSE1 22 PAK1 11 SREBF1 17 CARD9 9 GUCY1A2 11 PAK2 3 SRF 6 CARM1 19 GUCY2C 12 PAK3 X SRM 1 CARS 11 GUCY2D 17 PAK4 19 SRMS 20 CASK X GUCY2F X PAK6 15 SRPK1 6 CASP1 11 GYS1 19 PAK7 20 SRPK2 7 CASP10 2 GYS2 12 PALB2 16 SRPK3 X CASP2 7 H2AFX 11 PAPD5 16 SRSF6 20 CASP3 4 H2AFY2 10 PAPD7 5 SSBP1 7 CASP4 11 HABP4 9 PARD3 10 SSBP2 5 CASP5 11 HAPLN1 5 PARD6A 16 SSH1 12 CASP6 4 HAT1 2 PARK2 6 SSH2 17 CASP7 10 HAUS3 4 PARK7 1 SSSCA1 11 CASP8 2 HBEGF 5 PARP1 1 SSTR1 14 CASP9 1 HBXIP 1 PARP10 8 SSTR2 17 CBL 11 HCK 20 PARP11 12 SSTR3 22 CBLB 3 HDAC1 1 PARP12 7 SSTR4 20 CBLC 19 HDAC10 22 PARP14 3 SSTR5 16 CCBE1 18 HDAC11 3 PARP15 3 ST13 22 CCDC6 10 HDAC2 6 PARP16 15 STAG1 3 CCDC99 5 HDAC3 5 PARP3 3 STAG2 X CCNA1 13 HDAC4 2 PARP8 5 STAM 10 CCNA2 4 HDAC5 17 PARP9 3 STAT1 2 CCNB1 5 HDAC6 X PASK 2 STAT3 17 CCNB2 15 HDAC7 12 PAX8 2 STAT5A 17 CCNB3 X HDAC8 X PBK 8 STAT5B 17 CCND1 11 HDAC9 7 PBRM1 3 STAT6 12 CCND2 12 HES1 3 PCBD1 10 STEAP3 2 CCND3 6 HES5 1 PCK1 20 STK10 5 CCNE1 19 HGF 7 PCK2 14 STK11 19 CCNE2 8 HHIP 4 PCNA 20 STK16 2 CCNG1 5 HIF1A 14 PDE3A 12 STK17A 7 CCNG2 4 HIF1AN 10 PDE3B 11 STK17B 2 CCNH 5 HIF3A 19 PDE4D 5 STK19 6 CCR3 3 HIPK1 1 PDGFA 7 STK24 13 CCR7 17 HIPK2 7 PDGFB 22 STK25 2 CD109 6 HIPK3 11 PDGFRA 4 STK3 8 CD14 5 HIPK4 19 PDGFRB 5 STK31 7 CD248 11 HIST1H1B 6 PDGFRL 8 STK32A 5 CD40 20 HK1 10 PDIK1L 1 STK32B 4 CD47 3 HK2 2 PDK1 2 STK32C 10 CD82 11 HK3 5 PDK2 17 STK33 11 CDC14A 1 HNF1A 12 PDK3 X STK35 20 CDC14B 9 HNF1B 17 PDK4 7 STK36 2 CDC16 13 HNRNPH2 X PDPK1 16 STK38 6 CDC20 1 HRAS 11 PERP 6 STK38L 12 CDC23 5 HSF4 16 PGF 14 STK39 2 CDC25A 3 HSP90AA1 14 PGPEP1 19 STK4 20 CDC25B 20 HSP90AB1 6 PHF15 5 STK40 1 CDC25C 5 HSP90B1 12 PHF16 X STMN1 1 CDC26 9 HSPA1A 6 PHF17 4 STOML3 13 CDC27 17 HSPA1B 6 PHF2 9 STRADA 17 CDC42 1 HSPA1L 6 PHF8 X STRADB 2 CDC42BPA 1 HSPA2 14 PHIP 6 STYK1 12 CDC42BPB 14 HSPA6 1 PHKA1 X SUFU 10 CDC42BPG 11 HSPA8 11 PHKA2 X SUV39H1 X CDC45 22 HSPB1 7 PHKB 16 SUV39H2 10 CDC6 17 HSPB8 12 PHKG1 7 SUV420H1 11 CDC7 1 HUNK 21 PHKG2 16 SUV420H2 19 CDC73 1 ICAM1 19 PHLDB2 3 SYK 9 CDCA8 1 ICAM2 17 PHOX2A 11 SYMPK 19 CDH1 16 ICAM3 19 PHOX2B 4 TAB1 22 CDH20 18 ICAM4 19 PI4K2A 10 TAB2 6 CDH3 16 ICK 6 PI4K2B 4 TAF1 X CDK1 10 ID1 20 PI4KA 22 TAF1L 9 CDK10 16 ID2 2 PI4KB 1 TAOK1 17 CDK11A 1 ID3 1 PIAS1 15 TAOK2 16 CDK12 17 ID4 6 PIAS2 18 TAOK3 12 CDK13 7 IDH1 2 PIAS3 1 TBCK 4 CDK14 7 IDH2 15 PIAS4 19 TBK1 12 CDK15 2 IDUA 4 PIDD 11 TBL1X X CDK16 X IFNG 12 PIK3C2A 11 TBL1XR1 3 CDK17 12 IFT172 2 PIK3C2B 1 TBL1Y Y CDK18 1 IFT57 3 PIK3C2G 12 TBX22 X CDK19 6 IFT81 12 PIK3C3 18 TBX3 12 CDK2 12 IFT88 13 PIK3CA 3 TCEB1 8 CDK20 9 IGF1 12 PIK3CB 3 TCEB2 16 CDK4 12 IGF1R 15 PIK3CD 1 TCEB3 1 CDK5 7 IGF2 11 PIK3CG 7 TCF3 19 CDK6 7 IGF2R 6 PIK3R1 5 TCF4 18 CDK7 5 IGFBP1 7 PIK3R2 19 TCF7 5 CDK8 13 IGFBP2 2 PIK3R3 1 TCF7L1 2 CDK9 9 IGFBP3 7 PIK3R4 3 TCF7L2 10 CDKL1 14 IGFBP4 17 PIK3R5 17 TEC 4 CDKL2 4 IGFBP5 2 PIKFYVE 2 TECTA 11 CDKL3 5 IHH 2 PIM1 6 TEK 9 CDKL4 2 IKBKAP 9 PIM2 X TEN1 17 CDKL5 X IKBKB 8 PIM3 22 TESK1 9 CDKN1A 6 IKBKE 1 PIN4 X TESK2
Recommended publications
  • CEP41 As an ASD Gene Ashok Patowary 1,Soyeonwon2,Shinjioh2,Ryanrnesbitt1, Marilyn Archer1, Debbie Nickerson3, Wendy H
    Patowary et al. Translational Psychiatry (2019) 9:4 https://doi.org/10.1038/s41398-018-0343-z Translational Psychiatry ARTICLE Open Access Family-based exome sequencing and case- control analysis implicate CEP41 as an ASD gene Ashok Patowary 1,SoYeonWon2,ShinJiOh2,RyanRNesbitt1, Marilyn Archer1, Debbie Nickerson3, Wendy H. Raskind1,4, Raphael Bernier1,JiEunLee2,5 and Zoran Brkanac1 Abstract Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. Although next-generation sequencing (NGS) technologies have been successfully applied to gene identification in de novo ASD, the genetic architecture of familial ASD remains largely unexplored. Our approach, which leverages the high specificity and sensitivity of NGS technology, has focused on rare variants in familial autism. We used NGS exome sequencing in 26 families with distantly related affected individuals to identify genes with private gene disrupting and missense variants of interest (VOI). We found that the genes carrying VOIs were enriched for biological processes related to cell projection organization and neuron development, which is consistent with the neurodevelopmental hypothesis of ASD. For a subset of genes carrying VOIs, we then used targeted NGS sequencing and gene-based variant burden case-control analysis to test for association with ASD. Missense variants in one gene, CEP41, associated significantly with ASD (p = 6.185e−05). Homozygous gene-disrupting variants in CEP41 were initially found to be responsible for recessive Joubert syndrome. Using a zebrafish model, we evaluated the mechanism by which the 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; CEP41 variants might contribute to ASD. We found that CEP41 missense variants affect development of the axonal tract, cranial neural crest migration and social behavior phenotype.
    [Show full text]
  • Epigenetic Regulation of the PTEN–AKT–RAC1 Axis by G9a Is Critical for Tumor Growth in Alveolar Rhabdomyosarcoma Akshay V
    Published OnlineFirst March 4, 2019; DOI: 10.1158/0008-5472.CAN-18-2676 Cancer Molecular Cell Biology Research Epigenetic Regulation of the PTEN–AKT–RAC1 Axis by G9a Is Critical for Tumor Growth in Alveolar Rhabdomyosarcoma Akshay V. Bhat1, Monica Palanichamy Kala1, Vinay Kumar Rao1, Luca Pignata2, Huey Jin Lim3, Sudha Suriyamurthy1, Kenneth T.Chang4,Victor K. Lee3, Ernesto Guccione2, and Reshma Taneja1 Abstract Alveolar rhabdomyosarcoma (ARMS) is an aggressive suppressor PTEN was a direct target gene of G9a. G9a pediatric cancer with poor prognosis. As transient and stable repressed PTEN expression in a methyltransferase activity– modifications to chromatin have emerged as critical dependent manner, resulting in increased AKT and RAC1 mechanisms in oncogenic signaling, efforts to target epige- activity. Re-expression of constitutively active RAC1 in G9a- netic modifiers as a therapeutic strategy have accelerated in deficient tumor cells restored oncogenic phenotypes, demon- recent years. To identify chromatin modifiers that sustain strating its critical functions downstream of G9a. Collectively, tumor growth, we performed an epigenetic screen and our study provides evidence for a G9a-dependent epigenetic found that inhibition of lysine methyltransferase G9a sig- program that regulates tumor growth and suggests targeting nificantly affected the viability of ARMS cell lines. Targeting G9a as a therapeutic strategy in ARMS. expression or activity of G9a reduced cellular proliferation and motility in vitro and tumor growth in vivo.Transcrip- Significance: These findings demonstrate that RAC1 is an tome and chromatin immunoprecipitation–sequencing effector of G9a oncogenic functions and highlight the poten- analysis provided mechanistic evidence that the tumor- tial of G9a inhibitors in the treatment of ARMS.
    [Show full text]
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • PERK Antibody / EIF2AK3 (RQ4206)
    PERK Antibody / EIF2AK3 (RQ4206) Catalog No. Formulation Size RQ4206 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Mouse, Rat Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity purified Buffer Lyophilized from 1X PBS with 2% Trehalose and 0.025% sodium azide UniProt Q9NZJ5 Applications Western Blot : 0.5-1ug/ml Flow cytometry : 1-3ug/10^6 cells Direct ELISA : 0.1-0.5ug/ml Limitations This PERK antibody is available for research use only. Western blot testing of human 1) HeLa, 2) COLO320, 3) A549, 4) SK-OV-3, 5) A431, 6) rat brain and 7) mouse brain lysate with PERK antibody at 0.5ug/ml. Predicted molecular weight ~125 kDa, observed here at ~140 kDa. Flow cytometry testing of human HepG2 cells with PERK antibody at 1ug/10^6 cells (blocked with goat sera); Red=cells alone, Green=isotype control, Blue= PERK antibody. Description Eukaryotic translation initiation factor 2-alpha kinase 3, also known as protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), is an enzyme that in humans is encoded by the EIF2AK3 gene. The protein encoded by this gene phosphorylates the alpha subunit of eukaryotic translation-initiation factor 2, leading to its inactivation, and thus to a rapid reduction of translational initiation and repression of global protein synthesis. This protein is thought to modulate mitochondrial function. It is a type I membrane protein located in the endoplasmic reticulum (ER), where it is induced by ER stress caused by malfolded proteins.
    [Show full text]
  • Overexpression of the Histone Dimethyltransferase G9a in Nucleus Accumbens Shell Increases Cocaine Self- Administration, Stress-Induced Reinstatement, and Anxiety
    The Journal of Neuroscience, January 24, 2018 • 38(4):803–813 • 803 Neurobiology of Disease Overexpression of the Histone Dimethyltransferase G9a in Nucleus Accumbens Shell Increases Cocaine Self- Administration, Stress-Induced Reinstatement, and Anxiety X Ethan M. Anderson,1 Erin B. Larson,1 XDaniel Guzman,1 Anne Marie Wissman,1 Rachael L. Neve,2 XEric J. Nestler,3 and X David W. Self1 1Department of Psychiatry, The Seay Center for Basic and Applied Research in Psychiatric Illness, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, 2Viral Gene Transfer Core, Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and 3Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York 10029 Repeated exposure to cocaine induces lasting epigenetic changes in neurons that promote the development and persistence of addiction. One epigenetic alteration involves reductions in levels of the histone dimethyltransferase G9a in nucleus accumbens (NAc) after chronic cocaine administration. This reduction in G9a may enhance cocaine reward because overexpressing G9a in the NAc decreases cocaine- conditioned place preference. Therefore, we hypothesized that HSV-mediated G9a overexpression in the NAc shell (NAcSh) would attenuate cocaine self-administration (SA) and cocaine-seeking behavior. Instead, we found that G9a overexpression, and the resulting increase in histone 3 lysine 9 dimethylation (H3K9me2), increases sensitivity to cocaine reinforcement and enhances motivation for cocaine in self-administering male rats. Moreover, when G9a overexpression is limited to the initial 15 d of cocaine SA training, it produces an enduring postexpression enhancement in cocaine SA and prolonged (over 5 weeks) increases in reinstatement of cocaine seeking induced by foot-shock stress, but in the absence of continued global elevations in H3K9me2.
    [Show full text]
  • The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
    International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Role of the S6K2 Splice Isoform in Mtor/S6K Signalling and Cellular Functions
    The role of the S6K2 splice isoform in mTOR/S6K signalling and cellular functions Olena Myronova A thesis submitted to the University College London in fulfilment with the requirements for the degree of Doctor of Philosophy London, November 2015 Research Department of Structural and Molecular Biology Division of Biosciences University College London Gower Street London, WC1E 6BT United Kingdom Ludwig Institute for Cancer Research 666 Third Avenue, 28th floor New York, N.Y. 10017 USA The role of the S6K2 splice isoform in mTOR/S6K signalling and cellular functions 1 Declaration I, Olena Myronova, declare that all the work presented in this thesis is the result of my own work. The work presented here does not constitute part of any other thesis. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. The work here in was carried out while I was a graduate research student at University College London, Research Department of Structural and Molecular Biology under the supervision of Professor Ivan Gout. Olena Myronova The role of the S6K2 splice isoform in mTOR/S6K signalling and cellular functions 2 Abstract Ribosomal S6 kinase (S6K) is a member of the AGC family of serine/threonine protein kinases and plays a key role in diverse cellular processes, including cell growth, survival and metabolism. Activation of S6K by growth factors, amino acids, energy levels and hypoxia is mediated by the mTOR and PI3K signalling pathways. Dysregulation of S6K activity has been implicated in a number of human pathologies, including cancer, diabetes, obesity and ageing.
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • De Novo EIF2AK1 and EIF2AK2 Variants Are Associated with Developmental Delay, Leukoencephalopathy, and Neurologic Decompensation
    bioRxiv preprint doi: https://doi.org/10.1101/757039; this version posted September 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. De novo EIF2AK1 and EIF2AK2 variants are associated with developmental delay, leukoencephalopathy, and neurologic decompensation Dongxue Mao1,2, Chloe M. Reuter3,4, Maura R.Z. Ruzhnikov5,6, Anita E. Beck7, Emily G. Farrow8,9,10, Lisa T. Emrick1,11,12,13, Jill A. Rosenfeld12, Katherine M. Mackenzie5, Laurie Robak2,12,13, Matthew T. Wheeler3,14, Lindsay C. Burrage12,13, Mahim Jain15, Pengfei Liu12, Daniel Calame11,13, Sebastien Küry17,18, Martin Sillesen19, Klaus Schmitz-Abe20, Davide Tonduti21, Luigina Spaccini22, Maria Iascone23, Casie A. Genetti20, Madeline Graf16, Alyssa Tran12, Mercedes Alejandro12, Undiagnosed Diseases Network, Brendan H. Lee12,13, Isabelle Thiffault8,9,24, Pankaj B. Agrawal#,20, Jonathan A. Bernstein#,3,25, Hugo J. Bellen#,2,12,26,27,28, Hsiao- Tuan Chao#,1,2,11,12,13,28,27,29 #Correspondence should be addressed: [email protected] (P.A.), [email protected] (J.A.B.), [email protected] (H.J.B.), [email protected] (H.T.C.) 1Department of Pediatrics, Baylor College of Medicine (BCM), Houston, TX 2Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 3Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA 4Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine,
    [Show full text]
  • Deletion of Stk11 and Fos in Mouse BLA Projection Neurons
    RESEARCH ARTICLE Deletion of Stk11 and Fos in mouse BLA projection neurons alters intrinsic excitability and impairs formation of long- term aversive memory David Levitan1†*, Chenghao Liu1†, Tracy Yang1, Yasuyuki Shima1, Jian-You Lin2,3, Joseph Wachutka2, Yasmin Marrero2, Ramin Ali Marandi Ghoddousi1, Eduardo da Veiga Beltrame2, Troy A Richter1, Donald B Katz2,3, Sacha B Nelson1,3* 1Departments of Biology, Brandeis University, Waltham, United States; 2Departments of Psychology, Brandeis University, Waltham, United States; 3Volen Center for Complex Systems, Brandeis University, Waltham, United States Abstract Conditioned taste aversion (CTA) is a form of one-trial learning dependent on basolateral amygdala projection neurons (BLApn). Its underlying cellular and molecular mechanisms remain poorly understood. RNAseq from BLApn identified changes in multiple candidate learning- related transcripts including the expected immediate early gene Fos and Stk11, a master kinase of the AMP-related kinase pathway with important roles in growth, metabolism and development, but not previously implicated in learning. Deletion of Stk11 in BLApn blocked memory prior to training, but not following it and increased neuronal excitability. Conversely, BLApn had reduced excitability following CTA. BLApn knockout of a second learning-related gene, Fos, also increased excitability and impaired learning. Independently increasing BLApn excitability chemogenetically during CTA *For correspondence: also impaired memory. STK11 and C-FOS activation were independent
    [Show full text]
  • A Missense Mutation in the RSRSP Stretch of Rbm20 Causes Dilated
    www.nature.com/scientificreports OPEN A missense mutation in the RSRSP stretch of Rbm20 causes dilated cardiomyopathy and atrial fbrillation in mice Kensuke Ihara1,2*, Tetsuo Sasano2, Yuichi Hiraoka3, Marina Togo‑Ohno4, Yurie Soejima5, Motoji Sawabe5, Megumi Tsuchiya6, Hidesato Ogawa6, Tetsushi Furukawa1 & Hidehito Kuroyanagi4* Dilated cardiomyopathy (DCM) is a fatal heart disease characterized by left ventricular dilatation and cardiac dysfunction. Recent genetic studies on DCM have identifed causative mutations in over 60 genes, including RBM20, which encodes a regulator of heart‑specifc splicing. DCM patients with RBM20 mutations have been reported to present with more severe cardiac phenotypes, including impaired cardiac function, atrial fbrillation (AF), and ventricular arrhythmias leading to sudden cardiac death, compared to those with mutations in the other genes. An RSRSP stretch of RBM20, a hotspot of missense mutations found in patients with idiopathic DCM, functions as a crucial part of its nuclear localization signals. However, the relationship between mutations in the RSRSP stretch and cardiac phenotypes has never been assessed in an animal model. Here, we show that Rbm20 mutant mice harboring a missense mutation S637A in the RSRSP stretch, mimicking that in a DCM patient, demonstrated severe cardiac dysfunction and spontaneous AF and ventricular arrhythmias mimicking the clinical state in patients. In contrast, Rbm20 mutant mice with frame‑shifting deletion demonstrated less severe phenotypes, although loss of RBM20‑dependent alternative splicing was indistinguishable. RBM20S637A protein cannot be localized to the nuclear speckles, but accumulated in cytoplasmic, perinuclear granule‑like structures in cardiomyocytes, which might contribute to the more severe cardiac phenotypes. Dilated cardiomyopathy (DCM) is a fatal cardiac disease characterized by enlargement of the cardiac chambers and impaired systolic function1.
    [Show full text]