Insects As Alternative Hosts for Phytopathogenic Bacteria Geetanchaly Nadarasah1 & John Stavrinides1

Total Page:16

File Type:pdf, Size:1020Kb

Insects As Alternative Hosts for Phytopathogenic Bacteria Geetanchaly Nadarasah1 & John Stavrinides1 REVIEW ARTICLE Insects as alternative hosts for phytopathogenic bacteria Geetanchaly Nadarasah1 & John Stavrinides1 1Department of Biology, University of Regina, Regina, Saskatchewan, Canada Correspondence: John Stavrinides, Abstract Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Phytopathogens have evolved specialized pathogenicity determinants that enable Saskatchewan, Canada S4S0A2. Tel.: 11 306 them to colonize their specific plant hosts and cause disease, but their intimate 337 8478; fax: 11 306 337 2410; e-mail: associations with plants also predispose them to frequent encounters with [email protected] herbivorous insects, providing these phytopathogens with ample opportunity to colonize and eventually evolve alternative associations with insects. Decades of Received 8 September 2010; revised 15 research have revealed that these associations have resulted in the formation of December 2010; accepted 22 December 2010. bacterial–vector relationships, in which the insect mediates dissemination of the Final version published online 15 February plant pathogen. Emerging research, however, has highlighted the ability of plant 2011. pathogenic bacteria to use insects as alternative hosts, exploiting them as they DOI:10.1111/j.1574-6976.2011.00264.x would their primary plant host. The identification of specific bacterial genetic determinants that mediate the interaction between bacterium and insect suggests Editor: Colin Berry that these interactions are not incidental, but have likely arisen following the repeated association of microorganisms with particular insects over evolutionary Keywords time. This review will address the biology and ecology of phytopathogenic bacteria plant pathogens; insects; pathogenicity; that interact with insects, including the traditional role of insects as vectors, as well transmission; vector; alternative hosts. as the newly emerging paradigm of insects serving as alternative primary hosts. Also discussed is one case where an insect serves as both host and vector, which may represent a transitionary stage in the evolution of insect–phytopathogen associations. the hidden ecology and true pathogenic potential of many Introduction bacteria that have long been considered strict and very Plant pathogenic bacteria are responsible for some of the dedicated phytopathogens. most devastating losses of major agricultural crops and vital The exploration of phytopathogen life histories is often fruit trees, causing millions of dollars in damage annually. trumped by the striking and often contrasting disease Their agricultural and economic impact has afforded them symptomology that develops on host plants as a conse- significant attention over the last 30 years, resulting in quence of disease. Traditionally, this has resulted in an enormous strides in the exploration of their epidemiology almost exclusive focus on the biology, ecology, and genetics and specialized disease strategies. Research of plant patho- of specific plant–phytopathogen relationships, often to the genic bacteria has not only seeded our understanding of the exclusion of other potentially relevant yet presumably less genetics of disease, epidemiology, and the factors contribut- obvious associations. Even the most intimate association ing to emerging infectious diseases, but has also led to the between pathogen and plant host in the natural environ- development of effective control and prevention measures ment, whether occurring at the interface of the phyllosphere for many plant diseases (Woolhouse et al., 2002; Gardan or within plant tissues, is still subject to incursions by other et al., 2003). More recently, however, there has been a shift in ecological players. Phytophagous insects, in particular, the exploration of the plant pathogens to a broader com- which graze frequently and recurrently on plant tissues that munity level, which moves beyond the traditional single may be colonized by epiphytic or plant pathogenic bacteria, MICROBIOLOGY REVIEWS MICROBIOLOGY host–single pathogen model to a wider and more encom- are often neglected as key ecological players, despite the fact passing view of the evolution and ecology of plant patho- that they are most likely to have repeated encounters and genic bacteria. Much of this research has expanded the field associations with phytopathogenic bacteria that reside in or into a new direction, and has resulted in the unearthing of on their preferred host plants. FEMS Microbiol Rev 35 (2011) 555–575 c 2011 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved 556 G. Nadarasah & J. Stavrinides There are numerous potential interactions that can result and then the saliva, and may be delivered into a new host from the association between a microorganism and an plant when the insect feeds (Kwon et al., 1999). Noncircula- insect, all of which are defined by the relative effects on the tive and nonpropagative microorganisms are those that fitness of the individual organisms (referred to as sym- generally form a physical association with the insect and are bionts). Mutualisms may form between the two organisms, subsequently mechanically transmitted to the plant host where both derive a benefit from their interaction. Mutual- (infection by an insect stylet that is coated with a pathogen, isms may be defensive, where the microorganisms provides for example) (James & Perry, 2004). protection to the insect host (Wilkinson et al., 2000), or Over the last decade, the exploration of phytopathogenic nutritional, where the microorganism supplements the diet bacteria and their interactions with insects has expanded of the insect host with key nutrients (Barbosa & Letourneau, beyond the traditional phytopathogen–vector relationship 1988). Parasitisms may also develop between microorgan- to include cases where phytopathogens exhibit entomo- isms and insects, where the microorganism benefits by pathogenic associations. Most of these relationships have extracting nutrients from its host, but at a cost to its host. been characterized only recently, and represent a new In the latter case, the microorganism may impair or disrupt paradigm in bacterial–insect interactions. Certainly, this the physiology and normal functioning of the insect host, has not lessened the focus on the traditional plant–microor- resulting in specific disease symptomology. A commensal- ganism or vector–microorganism association, or the use of ism describes the association between insect and microor- genomic and high-throughput approaches for exploring ganism where the microorganism benefits and the insect is these interactions. Instead, these studies have uncovered unaffected. Commensalisms likely characterize many of the hidden alternative interactions for plant pathogenic bacter- interactions that exist in the natural environment, but are ia, ultimately providing additional breadth to our under- most likely to go unnoticed. Both commensalistic and standing of their biology, ecology, and evolution. This parasitic symbioses can range from highly specific to non- review will examine the alternative associations of phyto- specific, with the development of more specific interactions pathogenic bacteria with insects, focusing on the genetics being favoured in cases where specialist microorganism and ecological relevance of those insects that can serve as encounter specialist insects recurrently over long periods of either a transport host/vector, an insect that serves as a time, and more general interactions in cases where generalist carrier of the pathogen, or a primary host, an insect that the or transient insects encounter specialist bacterial pathogens pathogen can colonize, replicate in, and disperse from. Also (or vice versa). examined is one special interaction where the microorgan- Phytopathogenic bacteria have evolved to harness insects ism exploits a single insect as both host and vector. This as vectors to effect their dissemination and delivery directly unusual association may represent a rare transitionary phase onto or into their preferred plant hosts. These partnerships in the evolution of phytopathogen–insect associations. can either be commensalistic or slightly parasitic to the insect, but in either case, the insect performs as a living Insects as vectors for phytopathogenic carrier that transmits the microorganism to its final (defini- bacteria tive) host. Many of these symbioses are highly specific, and The evolution of effective and stable phytopathogen–insect are categorized by the ability of the bacterium to replicate in vector partnerships is dependent largely on the opportunity and move through its vector. The ability to replicate within for the insect and the microorganism to encounter each the insect vector can be classified as either propagative or other frequently. Generally, the dependence of many insects nonpropagative, and the ability of the microorganism to and phytopathogens on plants as their primary source move through its vector can be classified as circulative or of nutrition may lead to an overlap of ecological niche, noncirculative (Blanc, 2004). In circulative nonpropagative providing the necessary conditions for insects to encounter, transmission, the microorganism is ingested by its insect contact, or ingest phytopathogenic bacteria. In this section, vector as it feeds on the host plant, after which it migrates we describe the best-characterized symbioses between in- into the midgut or the hindgut epithelium, and is then sects and phytopathogens
Recommended publications
  • Erwinia Chrysanthemi the Facts
    Erwinia chrysanthemi (Dickeya spp.) The Facts Compiled for the British Potato Council by; Dr John Elphinstone, Central Science Laboratory Dr Ian Toth, Scottish Crop Research Institute Erwinia chrysanthemi (Dickeya spp.) – The Facts Contents Executive Summary 1. Introduction 2. The pathogen 3. Symptoms • Distinction from symptoms caused by P. atrosepticum and P. carotovorum • Distinction from other diseases 4. Geographical distribution • Presence in GB • Europe • Overseas 5. Biology, survival and dissemination of the pathogen • Factors influencing disease development • Dissemination • Survival 6. Assessment of Risk and Economic Loss • Quarantine status • Potential GB economic impact • Economic impact to overseas markets 7. Control • Statutory (certification) • On farm • Specific approaches and control measures in other countries • Best practice guide 8. Diagnostic methods 9. Knowledge gaps 10. Threats, Opportunities and Recommendations 11. References 12. Glossary of terms 2 © British Potato Council 2007 Erwinia chrysanthemi (Dickeya spp.) – The Facts Executive Summary The pathogen Erwinia chrysanthemi (Echr) is a complex of different bacteria now reclassified as species of Dickeya. While D. dadantii and D. zeae (formerly Echr biovar 3 or 8) are pathogens of potato in warmer countries, D. dianthicola (formerly Echr biovar 1 and 7) appears to be spreading on potatoes in Europe. The revised nomenclature of these pathogens has distinguished them from other soft rot erwiniae (including P. atrosepticum and P. carotovorum). Symptoms Symptoms of soft rot disease on potato tubers are similar whether caused by Dickeya or Pectobacterium spp. In the field, disease develops following movement of either pathogen from the stem base. Whereas P. atrosepticum typically causes blackleg symptoms under cool wet conditions, symptoms due to Dickeya spp.
    [Show full text]
  • The Soil Microbiome Influences Grapevine-Associated Microbiota
    RESEARCH ARTICLE crossmark The Soil Microbiome Influences Grapevine-Associated Microbiota Iratxe Zarraonaindia,a,b Sarah M. Owens,a,c Pamela Weisenhorn,c Kristin West,d Jarrad Hampton-Marcell,a,e Simon Lax,e Nicholas A. Bokulich,f David A. Mills,f Gilles Martin,g Safiyh Taghavi,d Daniel van der Lelie,d Jack A. Gilberta,e,h,i,j Argonne National Laboratory, Institute for Genomic and Systems Biology, Argonne, Illinois, USAa; IKERBASQUE, Basque Foundation for Science, Bilbao, Spainb; Computation Institute, University of Chicago, Chicago, Illinois, USAc; Center of Excellence for Agricultural Biosolutions, FMC Corporation, Research Triangle Park, North Carolina, USAd; Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USAe; Departments of Viticulture and Enology; Food Science and Technology; Foods for Health Institute, University of California, Davis, California, USAf; Sparkling Pointe, Southold, New York, USAg; Department of Surgery, University of Chicago, Chicago, Illinois, USAh; Marine Biological Laboratory, Woods Hole, Massachusetts, USAi; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Chinaj ABSTRACT Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cul- tivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial res- ervoir.
    [Show full text]
  • 11 Microbial Communities in the Phyllosphere Johan H.J
    Biology of the Plant Cuticle Edited by Markus Riederer, Caroline Müller Copyright © 2006 by Blackwell Publishing Ltd Biology of the Plant Cuticle Edited by Markus Riederer, Caroline Müller Copyright © 2006 by Blackwell Publishing Ltd 11 Microbial communities in the phyllosphere Johan H.J. Leveau 11.1 Introduction The term phyllosphere was coined by Last (1955) and Ruinen (1956) to describe the plant leaf surface as an environment that is physically, chemically and biologically distinct from the plant leaf itself or the air surrounding it. The term phylloplane has been used also, either instead of or in addition to the term phyllosphere. Its two- dimensional connotation, however, does not do justice to the three dimensions that characterise the phyllosphere from the perspective of many of its microscopic inhab- itants. On a global scale, the phyllosphere is arguably one of the largest biological surfaces colonised by microorganisms. Satellite images have allowed a conservative approximation of 4 × 108 km2 for the earth’s terrestrial surface area covered with foliage (Morris and Kinkel, 2002). It has been estimated that this leaf surface area is home to an astonishing 1026 bacteria (Morris and Kinkel, 2002), which are the most abundant colonisers of cuticular surfaces. Thus, the phyllosphere represents a significant refuge and resource of microorganisms on this planet. Often-used terms in phyllosphere microbiology are epiphyte and epiphytic (Leben, 1965; Hirano and Upper, 1983): here, microbial epiphytes or epiphytic microorganisms, which include bacteria, fungi and yeasts, are defined as being cap- able of surviving and thriving on plant leaf and fruit surfaces. Several excellent reviews on phyllosphere microbiology have appeared so far (Beattie and Lindow, 1995, 1999; Andrews and Harris, 2000; Hirano and Upper, 2000; Lindow and Leveau, 2002; Lindow and Brandl, 2003).
    [Show full text]
  • Sotwp 2016.Pdf
    STATE OF THE WORLD’S PLANTS OF THE WORLD’S STATE 2016 The staff and trustees of the Royal Botanic Gardens, Kew and the Kew Foundation would like to thank the Sfumato Foundation for generously funding the State of the World’s Plants project. State of the World’s Plants 2016 Citation This report should be cited as: RBG Kew (2016). The State of the World’s Plants Report – 2016. Royal Botanic Gardens, Kew ISBN: 978-1-84246-628-5 © The Board of Trustees of the Royal Botanic Gardens, Kew (2016) (unless otherwise stated) Printed on 100% recycled paper The State of the World’s Plants 1 Contents Introduction to the State of the World’s Plants Describing the world’s plants 4 Naming and counting the world’s plants 10 New plant species discovered in 2015 14 Plant evolutionary relationships and plant genomes 18 Useful plants 24 Important plant areas 28 Country focus: status of knowledge of Brazilian plants Global threats to plants 34 Climate change 40 Global land-cover change 46 Invasive species 52 Plant diseases – state of research 58 Extinction risk and threats to plants Policies and international trade 64 CITES and the prevention of illegal trade 70 The Nagoya Protocol on Access to Genetic Resources and Benefit Sharing 76 References 80 Contributors and acknowledgments 2 Introduction to the State of the World’s Plants Introduction to the State of the World’s Plants This is the first document to collate current knowledge on as well as policies and international agreements that are the state of the world’s plants.
    [Show full text]
  • A Secreted Metal-Binding Protein Protects Necrotrophic Phytopathogens from Reactive Oxygen Species
    ARTICLE https://doi.org/10.1038/s41467-019-12826-x OPEN A secreted metal-binding protein protects necrotrophic phytopathogens from reactive oxygen species Lulu Liu1,5, Virginie Gueguen-Chaignon2,5, Isabelle R Gonçalves1,5, Christine Rascle1, Martine Rigault3, Alia Dellagi3, Elise Loisel1, Nathalie Poussereau1, Agnès Rodrigue 1, Laurent Terradot 4*& Guy Condemine 1* 1234567890():,; Few secreted proteins involved in plant infection common to necrotrophic bacteria, fungi and oomycetes have been identified except for plant cell wall-degrading enzymes. Here we study a family of iron-binding proteins that is present in Gram-negative and Gram-positive bacteria, fungi, oomycetes and some animals. Homolog proteins in the phytopathogenic bacterium Dickeya dadantii (IbpS) and the fungal necrotroph Botrytis cinerea (BcIbp) are involved in plant infection. IbpS is secreted, can bind iron and copper, and protects the bacteria against H2O2- induced death. Its 1.7 Å crystal structure reveals a classical Venus Fly trap fold that forms dimers in solution and in the crystal. We propose that secreted Ibp proteins binds exogenous metals and thus limit intracellular metal accumulation and ROS formation in the microorganisms. 1 Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622 Villeurbanne, France. 2 Protein Science Facility, SFR BioSciences, UMS3444/US8, 69367 Lyon, France. 3 Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, 78026 Versailles, France. 4 Molecular Microbiology and Structural Biochemistry, UMR
    [Show full text]
  • Review Bacterial Blackleg Disease and R&D Gaps with a Focus on The
    Final Report Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry Project leader: Dr Len Tesoriero Delivery partner: Crop Doc Consulting Pty Ltd Project code: PT18000 Hort Innovation – Final Report Project: Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry – PT18000 Disclaimer: Horticulture Innovation Australia Limited (Hort Innovation) makes no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in this Final Report. Users of this Final Report should take independent action to confirm any information in this Final Report before relying on that information in any way. Reliance on any information provided by Hort Innovation is entirely at your own risk. Hort Innovation is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from Hort Innovation or any other person’s negligence or otherwise) from your use or non‐use of the Final Report or from reliance on information contained in the Final Report or that Hort Innovation provides to you by any other means. Funding statement: This project has been funded by Hort Innovation, using the fresh potato and processed potato research and development levy and contributions from the Australian Government. Hort Innovation is the grower‐owned, not‐ for‐profit research and development corporation for Australian horticulture. Publishing details:
    [Show full text]
  • Distribution Pattern Analysis of Epiphytic Bacteria On
    Journal of Microscopy and Ultrastructure 2 (2014) 34–40 Contents lists available at ScienceDirect Journal of Microscopy and Ultrastructure jou rnal homepage: www.elsevier.com/locate/jmau Original Article Distribution pattern analysis of epiphytic bacteria on ethnomedicinal plant surfaces: A micrographical and molecular approach ∗ Fenella Mary War Nongkhlaw, S.R. Joshi Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, India a r a t i c l e i n f o b s t r a c t Article history: The epiphytic bacterial community prevalent on ethnomedicinal plant surfaces were stud- Received 29 November 2013 ied for their diversity, niche localization and colonization using the micrographical and Received in revised form 4 February 2014 molecular approaches. Scanning electron microscopy (SEM) revealed the presence of large Accepted 10 February 2014 aggregates of bacterial communities. The bacterial localization was observed in the grooves Available online 5 March 2014 along the veins, stomata and near the trichomes of leaves and along the root hairs. A total of 20 cultivable epiphytes were characterized which were analyzed for richness, evenness and Keywords: diversity indices. Species belonging to the genera Bacillus and Pseudomonas were the most Plant surfaces abundant. Bacillus thuringiensis was the most prevalent epiphyte with the ability to form Epiphytic bacteria biofilm, as a mode of adaptation to environmental stresses. Biofilm formation explains the Microscopy potential importance of cooperative interactions of epiphytes among both homogeneous Biofilm and heterogeneous populations observed under SEM and influencing the development of microbial communities. The study has revealed a definite pattern in the diversity of cultur- able epiphytic bacteria, host-dependent colonization, microhabitat localization and biofilm formation which play a significant role in plant–microbe interaction.
    [Show full text]
  • Endotoxins from Dickeya Dadantii: Structure and Aphicidal Activity
    New Cyt-like δ-endotoxins from Dickeya dadantii: structure and aphicidal activity. Karine Loth, Denis Costechareyre, Géraldine Effantin, Yvan Rahbé, Guy Condemine, Céline Landon, Pedro da Silva To cite this version: Karine Loth, Denis Costechareyre, Géraldine Effantin, Yvan Rahbé, Guy Condemine, et al.. New Cyt-like δ-endotoxins from Dickeya dadantii: structure and aphicidal activity.. Scientific Reports, Nature Publishing Group, 2015, 5, pp.8791. 10.1038/srep08791. hal-01124447 HAL Id: hal-01124447 https://hal.archives-ouvertes.fr/hal-01124447 Submitted on 6 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OPEN New Cyt-like d-endotoxins from Dickeya SUBJECT AREAS: dadantii: structure and aphicidal activity STRUCTURAL BIOLOGY Karine Loth5*, Denis Costechareyre1,2,3,4*,Ge´raldine Effantin1,2,3,4, Yvan Rahbe´1,4,6, Guy Condemine1,2,3,4, SOLUTION-STATE NMR Ce´line Landon5 & Pedro da Silva1,4,6 Received 1INSA-Lyon, Villeurbanne F-69621, France, 2CNRS, UMR5240 MAP, Microbiologie Adaptation et Pathoge´nie, F-69622, France, 27 October 2014 3Universite´ Claude Bernard Lyon 1, F-69622, France, 4Universite´ de Lyon, F-69000 Lyon, France, 5Centre de Biophysique Mole´culaire, CNRS UPR 4301, Universite´ d’Orle´ans, Orle´ans, F-45071, France, 6INRA, UMR203 BF2I, Biologie Fonctionnelle Accepted Insecte et Interaction, F-69621, France.
    [Show full text]
  • Antioxidant and Antimicrobial Potential of the Bifurcaria Bifurcata Epiphytic Bacteria
    Mar. Drugs 2014, 12, 1676-1689; doi:10.3390/md12031676 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria André Horta 1,†, Susete Pinteus 1,†, Celso Alves 1, Nádia Fino 1, Joana Silva 1, Sara Fernandez 2, Américo Rodrigues 1,3 and Rui Pedrosa 1,4,* 1 Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal; E-Mails: [email protected] (A.H.); [email protected] (S.P.); [email protected] (C.A.); [email protected] (N.F.); [email protected] (J.S.); [email protected] (A.R.) 2 Higher School of Agricultural Engineering (ETSEA), University of Lleida, E-25003 Lleida, Spain; E-Mail: [email protected] 3 Gulbenkian Institute of Science, 2780-156 Oeira, Portugal 4 Center of Pharmacology and Chemical Biopathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +35-1-262-783-325; Fax: +35-1-262-783-088. Received: 31 December 2013; in revised form: 14 January 2014 / Accepted: 4 March 2014 / Published: 24 March 2014 Abstract: Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing.
    [Show full text]
  • Community Structure and Functional Diversity of Epiphytic Bacteria and Planktonic Bacteria on Submerged Macrophytes in Caohai Lake, Southwest of China
    Annals of Microbiology (2019) 69:933–944 https://doi.org/10.1007/s13213-019-01485-4 ORIGINAL ARTICLE Community structure and functional diversity of epiphytic bacteria and planktonic bacteria on submerged macrophytes in Caohai Lake, southwest of China Dingbo Yan1,2 & Pinhua Xia1,2 & Xu Song1,2 & Tao Lin1,2 & Haipeng Cao3 Received: 12 February 2019 /Accepted: 22 May 2019 /Published online: 31 May 2019 # Università degli studi di Milano 2019 Abstract Purpose Epiphytic bacteria on the surfaces of submerged macrophytes play an important role in lake biodiversity and ecological processes. However, compared with planktonic bacteria, there is poor understanding of the community structure and function of epiphytic bacteria. Methods Here, we used 16S rRNA gene high-throughput sequencing and functional prediction analysis to explore the structural and functional diversity of epiphytic bacteria and planktonic bacteria of a typical submerged macrophyte (Potamogeton lucens) in Caohai Lake. Results The results showed that the species composition of epiphytic and planktonic bacteria was highly similar as 88.89% phyla, 77.21% genera and 65.78% OTUs were shared by the two kinds of samples. Proteobacteria and Bacteroidetes were dominant phyla shared by the two kinds of communities. However, there are also some special taxa. Furthermore, the epiphytic bacterial communities exhibited significantly different structures from those in water, and the abundant OTUs had opposite constituents. The explained proportion of the planktonic bacterial community by aquatic environmental parameters is significantly higher than that of epiphytic bacteria, implying that the habitat microenvironment of epiphytic biofilms may be a strong driving force of the epiphytic bacterial community.
    [Show full text]
  • Identification Et Profil De Résistance Des Bactéries Autre Que Les Enterobacteriaceae Isolées Des Effluents Hospitaliers
    République Algérienne Démocratique et Populaire Ministère de l’Enseignement Supérieur et de la Recherche scientifique Université Blida 1 Faculté des Sciences de la Nature et de la Vie Filière Sciences Biologiques Département de Biologie et Physiologie Cellulaire Mémoire de fin d’étude en vue de l’obtention du diplôme de Master en Biologie Option : Microbiologie-Bactériologie Thème : Identification et profil de résistance des bactéries autre que les Enterobacteriaceae isolées des effluents hospitaliers Présenté par : Soutenu le : 29 /06/2016 Melle HAMMADI Khedidja Mr SEBSI Abderrahmane Devant le jury : Mme. BOKRETA S. MAB , Université Blida 1 Présidente Mme. HAMAIDI F. MCA , Université Blida 1 Promotrice Mme. MEKLAT A. MCA , Université Blida 1 Examinatrice Mr. KAIS H. MA , Université Blida 1 Co-promoteur Année Universitaire : 2015-2016 Remerciements Nous aimerions en premier lieu remercier notre dieu Allah qui nous a donné la volonté et le courage pour la réalisation de ce travail. À notre promotrice, Mme Hamaidi Fella Nous avons eu l’honneur d’être parmi vos étudiants et de bénéficier de votre riche enseignement. Vos qualités pédagogiques et humaines sont pour nous un modèle. Votre gentillesse, et votre disponibilité permanente ont toujours suscité notre admiration. Veuillez bien Madame recevoir nos remerciements pour le grand honneur que vous nous avez fait d’accepter l’encadrement de ce travail. À notre co-promoteur Mr Kais Hichem Votre compétence, a toujours suscité notre profond respect. Nous vous remercions pour votre accueille et vos conseils. Veuillez trouver ici, l’expression de mes gratitudes et de notre grande estime. Nous adressons nos sincères remerciements à Mme Bokrita de nous avoir fait l’honneur de présider le jury examinant ce travail.
    [Show full text]
  • Morphological and Serological Characterization of Bacterial Isolates from Greening/Dieback Diseased Citrus Daniel Carlos Bock University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 1991 Morphological and serological characterization of bacterial isolates from greening/dieback diseased citrus Daniel Carlos Bock University of Wollongong Recommended Citation Bock, Daniel Carlos, Morphological and serological characterization of bacterial isolates from greening/dieback diseased citrus, Doctor of Philosophy thesis, Department of Biology, University of Wollongong, 1991. http://ro.uow.edu.au/theses/1068 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] MORPHOLOGICAL AND SEROLOGICAL CHARACTERIZATION OF BACTERIAL ISOLATES FROM GREENING/DIEBACK DISEASED CITRUS A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy from THE UNIVERSITY OF WOLLONGONG by Daniel Carlos Bock B.Sc.C Honours) University of the Witwatersrand, Johannesburg, R.S.A. Department of Biology 1991 ii ABSTRACT The morphological and serological characteristics of bacterial isolates from plants infected with African greening, Reunion greening and Taiwan likubin were investigated. Isolates from Australian citrus dieback affected trees and resembling the putative greening isolates, were also included. Although predominantly long thin rods, the bacterial cells were morphologically variabile in both liquid and plate cultures at 25°C and 35°C. "Round forms" developed with age and nutrient limitations. Based on colony morphology and pigmentation, the isolates were categorized into two groups - Groups 1 and 2. Whole cell protein patterns were obtained by SDS-PAGE. Patterns of the Group 1 isolates, which were conserved with growth, were similar to one another and different from the patterns of the Group 2 isolates.
    [Show full text]