The Regulation of Apob Metabolism by Insulin

Total Page:16

File Type:pdf, Size:1020Kb

The Regulation of Apob Metabolism by Insulin TEM-879; No. of Pages 7 Review The regulation of ApoB metabolism by insulin 1 2 1 Mary E. Haas , Alan D. Attie , and Sudha B. Biddinger 1 Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA 2 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA The leading cause of death in diabetic patients is cardio- are not capable of catabolizing cholesterol. They must vascular disease. Apolipoprotein B (ApoB)-containing therefore return excess cholesterol to the liver, which lipoprotein particles, which are secreted and cleared can secrete cholesterol into the bile, either directly or after by the liver, are essential for the development of athero- conversion to bile acids [5]. sclerosis. Insulin plays a key role in the regulation of Lipoproteins can be divided into classes that vary in ApoB. Insulin decreases ApoB secretion by promoting their apolipoproteins, lipid composition and, therefore, ApoB degradation in the hepatocyte. In parallel, insulin function. Apolipoprotein B is a structural protein that is promotes clearance of circulating ApoB particles by the an integral component of chylomicrons, as well as very low- liver via the low-density lipoprotein receptor (LDLR), density lipoprotein (VLDL), intermediate-density lipopro- LDLR-related protein 1 (LRP1), and heparan sulfate pro- tein (IDL), and low-density lipoprotein (LDL) particles. teoglycans (HSPGs). Consequently, the insulin-resistant Chylomicrons are secreted by the intestine and enable state of type 2 diabetes (T2D) is associated with in- the transport of dietary triglycerides to other tissues after creased secretion and decreased clearance of ApoB. feeding. They contain a truncated form of ApoB, referred to Here, we review the mechanisms by which insulin con- as ApoB48 because it is 48% of the full-length protein [6]. trols the secretion and uptake of ApoB in normal and Chylomicrons are lipolyzed within the vasculature, releas- diabetic livers. ing their fatty acids to peripheral cells, particularly the adipose tissue, for storage. When most of the triglycerides Cardiovascular disease in diabetes have been removed, the chylomicron remnant is cleared by Most individuals with diabetes ultimately die of cardiovas- the liver [5]. cular disease (CVD). Hyperglycemia is a central feature of VLDL, which is secreted by the liver, also transports the diabetic state, and it has been suggested that hyper- triglycerides. In humans, VLDL contains only ApoB100, glycemia promotes cardiovascular disease by increasing the full-length protein, whereas either ApoB100 or ApoB48 inflammation, oxidative stress, and the formation of ad- is present in the VLDL of mice and some other rodents [6]. vanced glycosylation end products (for a review, see [1]). As the VLDL particle delivers triglycerides to other tissues However, the normalization of serum glucose levels does it is successively lipolyzed into an IDL and then LDL not consistently reduce the risk of CVD in diabetic patients particle. LDL-cholesterol can be taken up by cells that [2,3]. A more important factor may be derangements in require exogenous cholesterol. However, most LDL is lipoprotein metabolism. Although diabetic patients are not cleared by the liver [5]. usually hypercholesterolemic, they do show abnormalities The other major class of lipoproteins is high-density in lipoprotein kinetics and composition. Moreover, statin lipoprotein (HDL). HDL does not contain ApoB, and high drugs, which reduce serum cholesterol, effectively reduce HDL levels are correlated with decreased risk of athero- CVD risk in diabetic patients [4]. We review here the sclerosis. HDL can remove excess cholesterol from periph- effects of insulin on the hepatic metabolism of ApoB- eral tissues, such as endothelial cells and macrophages, containing lipoprotein particles, as these are essential and return it to the liver for excretion from the body, a for the development of atherosclerosis. process known as reverse cholesterol transport [7]. Insulin plays a central role in coordinating lipoprotein Overview of lipoprotein metabolism metabolism. In the fed state, triglycerides and other nutri- The lipoprotein system allows the intercellular transport ents are available from the gut. In this case, high insulin of cholesterol and triglycerides, which serve distinct roles levels act on the adipocyte to promote triglyceride uptake in the body. Triglycerides are an important source of and inhibit free fatty acid release. This promotes the storage energy. Cholesterol, by contrast, is a structural element of triglycerides for later use. In fasting, this process is of membranes as well as a precursor for steroids and bile reversed: insulin levels fall, and free fatty acids are released acids. In contrast to triglycerides, most mammalian tissues from the adipocyte and delivered to the liver. The liver re- esterifies the fatty acids to triglycerides and secretes them Corresponding author: Biddinger, S.B. ([email protected]). as VLDL [7]. Moreover, the ability of the adipose to take up Keywords: apolipoprotein B; insulin; diabetes; very low-density lipoprotein (VLDL); triglycerides is impaired in the absence of insulin, and the cardiovascular disease; selective insulin resistance. triglycerides are therefore preferentially utilized by other 1043-2760/$ – see front matter ß 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tem.2013.04.001 tissues, such as skeletal muscle and liver [7,8]. Trends in Endocrinology and Metabolism xx (2013) 1–7 1 TEM-879; No. of Pages 7 Review Trends in Endocrinology and Metabolism xxx xxxx, Vol. xxx, No. x Regulation of VLDL production by which insulin regulates ApoB (Figure 2). Although Within the hepatocyte, insulin exerts its effects via a com- insulin does not alter ApoB mRNA levels [12], it inhibits plex signaling cascade [9]. Some of the major branches of this ApoB translation by promoting the trafficking of ApoB cascade are shown in Figure 1. Upon binding insulin, the mRNA into P-bodies, aggregates of translationally re- insulin receptor recruits the insulin receptor substrate (IRS) pressed mRNAs [13,14]. The effects of insulin on ApoB proteins, leading to activation of phosphatidylinositide translation require signaling through PI3K and mTORC1, 3-kinase (PI3K), which mediates many of the metabolic and may involve the association of RNA-binding proteins 0 effects of insulin. PI3K activates Akt, which inhibits the with the ApoB mRNA 5 -untranslated region [15]. transcription factor FoxO1 by phosphorylating it. Phosphor- As ApoB is translated, it is lipidated by microsomal ylated FoxO1 is excluded from the nucleus, and is therefore triglyceride transfer protein (MTTP). MTTP adds triglyc- unable to activate transcription of its targets, including the erides to the nascent ApoB during its cotranslational gluconeogenic genes. Akt also stimulates glycogen synthesis translocation into the lumen of the endoplasmic reticulum by inhibiting glycogen synthase kinase 3 (GSK3). Further- [16]. This produces a dense, lipid-poor, pre-VLDL particle. more, Akt activates lipogenesis, in part via the mammalian The expression of MTTP is driven by FoxO1, and is thus target of rapamycin complex 1 (mTORC1) signaling com- inhibited by insulin [17]. Because ApoB must be lipidated plex, which is necessary for the induction of the lipogenic by MTTP to escape proteosomal degradation [16], insulin transcription factor sterol regulatory element binding pro- may promote ApoB degradation by decreasing expression tein (SREBP)-1c [10]. Consequently, in the hepatocyte, of MTTP. Consistent with this, insulin-resistant rodents insulin suppresses glucose production and stimulates the show increased amounts of nuclear FoxO1, Mttp mRNA, production of glycogen and triglycerides. It also acutely and MTTP protein, as well as increased ApoB secretion inhibits the secretion of ApoB [11]. [17,18]. However, acute insulin treatment in rodents does The synthesis and secretion of ApoB are complex. Sur- not decrease either Mttp mRNA or MTTP activity [19]; this prisingly, most ApoB protein is degraded before secretion, may due to the long half-life of Mttp mRNA (4.4 days) and the amount of ApoB secreted is determined largely by [20]. ApoB may also be regulated by ER60, an endoplasmic the proportion of newly synthesized polypeptide that reticulum resident chaperone and protease that binds to escapes degradation [6]. There are multiple mechanisms and degrades ApoB when overexpressed [21]; interesting- ly, ER60 is decreased and ApoB secretion is increased in the insulin-resistant fructose-fed hamster [22]. A second lipidation step, in which the bulk of lipids are Insulin added to ApoB, occurs independently of MTTP [11,23]. receptor This maturation step can be inhibited by insulin/PI3K IRS1,2 Shc signaling [24]. Although the exact mechanisms are un- known, one potential mediator is ApoCIII, an apolipopro- Cell growth, PI3K ERK tein secreted by the liver and to a lesser extent by the proliferaon intestine. Individuals with a null allele of APOCIII mani- Glycogen Akt GSK3 fest a 45% reduction in serum triglycerides and a 27% synthesis decrease in coronary heart disease risk [25]. ApoCIII is best known for its ability to inhibit lipoprotein lipase and SREBP-1c mTORC1 FoxO1 Gluconeogenesis hepatic lipase, and therefore lipolysis of triglycerides car- MTTP ried on chylomicrons and VLDL [26], but it has also been Lipogenesis Sorlin ApoCIII suggested to act intracellularly to promote
Recommended publications
  • Polymorphisms in APOA1 and LPL Genes Are Statistically Independently Associated with Fasting TG in Men with CAD
    European Journal of Human Genetics (2005) 13, 445–451 & 2005 Nature Publishing Group All rights reserved 1018-4813/05 $30.00 www.nature.com/ejhg ARTICLE Polymorphisms in APOA1 and LPL genes are statistically independently associated with fasting TG in men with CAD Olga W Souverein*,1, J Wouter Jukema2, S Matthijs Boekholdt3, Aeilko H Zwinderman1 and Michael WT Tanck1 1Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands; 2Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; 3Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands The objective of this paper was to identify the single nucleotide polymorphisms (SNPs) that show unshared effects on plasma triglyceride (TG) levels and to investigate whether these SNPs show statistically independent effects on plasma TG levels. In total, 59 polymorphisms in 20 genes involved in lipid metabolism were investigated. Polymorphisms were selected for a multivariate ANOVA model if they showed an univariate association with TG (after adjustment for HDL-C and LDL-C) in more than 50% of bootstrap samples that were made from the original data. The multivariate model included 512 men with coronary artery disease from the REGRESS study who were completely genotyped for eight polymorphisms selected in the univariate procedure (ie, APOA1 G(À75)A, ABCA1 C(À477)T, ABCA1 G1051A, APOC3 T3206G, APOE Arg158Cys, LIPC C(À514)T, LPL Asn291Ser and LPL Ser447Stop). The gene variants APOA1 G(À75)A (P ¼ 0.04) and LPL Asn291Ser (P ¼ 0.03) were significantly associated with plasma TG levels in this multivariate analysis. The eight polymorphisms explained 8.9% of the variation in plasma TG levels.
    [Show full text]
  • The Crucial Roles of Apolipoproteins E and C-III in Apob Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sacks, Frank M. 2015. “The Crucial Roles of Apolipoproteins E and C-III in apoB Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia.” Current Opinion in Lipidology 26 (1) (February): 56–63. doi:10.1097/mol.0000000000000146. Published Version doi:10.1097/MOL.0000000000000146 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30203554 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP HHS Public Access Author manuscript Author Manuscript Author ManuscriptCurr Opin Author Manuscript Lipidol. Author Author Manuscript manuscript; available in PMC 2016 February 01. Published in final edited form as: Curr Opin Lipidol. 2015 February ; 26(1): 56–63. doi:10.1097/MOL.0000000000000146. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia Frank M. Sacks Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA Abstract Purpose of review—To describe the roles of apolipoprotein C-III (apoC-III) and apoE in VLDL and LDL metabolism Recent findings—ApoC-III can block clearance from the circulation of apolipoprotein B (apoB) lipoproteins, whereas apoE mediates their clearance.
    [Show full text]
  • Association Between the APOA2 Rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI
    biomedicines Article Association between the APOA2 rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI Hatim Boughanem 1 , Borja Bandera-Merchán 2, Pablo Hernández-Alonso 2,3,4 , Noelia Moreno-Morales 5, Francisco José Tinahones 2,3, José Lozano 6 , Sonsoles Morcillo 2,3,* and Manuel Macias-Gonzalez 2,3,* 1 Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain; [email protected] 2 Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; [email protected] (B.B.-M.); [email protected] (P.H.-A.); [email protected] (F.J.T.) 3 Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERObn, 28029 Madrid, Spain 4 Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, 43201 Reus, Spain 5 Department of Physiotherapy, School of Health Sciences, University of Malaga-Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; [email protected] 6 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain; [email protected] * Correspondence: [email protected] (S.M.); [email protected] (M.M.-G.); Tel.: +34-951-032-648 (S.M. & M.M.-G.); Fax: +34-27-951-924-651 (S.M. & M.M.-G.) Received: 18 February 2020; Accepted: 25 February 2020; Published: 27 February 2020 Abstract: Background: The interaction between obesity and genetic traits on high density lipoprotein (HDL) levels has been extensively studied.
    [Show full text]
  • Apolipoproteins and Their Association with Cardiometabolic Risk
    Nutr Hosp. 2015;32(6):2674-2683 ISSN 0212-1611 • CODEN NUHOEQ S.V.R. 318 Original / Síndrome metabólico Apolipoproteins and their association with cardiometabolic risk biomarkers in adolescents Mellina Neyla de Lima Albuquerque1, Alcides da Silva Diniz1 and Ilma Kruze Grande de Arruda1 1Department of Nutrition. Federal University of Pernambuco, Recife, Brazil. Abstract APOLIPOPROTEÍNAS Y SU ASOCIACIÓN CON BIOMARCADORES DE RIESGO Introduction: the apoB/apo A-I ratio has been reported CARDIOMETABÓLICO EN ADOLESCENTES as an important predictor of cardiovascular risk, being superior to lipids, lipoproteins and conventional lipid ra- tios. Resumen Objective: to investigate the association between apo- Introducción: la razón apo B/apo A-I sigue siendo lipoproteins A-I and B, and the apolipoprotein B/apoli- reportada como un predictor importante de riesgo car- poprotein A-I ratio and cardiometabolic risk variables in diovascular, superior a lípidos, lipoproteínas y razones adolescents. lipídicas convencionales. Objetivo: investigar la asocia- Methods: this was a cross-sectional study including ción entre las apolipoproteínas A-I y B y la razón apoli- 104 adolescents of public schools in Recife during the poproteína B/apolipoproteína A-I con variables de riesgo months of March/April, 2013. Sociodemographic, an- cardiometabólico en adolescentes. thropometric, clinical and biochemical variables were Métodos: estudio de corte transversal que incluye a analysed. The apolipoproteins were analysed via Immu- 104 adolescentes de escuelas públicas de
    [Show full text]
  • Low-Density Lipoprotein Receptor–Dependent and Low-Density Lipoprotein Receptor–Independent Mechanisms of Cyclosporin A–Induced Dyslipidemia
    Original Research Low-Density Lipoprotein Receptor–Dependent and Low-Density Lipoprotein Receptor–Independent Mechanisms of Cyclosporin A–Induced Dyslipidemia Maaike Kockx, Elias Glaros, Betty Kan, Theodore W. Ng, Jimmy F.P. Berbée, Virginie Deswaerte, Diana Nawara, Carmel Quinn, Kerry-Anne Rye, Wendy Jessup, Patrick C.N. Rensen, Peter J. Meikle, Leonard Kritharides Objective—Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is associated with hyperlipidemia and an increased risk of cardiovascular disease. Although studies suggest that CsA-induced hyperlipidemia is mediated by inhibition of low-density lipoprotein receptor (LDLr)–mediated lipoprotein clearance, the data supporting this are inconclusive. We therefore sought to investigate the role of the LDLr in CsA-induced hyperlipidemia by using Ldlr-knockout mice (Ldlr−/−). Approach and Results—Ldlr−/− and wild-type (wt) C57Bl/6 mice were treated with 20 mg/kg per d CsA for 4 weeks. On a chow diet, CsA caused marked dyslipidemia in Ldlr−/− but not in wt mice. Hyperlipidemia was characterized by a prominent increase in plasma very low–density lipoprotein and intermediate-density lipoprotein/LDL with unchanged plasma high-density lipoprotein levels, thus mimicking the dyslipidemic profile observed in humans. Analysis of specific lipid species by liquid chromatography–tandem mass spectrometry suggested a predominant effect of CsA on increased very low–density lipoprotein–IDL/LDL lipoprotein number rather than composition. Mechanistic studies indicated that CsA did not alter hepatic lipoprotein production but did inhibit plasma clearance and hepatic uptake of [14C]cholesteryl oleate and glycerol tri[3H]oleate-double-labeled very low–density lipoprotein–like particles.
    [Show full text]
  • Apolipoprotein B
    Laboratory Procedure Manual Analyte: Apolipoprotein B Matrix: Serum Method: Turbidimetric Assay on Roche Cobas® 6000 Method No.: Revised: As performed by: University of Minnesota – Advanced Research Diagnostics Laboratory (ARDL) Contact: Dr. Anthony Killeen, MD, PhD University of Minnesota Medical Center Fairview-University Medical Center University Campus Minneapolis, Minnesota Important Information for Users University of Minnesota – Advanced Research Diagnostics Laboratory (ARDL) periodically refines these laboratory methods. It is the responsibility of the user to contact the person listed on the title page of each write-up before using the analytical method to find out whether any changes have been made and what revisions, if any, have been incorporated. Apolipoprotein B NHANES 2015-2016 Public Release Data Set Information This document details the Lab Protocol for testing the items listed in the following table: Data File Name Variable Name SAS Label LBXAPB Apolipoprotein B (mg/dL) APOB_I LBDAPBSI Apolipoprotein B (g/L) 2 of 20 Apolipoprotein B NHANES 2015-2016 1. SUMMARY OF TEST PRINCIPLE AND CLINICAL RELEVANCE A. Clinical Relevance Apolipoproteins are the protein constituents of the lipoproteins. Apolipoprotein B (Apo B) is the major protein component of low-density lipoprotein (LDL). About one-third of the LDL particles provide cholesterol to peripheral cells. The other two-thirds are metabolized by the liver. LDL-uptake in all of these cells occurs via LDL receptors. Apo B levels increase in hypercholesterolemia, pregnancy, LDL receptor defects, bile obstruction and nephrotic syndrome. Apo B levels decrease in liver disease, sepsis and estrogen administration. The combined measurement of apolipoprotein A-1 (Apo A1, present in HDL) and Apo B and the calculation of the Apo B:Apo A1 ratio can reflect a lipid metabolism disorder and the risk of developing atherosclerosis or coronary heart disease.
    [Show full text]
  • A Case of Ezetimibe-Effective Hypercholesterolemia with a Novel Heterozygous Variant in ABCG5
    2020, 67 (11), 1099-1105 Original A case of ezetimibe-effective hypercholesterolemia with a novel heterozygous variant in ABCG5 Yujiro Nakano1), Chikara Komiya1), Hitomi Shimizu2), 3), Hiroyuki Mishima3), Kumiko Shiba1), Kazutaka Tsujimoto1), Kenji Ikeda1), Kenichi Kashimada4), Sumito Dateki2), Koh-ichiro Yoshiura3), Yoshihiro Ogawa5) and Tetsuya Yamada1) 1) Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan 2) Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaski 852-8501, Japan 3) Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan 4) Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan 5) Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan Abstract. Sitosterolemia is caused by homozygous or compound heterozygous gene mutations in either ATP-binding cassette subfamily G member 5 (ABCG5) or 8 (ABCG8). Since ABCG5 and ABCG8 play pivotal roles in the excretion of neutral sterols into feces and bile, patients with sitosterolemia present elevated levels of serum plant sterols and in some cases also hypercholesterolemia. A 48-year-old woman was referred to our hospital for hypercholesterolemia. She had been misdiagnosed with familial hypercholesterolemia at the age of 20 and her serum low-density lipoprotein cholesterol (LDL-C) levels had remained about 200–300 mg/dL at the former clinic. Although the treatment of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors was ineffective, her serum LDL-C levels were normalized by ezetimibe, a cholesterol transporter inhibitor.
    [Show full text]
  • Common Genetic Variations Involved in the Inter-Individual Variability Of
    nutrients Review Common Genetic Variations Involved in the Inter-Individual Variability of Circulating Cholesterol Concentrations in Response to Diets: A Narrative Review of Recent Evidence Mohammad M. H. Abdullah 1 , Itzel Vazquez-Vidal 2, David J. Baer 3, James D. House 4 , Peter J. H. Jones 5 and Charles Desmarchelier 6,* 1 Department of Food Science and Nutrition, Kuwait University, Kuwait City 10002, Kuwait; [email protected] 2 Richardson Centre for Functional Foods & Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada; [email protected] 3 United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; [email protected] 4 Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] 5 Nutritional Fundamentals for Health, Vaudreuil-Dorion, QC J7V 5V5, Canada; [email protected] 6 Aix Marseille University, INRAE, INSERM, C2VN, 13005 Marseille, France * Correspondence: [email protected] Abstract: The number of nutrigenetic studies dedicated to the identification of single nucleotide Citation: Abdullah, M.M.H.; polymorphisms (SNPs) modulating blood lipid profiles in response to dietary interventions has Vazquez-Vidal, I.; Baer, D.J.; House, increased considerably over the last decade. However, the robustness of the evidence-based sci- J.D.; Jones, P.J.H.; Desmarchelier, C. ence supporting the area remains to be evaluated. The objective of this review was to present Common Genetic Variations Involved recent findings concerning the effects of interactions between SNPs in genes involved in cholesterol in the Inter-Individual Variability of metabolism and transport, and dietary intakes or interventions on circulating cholesterol concen- Circulating Cholesterol trations, which are causally involved in cardiovascular diseases and established biomarkers of Concentrations in Response to Diets: cardiovascular health.
    [Show full text]
  • Cholesterol and Saturated Fat Intake Determine the Effect Of
    article September 2006 ⅐ Vol. 8 ⅐ No. 9 Cholesterol and saturated fat intake determine the effect of polymorphisms at ABCG5/ABCG8 genes on lipid levels in children Enrique Viturro, PhD1, Manuel de Oya, PhD, MD1, Miguel A. Lasuncio´n, PhD2, Lydia Gorgojo, PhD, MD3, Jose´ M. Martı´n Moreno, PhD, MD3, Mercedes Benavente, PhD1, Beatriz Cano, PhD1, and Carmen Garces, PhD1 Purpose: Analysis of mutations in genes of the cholesterol metabolic pathway has not completely explained the interindividual variability of blood cholesterol concentrations attributed to gene–nutrient interactions. Thus, we analyzed polymorphisms in the ABCG5 and ABCG8 genes, involved in the regulation of intestinal cholesterol absorption, with special interest in a potential interaction with diet to determine lipid levels. Methods: The polymorphisms ABCG5 C1950G (Gln604Glu) and ABCG8 C1895T (Ala640Val) were determined by polymerase chain reaction and restriction analysis in 1227 healthy school children, aged 6 to 8 years. Results: No significant differences were found in blood lipid levels between subjects with different genotypes of the two analyzed polymorphisms. However, important differences appeared when separating subjects by their different lipid intake. The presence of the ABCG8 C1895T and ABCG5 C1950G polymorphisms was associated with different plasma total cholesterol, low-density lipoprotein cholesterol complex, and apolipoprotein B levels only in low-cholesterol consumers (significantly for the C1895T polymorphism), and among children within the lower tertile of saturated fat intake (significantly for the C1950G polymorphism). Conclusion: Polymorphisms at the half-transporter ABCG5 and ABCG8 genes affect blood cholesterol concentrations in prepubertal children by influencing dietary respon- siveness. This highly significant gene–nutrient interaction could explain the great individual differences in the plasma lipid response to cholesterol and fat intake.
    [Show full text]
  • Apolipoprotein B: a Risk-Enhancing Factor in the Primary Prevention of Cardiovascular Disease
    Apolipoprotein B: a Risk-enhancing Factor in the Primary Prevention of Cardiovascular Disease The American College of Cardiologists and the American Heart • elevated high-sensitivity C-reactive Protein (≥ 2.0 mg/L); Association recently issued an updated guideline to help address • elevated Lipoprotein(a) – ≥ 50 mg/dL constitutes risk-enhancing the primary prevention of cardiovascular disease at population and factor; relative indication for measurement is family history of individual patient levels. This 2019 guideline combines existing premature ASCVD; scientific statements, expert consensus, and clinical practice guidelines • elevated Apolipoprotein B (≥ 130 mg/dL constitutes risk- and adds new recommendations for physical activity, aspirin use, enhancing factor; relative indication for measurement is and tobacco use. Suggestions for team-based care, shared decision triglyceride ≥ 200 mg/dL (≥ 130 mg/dL corresponds to LDL-C > making, and assessment of social determinants of health round out a 160 mg/dL). comprehensive but focused approach to primary prevention.1 The role of low-density lipoprotein (LDL) particles has been To enhance clinician-patient discussions and help inform prevention documented to elevate patient risk for ASCVD and is well known in strategies, the guideline advocates, among other things, estimating the development and progression of ASCVD.3 As stated in the Journal an individual’s 10-year risk for atherosclerotic cardiovascular disease of Family Medicine, LDL particles move into the arterial wall via a (ASCVD) to1: gradient-driven process. Once inside the intima, LDL particles that bind to the arterial wall are oxidized and subsequently taken up by • match the intensity of interventions with patient’s risk, macrophages to form foam cells.3 The greater the circulating levels • maximize the expected benefit, and of LDL over time, the greater the acceleration of this process and the • minimize possible harm from overtreatment.
    [Show full text]
  • Postprandial Lipoprotein Metabolism: VLDL Vs Chylomicrons
    UC Davis UC Davis Previously Published Works Title Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Permalink https://escholarship.org/uc/item/9wx8p0x5 Journal Clinica chimica acta; international journal of clinical chemistry, 412(15-16) ISSN 0009-8981 Authors Nakajima, Katsuyuki Nakano, Takamitsu Tokita, Yoshiharu et al. Publication Date 2011-07-01 DOI 10.1016/j.cca.2011.04.018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Clinica Chimica Acta 412 (2011) 1306–1318 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/clinchim Invited critical review Postprandial lipoprotein metabolism: VLDL vs chylomicrons Katsuyuki Nakajima a,b,d,e,i,⁎, Takamitsu Nakano a,b, Yoshiharu Tokita a, Takeaki Nagamine a, Akihiro Inazu c, Junji Kobayashi d, Hiroshi Mabuchi d, Kimber L. Stanhope e, Peter J. Havel e, Mitsuyo Okazaki f,g, Masumi Ai h,i, Akira Tanaka g,i a School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi, Gunma, Japan b Otsuka Pharmaceuticals Co., Ltd, Tokushima, Japan c Department of Laboratory Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan d Department of Lipidology and Division of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan e Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA, USA f Skylight Biotech Inc., Akita, Japan g Department of Vascular Medicine and
    [Show full text]
  • Isolation of HDL by Sequential Flotation Ultracentrifugation Followed by Size
    www.nature.com/scientificreports OPEN Isolation of HDL by sequential fotation ultracentrifugation followed by size exclusion chromatography reveals size‑based enrichment of HDL‑associated proteins Jack Jingyuan Zheng1, Joanne K. Agus1, Brian V. Hong1, Xinyu Tang1, Christopher H. Rhodes1, Hannah E. Houts1, Chenghao Zhu1, Jea Woo Kang1, Maurice Wong2, Yixuan Xie2, Carlito B. Lebrilla2, Emily Mallick3, Kenneth W. Witwer3 & Angela M. Zivkovic1* High‑density lipoprotein (HDL) particles have multiple benefcial and cardioprotective roles, yet our understanding of their full structural and functional repertoire is limited due to challenges in separating HDL particles from contaminating plasma proteins and other lipid‑carrying particles that overlap HDL in size and/or density. Here we describe a method for isolating HDL particles using a combination of sequential fotation density ultracentrifugation and fast protein liquid chromatography with a size exclusion column. Purity was visualized by polyacrylamide gel electrophoresis and verifed by proteomics, while size and structural integrity were confrmed by transmission electron microscopy. This HDL isolation method can be used to isolate a high yield of purifed HDL from a low starting plasma volume for functional analyses. This method also enables investigators to select their specifc HDL fraction of interest: from the least inclusive but highest purity HDL fraction eluting in the middle of the HDL peak, to pooling all of the fractions to capture the breadth of HDL particles in the original plasma sample. We show that certain proteins such as lecithin cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and clusterin (CLUS) are enriched in large HDL particles whereas proteins such as alpha‑2HS‑glycoprotein (A2HSG), alpha‑1 antitrypsin (A1AT), and vitamin D binding protein (VDBP) are enriched or found exclusively in small HDL particles.
    [Show full text]