Apoa2 Correlates to Gestational Age with Decreased Apolipoproteins A2, C1, C3 and E in Gestational Diabetes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Expression of the Human Apolipoprotein Genes and Their Regulation by Ppars
CORE Metadata, citation and similar papers at core.ac.uk Provided by UEF Electronic Publications The expression of the human apolipoprotein genes and their regulation by PPARs Juuso Uski M.Sc. Thesis Biochemistry Department of Biosciences University of Kuopio June 2008 Abstract The expression of the human apolipoprotein genes and their regulation by PPARs. UNIVERSITY OF KUOPIO, the Faculty of Natural and Environmental Sciences, Curriculum of Biochemistry USKI Juuso Oskari Thesis for Master of Science degree Supervisors Prof. Carsten Carlberg, Ph.D. Merja Heinäniemi, Ph.D. June 2008 Keywords: nuclear receptors; peroxisome proliferator-activated receptor; PPAR response element; apolipoprotein; lipid metabolism; high density lipoprotein; low density lipoprotein. Lipids are any fat-soluble, naturally-occurring molecules and one of their main biological functions is energy storage. Lipoproteins carry hydrophobic lipids in the water and salt-based blood environment for processing and energy supply in liver and other organs. In this study, the genomic area around the apolipoprotein genes was scanned in silico for PPAR response elements (PPREs) using the in vitro data-based computer program. Several new putative REs were found in surroundings of multiple lipoprotein genes. The responsiveness of those apolipoprotein genes to the PPAR ligands GW501516, rosiglitazone and GW7647 in the HepG2, HEK293 and THP-1 cell lines were tested with real-time PCR. The APOA1, APOA2, APOB, APOD, APOE, APOF, APOL1, APOL3, APOL5 and APOL6 genes were found to be regulated by PPARs in direct or secondary manners. Those results provide new insights in the understanding of lipid metabolism and so many lifestyle diseases like atherosclerosis, type 2 diabetes, heart disease and stroke. -
Polymorphisms in APOA1 and LPL Genes Are Statistically Independently Associated with Fasting TG in Men with CAD
European Journal of Human Genetics (2005) 13, 445–451 & 2005 Nature Publishing Group All rights reserved 1018-4813/05 $30.00 www.nature.com/ejhg ARTICLE Polymorphisms in APOA1 and LPL genes are statistically independently associated with fasting TG in men with CAD Olga W Souverein*,1, J Wouter Jukema2, S Matthijs Boekholdt3, Aeilko H Zwinderman1 and Michael WT Tanck1 1Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands; 2Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; 3Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands The objective of this paper was to identify the single nucleotide polymorphisms (SNPs) that show unshared effects on plasma triglyceride (TG) levels and to investigate whether these SNPs show statistically independent effects on plasma TG levels. In total, 59 polymorphisms in 20 genes involved in lipid metabolism were investigated. Polymorphisms were selected for a multivariate ANOVA model if they showed an univariate association with TG (after adjustment for HDL-C and LDL-C) in more than 50% of bootstrap samples that were made from the original data. The multivariate model included 512 men with coronary artery disease from the REGRESS study who were completely genotyped for eight polymorphisms selected in the univariate procedure (ie, APOA1 G(À75)A, ABCA1 C(À477)T, ABCA1 G1051A, APOC3 T3206G, APOE Arg158Cys, LIPC C(À514)T, LPL Asn291Ser and LPL Ser447Stop). The gene variants APOA1 G(À75)A (P ¼ 0.04) and LPL Asn291Ser (P ¼ 0.03) were significantly associated with plasma TG levels in this multivariate analysis. The eight polymorphisms explained 8.9% of the variation in plasma TG levels. -
Proteomic Analysis of HDL from Inbred Mouse Strains Implicates APOE Associated with HDL in Reduced Cholesterol Effl Ux Capacity Via the ABCA1 Pathway
Supplemental Material can be found at: http://www.jlr.org/content/suppl/2015/12/15/jlr.M063701.DC1 .html ˔ Author’s Choice Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol effl ux capacity via the ABCA1 pathway Nathalie Pamir , 1, * Patrick Hutchins , * Graziella Ronsein , * Tomas Vaisar , * Catherine A. Reardon , † Godfrey S. Getz , † Aldons J. Lusis , § and Jay W. Heinecke * Downloaded from Department of Medicine,* University of Washington , Seattle, WA ; Department of Pathology, † University of Chicago , Chicago, IL ; and Department of Genetics, § University of California at Los Angeles , Los Angeles, CA Abstract Cholesterol effl ux capacity associates strongly Supplementary key words atherosclerosis • cardiovascular risk • mass and negatively with the incidence and prevalence of human spectrometry • high density lipoprotein • apolipoprotein E • ATP bind- CVD. We investigated the relationships of HDL’s size and ing cassette transporter A1 www.jlr.org protein cargo with its cholesterol effl ux capacity using APOB-depleted serum and HDLs isolated from fi ve inbred mouse strains with different susceptibilities to atherosclero- Clinical and epidemiological studies show a robust at Univ of Washington Health Sciences Library SB-55, on February 5, 2016 sis. Like humans, mouse HDL carried >70 proteins linked to inverse association of HDL-cholesterol (HDL-C) levels lipid metabolism, the acute-phase response, proteinase inhi- with CVD risk ( 1 ). In randomized clinical trials, how- bition, and the immune system. HDL’s content of specifi c ever, two drugs, CETP inhibitors and niacin, that elevate proteins strongly correlated with its size and cholesterol ef- fl ux capacity, suggesting that its protein cargo regulates its HDL-C levels by different mechanisms, failed to reduce function. -
The Crucial Roles of Apolipoproteins E and C-III in Apob Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sacks, Frank M. 2015. “The Crucial Roles of Apolipoproteins E and C-III in apoB Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia.” Current Opinion in Lipidology 26 (1) (February): 56–63. doi:10.1097/mol.0000000000000146. Published Version doi:10.1097/MOL.0000000000000146 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30203554 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP HHS Public Access Author manuscript Author Manuscript Author ManuscriptCurr Opin Author Manuscript Lipidol. Author Author Manuscript manuscript; available in PMC 2016 February 01. Published in final edited form as: Curr Opin Lipidol. 2015 February ; 26(1): 56–63. doi:10.1097/MOL.0000000000000146. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia Frank M. Sacks Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA Abstract Purpose of review—To describe the roles of apolipoprotein C-III (apoC-III) and apoE in VLDL and LDL metabolism Recent findings—ApoC-III can block clearance from the circulation of apolipoprotein B (apoB) lipoproteins, whereas apoE mediates their clearance. -
Biomolecules
biomolecules Review High-Density Lipoproteins Are Bug Scavengers Olivier Meilhac 1,2,*, Sébastien Tanaka 1,3 and David Couret 1,4 1 Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France; [email protected] (S.T.); [email protected] (D.C.) 2 CHU de La Réunion, Centre d’Investigations Clinique 1410, 97410 Saint-Pierre, France 3 AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 75018 Paris, France 4 CHU de La Réunion, Neurocritical Care Unit, 97410 Saint-Pierre, France * Correspondence: [email protected]; Tel.: +33-262-93-88-11 Received: 7 March 2020; Accepted: 6 April 2020; Published: 12 April 2020 Abstract: Lipoproteins were initially defined according to their composition (lipids and proteins) and classified according to their density (from very low- to high-density lipoproteins—HDLs). Whereas their capacity to transport hydrophobic lipids in a hydrophilic environment (plasma) is not questionable, their primitive function of cholesterol transporter could be challenged. All lipoproteins are reported to bind and potentially neutralize bacterial lipopolysaccharides (LPS); this is particularly true for HDL particles. In addition, HDL levels are drastically decreased under infectious conditions such as sepsis, suggesting a potential role in the clearance of bacterial material and, particularly, LPS. Moreover, “omics” technologies have unveiled significant changes in HDL composition in different inflammatory states, ranging from acute inflammation occurring during septic shock to low-grade inflammation associated with moderate endotoxemia such as periodontal disease or obesity. In this review, we will discuss HDL modifications associated with exposure to pathogens including bacteria, viruses and parasites, with a special focus on sepsis and the potential of HDL therapy in this context. -
Association Between the APOA2 Rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI
biomedicines Article Association between the APOA2 rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI Hatim Boughanem 1 , Borja Bandera-Merchán 2, Pablo Hernández-Alonso 2,3,4 , Noelia Moreno-Morales 5, Francisco José Tinahones 2,3, José Lozano 6 , Sonsoles Morcillo 2,3,* and Manuel Macias-Gonzalez 2,3,* 1 Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain; [email protected] 2 Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; [email protected] (B.B.-M.); [email protected] (P.H.-A.); [email protected] (F.J.T.) 3 Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERObn, 28029 Madrid, Spain 4 Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, 43201 Reus, Spain 5 Department of Physiotherapy, School of Health Sciences, University of Malaga-Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; [email protected] 6 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain; [email protected] * Correspondence: [email protected] (S.M.); [email protected] (M.M.-G.); Tel.: +34-951-032-648 (S.M. & M.M.-G.); Fax: +34-27-951-924-651 (S.M. & M.M.-G.) Received: 18 February 2020; Accepted: 25 February 2020; Published: 27 February 2020 Abstract: Background: The interaction between obesity and genetic traits on high density lipoprotein (HDL) levels has been extensively studied. -
Downloaded Separately for CEU (Individuals of Western and Northern European Origin) and YRI (Yoruba in Nigeria) from Hapmap Phase 2
NIH Public Access Author Manuscript Int J Obes (Lond). Author manuscript; available in PMC 2013 September 11. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Int J Obes (Lond). 2013 September ; 37(9): 1211–1220. doi:10.1038/ijo.2012.215. Lipoprotein receptor-related protein 1 variants and dietary fatty acids: meta-analysis of European origin and African American studies CE Smith1, J Ngwa2, T Tanaka3, Q Qi4, MK Wojczynski5, RN Lemaitre6, JS Anderson7, A Manichaikul8, V Mikkilä9, FJA van Rooij10,11, Z Ye12, S Bandinelli13, AC Frazier-Wood14, DK Houston15, F Hu4,16, C Langenberg12, NM McKeown1, D Mozaffarian17,18, KE North19, J Viikari20, MC Zillikens11,21, L Djoussé22, A Hofman10,11, M Kähönen23, EK Kabagambe14, RJF Loos12, GB Saylor7, NG Forouhi12, Y Liu24, KJ Mukamal25, Y-DI Chen26, MY Tsai27, AG Uitterlinden10,11,21, O Raitakari28, CM van Duijn10,11, DK Arnett14, IB Borecki5, LA Cupples2,29, L Ferrucci3, SB Kritchevsky15, T Lehtimäki30, Lu Qi4,16, JI Rotter26, DS Siscovick31, NJ Wareham12, JCM Witteman10,11, JM Ordovás1,32,33, and JA Nettleton34 1Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA 2Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA 3Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA 4Department of Nutrition, Harvard School of Public Health, Boston, MA, USA 5Department of Genetics, Washington University School of Medicine, St. -
Low-Density Lipoprotein Receptor–Dependent and Low-Density Lipoprotein Receptor–Independent Mechanisms of Cyclosporin A–Induced Dyslipidemia
Original Research Low-Density Lipoprotein Receptor–Dependent and Low-Density Lipoprotein Receptor–Independent Mechanisms of Cyclosporin A–Induced Dyslipidemia Maaike Kockx, Elias Glaros, Betty Kan, Theodore W. Ng, Jimmy F.P. Berbée, Virginie Deswaerte, Diana Nawara, Carmel Quinn, Kerry-Anne Rye, Wendy Jessup, Patrick C.N. Rensen, Peter J. Meikle, Leonard Kritharides Objective—Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is associated with hyperlipidemia and an increased risk of cardiovascular disease. Although studies suggest that CsA-induced hyperlipidemia is mediated by inhibition of low-density lipoprotein receptor (LDLr)–mediated lipoprotein clearance, the data supporting this are inconclusive. We therefore sought to investigate the role of the LDLr in CsA-induced hyperlipidemia by using Ldlr-knockout mice (Ldlr−/−). Approach and Results—Ldlr−/− and wild-type (wt) C57Bl/6 mice were treated with 20 mg/kg per d CsA for 4 weeks. On a chow diet, CsA caused marked dyslipidemia in Ldlr−/− but not in wt mice. Hyperlipidemia was characterized by a prominent increase in plasma very low–density lipoprotein and intermediate-density lipoprotein/LDL with unchanged plasma high-density lipoprotein levels, thus mimicking the dyslipidemic profile observed in humans. Analysis of specific lipid species by liquid chromatography–tandem mass spectrometry suggested a predominant effect of CsA on increased very low–density lipoprotein–IDL/LDL lipoprotein number rather than composition. Mechanistic studies indicated that CsA did not alter hepatic lipoprotein production but did inhibit plasma clearance and hepatic uptake of [14C]cholesteryl oleate and glycerol tri[3H]oleate-double-labeled very low–density lipoprotein–like particles. -
A Case of Ezetimibe-Effective Hypercholesterolemia with a Novel Heterozygous Variant in ABCG5
2020, 67 (11), 1099-1105 Original A case of ezetimibe-effective hypercholesterolemia with a novel heterozygous variant in ABCG5 Yujiro Nakano1), Chikara Komiya1), Hitomi Shimizu2), 3), Hiroyuki Mishima3), Kumiko Shiba1), Kazutaka Tsujimoto1), Kenji Ikeda1), Kenichi Kashimada4), Sumito Dateki2), Koh-ichiro Yoshiura3), Yoshihiro Ogawa5) and Tetsuya Yamada1) 1) Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan 2) Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaski 852-8501, Japan 3) Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan 4) Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan 5) Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan Abstract. Sitosterolemia is caused by homozygous or compound heterozygous gene mutations in either ATP-binding cassette subfamily G member 5 (ABCG5) or 8 (ABCG8). Since ABCG5 and ABCG8 play pivotal roles in the excretion of neutral sterols into feces and bile, patients with sitosterolemia present elevated levels of serum plant sterols and in some cases also hypercholesterolemia. A 48-year-old woman was referred to our hospital for hypercholesterolemia. She had been misdiagnosed with familial hypercholesterolemia at the age of 20 and her serum low-density lipoprotein cholesterol (LDL-C) levels had remained about 200–300 mg/dL at the former clinic. Although the treatment of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors was ineffective, her serum LDL-C levels were normalized by ezetimibe, a cholesterol transporter inhibitor. -
Common Genetic Variations Involved in the Inter-Individual Variability Of
nutrients Review Common Genetic Variations Involved in the Inter-Individual Variability of Circulating Cholesterol Concentrations in Response to Diets: A Narrative Review of Recent Evidence Mohammad M. H. Abdullah 1 , Itzel Vazquez-Vidal 2, David J. Baer 3, James D. House 4 , Peter J. H. Jones 5 and Charles Desmarchelier 6,* 1 Department of Food Science and Nutrition, Kuwait University, Kuwait City 10002, Kuwait; [email protected] 2 Richardson Centre for Functional Foods & Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada; [email protected] 3 United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; [email protected] 4 Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] 5 Nutritional Fundamentals for Health, Vaudreuil-Dorion, QC J7V 5V5, Canada; [email protected] 6 Aix Marseille University, INRAE, INSERM, C2VN, 13005 Marseille, France * Correspondence: [email protected] Abstract: The number of nutrigenetic studies dedicated to the identification of single nucleotide Citation: Abdullah, M.M.H.; polymorphisms (SNPs) modulating blood lipid profiles in response to dietary interventions has Vazquez-Vidal, I.; Baer, D.J.; House, increased considerably over the last decade. However, the robustness of the evidence-based sci- J.D.; Jones, P.J.H.; Desmarchelier, C. ence supporting the area remains to be evaluated. The objective of this review was to present Common Genetic Variations Involved recent findings concerning the effects of interactions between SNPs in genes involved in cholesterol in the Inter-Individual Variability of metabolism and transport, and dietary intakes or interventions on circulating cholesterol concen- Circulating Cholesterol trations, which are causally involved in cardiovascular diseases and established biomarkers of Concentrations in Response to Diets: cardiovascular health. -
Role of Myeloperoxidase Mediated Oxidative Modification and Apolipoprotein Composition in High Density Lipoprotein Function
ROLE OF MYELOPEROXIDASE MEDIATED OXIDATIVE MODIFICATION AND APOLIPOPROTEIN COMPOSITION IN HIGH DENSITY LIPOPROTEIN FUNCTION by ARUNDHATI UNDURTI Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Thesis Advisor: Dr. Stanley L. Hazen Department of Microbiology and Molecular Biology Cell Biology Program CASE WESTERN RESERVE UNIVERSITY August, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________Arundhati Undurti candidate for the ______________________degreePhD *. Alan Levine (signed)_______________________________________________ (chair of the committee) Stanley Hazen ________________________________________________ Jonathan Smith ________________________________________________ Menachem Shoham ________________________________________________ Mark Chance ________________________________________________ ________________________________________________ (date) _______________________06-30-2010 *We also certify that written approval has been obtained for any proprietary material contained therein. For Amma and Nana TABLE OF CONTENTS List of Figures 3 List of Tables 7 Abbreviations 8 Acknowledgements 11 Abstract 13 Chapter I: Introduction Pathogenesis of Atherosclerosis Endothelial Dysfunction 17 Fatty Streak Formation 17 Advanced Lesion Formation 18 Thrombotic Complications 18 Role of Lipoproteins in Atherosclerosis Lipoprotein Classification and Metabolism 19 High Density Lipoprotein 20 Reverse -
Postprandial Lipoprotein Metabolism: VLDL Vs Chylomicrons
UC Davis UC Davis Previously Published Works Title Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Permalink https://escholarship.org/uc/item/9wx8p0x5 Journal Clinica chimica acta; international journal of clinical chemistry, 412(15-16) ISSN 0009-8981 Authors Nakajima, Katsuyuki Nakano, Takamitsu Tokita, Yoshiharu et al. Publication Date 2011-07-01 DOI 10.1016/j.cca.2011.04.018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Clinica Chimica Acta 412 (2011) 1306–1318 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/clinchim Invited critical review Postprandial lipoprotein metabolism: VLDL vs chylomicrons Katsuyuki Nakajima a,b,d,e,i,⁎, Takamitsu Nakano a,b, Yoshiharu Tokita a, Takeaki Nagamine a, Akihiro Inazu c, Junji Kobayashi d, Hiroshi Mabuchi d, Kimber L. Stanhope e, Peter J. Havel e, Mitsuyo Okazaki f,g, Masumi Ai h,i, Akira Tanaka g,i a School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi, Gunma, Japan b Otsuka Pharmaceuticals Co., Ltd, Tokushima, Japan c Department of Laboratory Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan d Department of Lipidology and Division of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan e Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA, USA f Skylight Biotech Inc., Akita, Japan g Department of Vascular Medicine and