PECTOBACTERIUM CAROTOVORUM Subsp

Total Page:16

File Type:pdf, Size:1020Kb

PECTOBACTERIUM CAROTOVORUM Subsp Journal of Plant Pathology (2017), 99 (1), 149-160 Edizioni ETS Pisa, 2017 149 PECTOBACTERIUM CAROTOVORUM subsp. ODORIFERUM ON CABBAGE AND CHINESE CABBAGE: IDENTIFICATION, CHARACTERIZATION AND TAXONOMIC RELATEDNESS OF BACTERIAL SOFT ROT CAUSAL AGENTS* M. Oskiera, M. Kałuz˙na, B. Kowalska and U. Smolin´ska Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland SUMMARY INTRODUCTION This study was aimed to isolate, identify and character- Cabbage (Brassica oleracea L. var. capitata L.) and Chi- ize Pectobacterium spp. causing soft rot disease of cabbage nese cabbage (Brassica rapa L. subsp. pekinensis L.) are im- and Chinese cabbage in Central Poland. Of fifty-two plant portant vegetable crops commonly cultivated in Poland. samples of cabbage and Chinese cabbage showing disease The main pathogens of Brassicaceae plants are Pectobacte- symptoms collected in Central Poland from 2007-2010, 542 rium carotovorum subsp. carotovorum (Pcc), Pseudomonas bacterial isolates were obtained. Of isolates 117 caused soft marginalis pv. marginalis, Pseudomonas syringae pv. maculi- rot on cabbage and Chinese cabbage leaves and potato cola and Xanthomonas campestris pv. campestris (Rimmer et slices and showed pectinolytic activity on crystal violet al., 2007). It is also known that Pseudomonas viridiflava can pectate medium. PCR using Y1/Y2 primers specific for occur on Brassicaceae plants, such as Chinese cabbage (Ma- Pectobacterium genus revealed that twenty-three of them ciel et al., 2010). The most common disease of Brassicaceae belonged to this genus. Phenotypic characterization in is soft rot mainly caused by highly pectinolytic bacteria combination with DNA-based typing methods (rep-PCRs) from the genus Pectobacterium (formerly Erwinia). Symp- and sequence analysis of 16S rRNA, and housekeeping toms of bacterial soft rot on cabbage include water-soaked genes gyrB, infB, rpoB, atpD, and rpoS (MultiLocus Se- lesions which later become rotted mass of macerated tis- quence Typing) done for 12 Polish representatives and ref- sue (Rimmer et al., 2007). P. carotovorum may infect the erence strains allowed for their identification and revealed plant through natural openings (in favorable conditions genetic diversity. Additional phylogeny analysis of the rpoS warm temperatures and high humidity), wounds caused by gene for Polish and worldwide well defined Pectobacte- insects or other diseases causal agent or damages caused rium spp. strains allowed to classify obtained strains into by abiotic factors such as low temperatures or mechanical Pectobacterium spp. phylogenetic clusters (PcI-PcV). The damages. Pectobacterium derives from the genus Erwinia presented studies showed that 8 of 12 isolated Pectobac- and was described as separate genus from Erwinia, Pan- terium carotovorum strains belong to the Pectobacterium toea and Brenneria on the basis of phylogenetic analyses carotovorum subsp. carotovorum (Pcc) cluster PcII and of the 16S rDNA sequences (Hauben et al., 1998). Later, other four strains belong to the subspecies Pectobacteri- Gardan et al. (2003) reclassified existed subspecies of Pec- um carotovorum subsp. odoriferum (Pco) cluster PcIII. To tobacterium carotovorum: i.e. atrosepticum, betavasculorum our knowledge, this is the first report that P. carotovorum and wasabiae to species: Pectobacterium atrosepticum, Pec- subsp. odoriferum causes soft rot of cabbage and Chinese tobacterium betavasculorum and Pectobacterium wasabiae cabbage in Central Poland. respectively. Duarte et al. (2004) described Pectobacterium carotovorum subsp. brasiliense as one of the Pectobacterium Keywords: rep-PCR, 16S rRNA, rpoS, MLST, pectino- carotovorum subspecies. Later, Nabhan et al. (2012a) and lytic bacteria. Waleron et al. (2014) described its appearance in Europe. Phylogenetic studies of the P. carotovorum pectinolytic strains performed by Nabhan et al. (2012b) reveals high heterogeneity of the species and divided it into five clus- ters (PcI to PcV) as follows: Pcc represented by two clus- teres (PcI and PcII), Pectobacterium carotovorum subsp. odoriferum (Pco) (PcIII), P. carotovorum subsp. brasiliense (PcIV) and P. atrosepticum, P. betavasculorum, P. wasabiae. Further, cluster PcV was described as Pectobacterium aroi- dearum by Nabhan et al. (2013). Corresponding author: M. Oskiera Fax: +48.46.833.31.86 * Supplementary materials can be downloaded at: E-mail: [email protected] http://dx.doi.org/10.4454/jpp.v99i1.3831.s11 150 P. carotovorum identification in Poland Journal of Plant Pathology (2017), 99 (1), 149-160 Several methods are commonly used for detection, were macerated in sterile distilled water. Serial dilutions identification and differentiation of plant pathogenic and of the mixture were plated on NA medium. The obtained pectinolytic bacteria. For many years identification of selected colonies were purified on NA medium, preserved bacteria was based on isolation of viable cells on selective in mixture of glycerol and nutrient broth (1:1) and stored culture agar media followed by serological and biochemi- in −80ºC until use. Reference strains of the Pectobacte- cal analyses, bioassays and microscopic observations in- rium carotovorum subsp. carotovorum (Pcc) (LMG 2431, cluding Gram staining (Schaad et al., 2001). Later, some LMG 2404T), Pectobacterium carotovorum subsp. odorif- improvements such as plating on CVP medium with im- erum (Pco) (LMG 17566T) and some pectinolytic strains of munomagnetic separation (IMS) step prior to plating (Van Pectobacterium atrosepticum (Eca59, Ec32), Pectobacterium Der Wolf and Perombelon, 2002), fatty acid methyl ester aroidearum (Ecc4M, Ea853), Pectobacterium sp. (Eca2M) analysis (FAME) (Dawyndt et al., 2006), immunofluores- and Dickeya dadantii (Ech0201) were included in all analy- cence staining (IF) (Van Vuurde and Van der Wolf, 2002) sis. The data on studied isolates and reference strains are and enzyme-linked immunosorbent assay (ELISA) (Lopez summarized in Table 1. et al., 2002) were developed for Pectobacterium detection. Molecular methods, such as PCR with primers specific for Selection of strains on the basis of their pectinolytic detection of Pectobacterium spp., multiplex-PCR, real-time activity on potato slices, cabbage leaves and CVP me- PCR, padlock probes and LAMP are currently widely dium. All the bacterial isolates were tested on potato tuber adapted and were reviewed by Czajkowski et al. (2015). slices, cabbage and Chinese cabbage leaves. Cabbage or Genus specific PCR primers, such as Y1/Y2 (Darrasse et Chinese cabbage leaves and potato tubers were washed al., 1994) for identification Pectobacterium spp., and species under tap water, disinfected in 70% ethanol for 1 min, specific primers, such as Eca1f/Eca2 (De Boer et al., 1995) then 5 min in 0.5% sodium hypochloride, followed by two and Y45/Y46 (Frenchon et al., 1995) for identification P. washes with sterile water. Fragments of the plants: cabbage atrosepticum are routinely used in many laboratories. As with a diameter of approx. 8 cm or 3 slices of potato 10- for many bacterial pathogens, also for soft rot causal agent, mm thick were placed on the prepared Petri dishes (9 cm fingerprinting methods through the analysis of repetitive in diameter) with wet Whatman filter paper. Each bacte- regions [rep-PCR i.e., Enterobacterial Repetitive Intergenic rial isolate grown 24 h on NA medium was placed with Consensus (ERIC), BOX and Repetitive Extragenic Pal- toothpicks on the injured tissues in 3-4 places (per plate). indromic Elements (REP)] (Weingart and Völksch, 1997) Three plates were assayed per bacterial isolate. The Petri have been successfully used for their identification and dif- dishes were then incubated at 28°C. Tissue maceration was ferentiation within the species and subspecies level (Rezaei determined by visual inspection (cabbage leaves) twice: and Taghavi, 2010). In case of Pectobacterium spp., also the after 48 h and after 5 days, while in the case of potato slices several primer pairs amplifying fragments of 16S rDNA with use of toothpicks after 24 and 48 h. Each assay was and housekeeping genes localized independently in bac- performed three times. Obtained bacterial isolates were al- terial core genome were already published and used for so tested on crystal violet pectate agar (CVP) (Perombelon sequencing (Waleron et al., 2002, 2014; Brady et al., 2008). and Burnett, 1991) with use of sodium polypectate (pectin The sequence analysis of housekeeping genes combined classic kat. CU902; Herbstreith & Fox Corporate Group, with bioinformatics tools (MultiLocus Sequence Typing) Neuenbürg/Württ, Germany), for checking their ability to allowing for identification and genotyping of the soft rot form of liquefied deep pits on the medium surface. bacteria. The objective of this study was the isolation, iden- tification and differentiation of P. carotovorum spp. strains DNA isolation. Bacterial DNA was isolated using the obtained from diseased cabbage and Chinese cabbage in method described by Aljanabi and Martinez (1997). The Poland using phenotypic tests, repetitive-sequence PCRs purity and quantity of isolated DNA were evaluated by and MLST. visualization on 0.8% agarose gel after electrophoresis with sodium-borate (NaB) buffer (Brody et al., 2004) and determined spectrophotometrically by absorbance mea- MATERIALS AND METHODS surement of A260/A280 using a BioPhotometer UV/Vis Spectrophotometer (Eppendorf, Hamburg, Germany). Plant samples and isolation of bacteria. Fifty two Finally, DNA
Recommended publications
  • Phylogenetic Analysis of Erwinia Species Based on 16S Rrna Gene Sequences?
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1997, p. 1061-1067 Voi. 47, No. 4 0020-771 3/97/$04.00+0 Copyright 0 1997, International Union of Microbiological Societies Phylogenetic Analysis of Erwinia Species Based on 16s rRNA Gene Sequences? SOON-WO KWON,'" SEUNG-JOO GO,' HEE-WAN KANG,l JIN-CHANG RYU,l AND JIN-KI J02 National Institute of Agricultural Science & Technology, Suwon, and Department of Animal Science, Kyungpook National University, Daegu, Karea The phylogenetic relationships of the type strains of 16 Erwinia species were investigated by performing a comparative analysis of the sequences of the 16s rRNA genes of these organisms. The sequence data were analyzed by the neighbor-joining method, and each branch was supported by moderate bootstrap values. The phylogenetic tree and sequence analyses confirmed that the genus Erwinia is composed of species that exhibit considerable heterogeneity and form four clades that are intermixed with members of other genera, such as Escherichia coli, Klebsiella pneumoniae, and Serratia marcescens. Cluster I includes the type strains of Envinia herbicola, Erwinia milletiae, Erwinia ananas, Erwinia uredovora, and Erwinia stewartii and corresponds to Dye's herbicola group. Cluster I1 consists of Erwinia persicinus, Erwinia rhapontici, Erwinia amylovora, and Erwinia cypripedii. Cluster I11 consists of Erwinia carotovora subspecies and Erwinia chrysanthemi and is characterized by the production of pectate lyases and cellulases. Envinia salicis, Erwinia rubrifaciens, and Erwinia nigrijluens form the cluster that is most distantly related to other Erwinia species. The data from the sequence analyses are discussed in the context of biochemical and DNA-DNA hybridization data. The genus Erwinia was proposed by Winslow et al.
    [Show full text]
  • Erwinia Chrysanthemi the Facts
    Erwinia chrysanthemi (Dickeya spp.) The Facts Compiled for the British Potato Council by; Dr John Elphinstone, Central Science Laboratory Dr Ian Toth, Scottish Crop Research Institute Erwinia chrysanthemi (Dickeya spp.) – The Facts Contents Executive Summary 1. Introduction 2. The pathogen 3. Symptoms • Distinction from symptoms caused by P. atrosepticum and P. carotovorum • Distinction from other diseases 4. Geographical distribution • Presence in GB • Europe • Overseas 5. Biology, survival and dissemination of the pathogen • Factors influencing disease development • Dissemination • Survival 6. Assessment of Risk and Economic Loss • Quarantine status • Potential GB economic impact • Economic impact to overseas markets 7. Control • Statutory (certification) • On farm • Specific approaches and control measures in other countries • Best practice guide 8. Diagnostic methods 9. Knowledge gaps 10. Threats, Opportunities and Recommendations 11. References 12. Glossary of terms 2 © British Potato Council 2007 Erwinia chrysanthemi (Dickeya spp.) – The Facts Executive Summary The pathogen Erwinia chrysanthemi (Echr) is a complex of different bacteria now reclassified as species of Dickeya. While D. dadantii and D. zeae (formerly Echr biovar 3 or 8) are pathogens of potato in warmer countries, D. dianthicola (formerly Echr biovar 1 and 7) appears to be spreading on potatoes in Europe. The revised nomenclature of these pathogens has distinguished them from other soft rot erwiniae (including P. atrosepticum and P. carotovorum). Symptoms Symptoms of soft rot disease on potato tubers are similar whether caused by Dickeya or Pectobacterium spp. In the field, disease develops following movement of either pathogen from the stem base. Whereas P. atrosepticum typically causes blackleg symptoms under cool wet conditions, symptoms due to Dickeya spp.
    [Show full text]
  • HOST RANGE and DISTRIBUTION of Pectobacterium Betavasculorum ¸ the CAUSAL AGENT of BACTERIAL VASCULAR NECROSIS and ROOT ROT of SUGARBEET in FARS PROVINCE *
    Iran. J. Plant Path., Vol. 47, No. 2, 2011: 47-48 HOST RANGE AND DISTRIBUTION OF Pectobacterium betavasculorum ¸ THE CAUSAL AGENT OF BACTERIAL VASCULAR NECROSIS AND * ROOT ROT OF SUGARBEET IN FARS PROVINCE 1 R. NEDAIENIA and A. FASSIHIANI ** (Received: 22.2.2010; Accepted: 9.3.2011) Abstract Bacterial vascular necrosis and root rot of sugarbeet caused by Pectobacterium betavasculorum is one of the important causal agents of sugarbeet root rot in Fars province. The disease has become widespread in recent years in the region. In order to determine host range of this pathogen in cucurbitaceae and solanaceae, two representative virulent isolates were used. Isolates were inoculated into stem, petiole, root or fruit of plants. Plants were kept at 28+ 2oC in a growth room or a glasshouse. Control plants were treated with sterile distilled water and kept in similar conditions and checked daily for symptoms development. Disease symptoms in the form of black streaking lesions and rot around inoculation site developed during 2-10 days in leaf, stem, root, fruit and tuber of cucumber, beans, melon, tomato, squesh, maize, potato, eggplant, carrot, turnip, garlic, onion, garden beet and date palm fruit. Disease symptoms were less severe on maize than other plants, however, inoculation induced water soaking and rot in the crown area and finally killed maize young seedling after a week. Restricted rot developed on garlic and onion. The P. betavasculorum was re-isolated from inoculated plants. Based on the research, melon, cucumber, squash, maize, bean, and eggplant are introduced as potential new hosts of P.betavasculorum . The results of distribution studies in various regions in Fars province showed that the disease was widespread in Marvdasht, Kavar, Fasa, Zarghan,and Shiraz vicinity but it was not found in Eghlid.
    [Show full text]
  • Characterization of Bacterial Communities Associated
    www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5.
    [Show full text]
  • Data Sheet on Erwinia Chrysanthemi
    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Erwinia chrysanthemi IDENTITY Name: Erwinia chrysanthemi Burkholder et al. Synonyms: Erwinia carotovora (Jones) Bergey et al. f.sp. parthenii Starr Erwinia carotovora (Jones) Bergey et al. f.sp. dianthicola (Hellmers) Bakker Pectobacterium parthenii (Starr) Hellmers Erwinia carotovora (Jones) Bergey et al. var. chrysanthemi (Burkholder et al.) Dye Taxonomic position: Bacteria: Gracilicutes Notes on taxonomy and nomenclature: Six pathovars of E. chrysanthemi are mentioned in the Bergey's Manual of Systematic Bacteriology (pv. chrysanthemi, pv. dianthicola, pv. dieffenbachiae, pv. paradisiaca, pv. parthenii and pv. zeae) on the basis of their host plants (Lelliott & Dickey, 1984). The pathovars are more or less related to six biochemical subdivisions (I-VI, Dickey & Victoria, 1980). Nine biovars (1-9; Ngwira & Samson, 1990) have been proposed for non-ambiguous biochemical typing. Some of the biochemical variants may be elevated to subspecies level or to another species name in the near future. Bayer computer code: ERWICH (also ERWIZE) EPPO A2 list: No. 53 EU Annex designation: II/A2 - pv. dianthicola only HOSTS Diseases have most often been reported on bananas, carnations, chrysanthemums, Dahlia, Dieffenbachia spp., Euphorbia pulcherrima, Kalanchoe blossfeldiana, maize, Philodendron spp., potatoes, Saintpaulia ionantha, Syngonium podophyllum. E. chrysanthemi has also been naturally found to attack Allium fistulosum, Brassica chinensis, Capsicum, cardamoms, carrots, celery, chicory, Colocasia esculenta, Poaceae such as Brachiaria mutica, B. ruziziensis, Panicum maximum and Pennisetum purpureum, Hyacinthus sp., Leucanthemum maximum, lucerne, onions, pineapples, radishes, rice, Sedum spectabile, sugarcane, sorghum, sweet potatoes, tobacco, tomatoes, tulips and glasshouse ornamentals such as Aechmea fasciata, Aglaonema pictum, Anemone spp., Begonia intermedia cv.
    [Show full text]
  • Acute Oak Decline and Bacterial Phylogeny
    Forest Research Acute Oak Decline and bacterial phylogeny Carrie L. Brady1, Sandra Denman2, Susan Kirk2, Ilse Cleenwerck1, Paul De Vos1, Stephanus N. Venter3, Pablo Rodríguez-Palenzuela4, Teresa A. Coutinho3 1 BCCM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium. 2 Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, United Kingdom. 3 Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 4 Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Autovía M-40 Km 38, 28223 Pozuelo de Alarcón, Madrid Background Oak decline is of complex cause, and is attributed to suites of factors that may vary spatially and temporally (Camy et al., 2003; Vansteenkiste et al., 2004). Often a succession of biotic and abiotic factors is involved. Two types of oak decline are recognised, an acute form and a chronic form (Vansteenkiste et al., 2004, Denman & Webber, 2009). Figure 2: Necrotic tissue under bleeding patches on Figure 3: Larva gallery () of Agrilus biguttatus and An episode of Acute Oak Decline (AOD) currently taking stems of AOD trees. necrotic tissues (). place in Britain (Denman & Webber, 2009) has a rapid effect on tree health. Tree mortality can occur within three to five years of the onset of symptom development (Denman et al., 2010). Affected trees are identified by patches on stems showing ‘bleeding’ (Fig.1). Tissues underlying the stem bleed are n e c r o t i c (F i g . 2) . L a r v a l g a l l e r i e s o f t h e b a r k b o r i n g b u p r e s t i d Agrilus biguttatus are usually associated with necrotic patches (Fig.3).
    [Show full text]
  • Sotwp 2016.Pdf
    STATE OF THE WORLD’S PLANTS OF THE WORLD’S STATE 2016 The staff and trustees of the Royal Botanic Gardens, Kew and the Kew Foundation would like to thank the Sfumato Foundation for generously funding the State of the World’s Plants project. State of the World’s Plants 2016 Citation This report should be cited as: RBG Kew (2016). The State of the World’s Plants Report – 2016. Royal Botanic Gardens, Kew ISBN: 978-1-84246-628-5 © The Board of Trustees of the Royal Botanic Gardens, Kew (2016) (unless otherwise stated) Printed on 100% recycled paper The State of the World’s Plants 1 Contents Introduction to the State of the World’s Plants Describing the world’s plants 4 Naming and counting the world’s plants 10 New plant species discovered in 2015 14 Plant evolutionary relationships and plant genomes 18 Useful plants 24 Important plant areas 28 Country focus: status of knowledge of Brazilian plants Global threats to plants 34 Climate change 40 Global land-cover change 46 Invasive species 52 Plant diseases – state of research 58 Extinction risk and threats to plants Policies and international trade 64 CITES and the prevention of illegal trade 70 The Nagoya Protocol on Access to Genetic Resources and Benefit Sharing 76 References 80 Contributors and acknowledgments 2 Introduction to the State of the World’s Plants Introduction to the State of the World’s Plants This is the first document to collate current knowledge on as well as policies and international agreements that are the state of the world’s plants.
    [Show full text]
  • A Secreted Metal-Binding Protein Protects Necrotrophic Phytopathogens from Reactive Oxygen Species
    ARTICLE https://doi.org/10.1038/s41467-019-12826-x OPEN A secreted metal-binding protein protects necrotrophic phytopathogens from reactive oxygen species Lulu Liu1,5, Virginie Gueguen-Chaignon2,5, Isabelle R Gonçalves1,5, Christine Rascle1, Martine Rigault3, Alia Dellagi3, Elise Loisel1, Nathalie Poussereau1, Agnès Rodrigue 1, Laurent Terradot 4*& Guy Condemine 1* 1234567890():,; Few secreted proteins involved in plant infection common to necrotrophic bacteria, fungi and oomycetes have been identified except for plant cell wall-degrading enzymes. Here we study a family of iron-binding proteins that is present in Gram-negative and Gram-positive bacteria, fungi, oomycetes and some animals. Homolog proteins in the phytopathogenic bacterium Dickeya dadantii (IbpS) and the fungal necrotroph Botrytis cinerea (BcIbp) are involved in plant infection. IbpS is secreted, can bind iron and copper, and protects the bacteria against H2O2- induced death. Its 1.7 Å crystal structure reveals a classical Venus Fly trap fold that forms dimers in solution and in the crystal. We propose that secreted Ibp proteins binds exogenous metals and thus limit intracellular metal accumulation and ROS formation in the microorganisms. 1 Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622 Villeurbanne, France. 2 Protein Science Facility, SFR BioSciences, UMS3444/US8, 69367 Lyon, France. 3 Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, 78026 Versailles, France. 4 Molecular Microbiology and Structural Biochemistry, UMR
    [Show full text]
  • Review Bacterial Blackleg Disease and R&D Gaps with a Focus on The
    Final Report Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry Project leader: Dr Len Tesoriero Delivery partner: Crop Doc Consulting Pty Ltd Project code: PT18000 Hort Innovation – Final Report Project: Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry – PT18000 Disclaimer: Horticulture Innovation Australia Limited (Hort Innovation) makes no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in this Final Report. Users of this Final Report should take independent action to confirm any information in this Final Report before relying on that information in any way. Reliance on any information provided by Hort Innovation is entirely at your own risk. Hort Innovation is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from Hort Innovation or any other person’s negligence or otherwise) from your use or non‐use of the Final Report or from reliance on information contained in the Final Report or that Hort Innovation provides to you by any other means. Funding statement: This project has been funded by Hort Innovation, using the fresh potato and processed potato research and development levy and contributions from the Australian Government. Hort Innovation is the grower‐owned, not‐ for‐profit research and development corporation for Australian horticulture. Publishing details:
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Endotoxins from Dickeya Dadantii: Structure and Aphicidal Activity
    New Cyt-like δ-endotoxins from Dickeya dadantii: structure and aphicidal activity. Karine Loth, Denis Costechareyre, Géraldine Effantin, Yvan Rahbé, Guy Condemine, Céline Landon, Pedro da Silva To cite this version: Karine Loth, Denis Costechareyre, Géraldine Effantin, Yvan Rahbé, Guy Condemine, et al.. New Cyt-like δ-endotoxins from Dickeya dadantii: structure and aphicidal activity.. Scientific Reports, Nature Publishing Group, 2015, 5, pp.8791. 10.1038/srep08791. hal-01124447 HAL Id: hal-01124447 https://hal.archives-ouvertes.fr/hal-01124447 Submitted on 6 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OPEN New Cyt-like d-endotoxins from Dickeya SUBJECT AREAS: dadantii: structure and aphicidal activity STRUCTURAL BIOLOGY Karine Loth5*, Denis Costechareyre1,2,3,4*,Ge´raldine Effantin1,2,3,4, Yvan Rahbe´1,4,6, Guy Condemine1,2,3,4, SOLUTION-STATE NMR Ce´line Landon5 & Pedro da Silva1,4,6 Received 1INSA-Lyon, Villeurbanne F-69621, France, 2CNRS, UMR5240 MAP, Microbiologie Adaptation et Pathoge´nie, F-69622, France, 27 October 2014 3Universite´ Claude Bernard Lyon 1, F-69622, France, 4Universite´ de Lyon, F-69000 Lyon, France, 5Centre de Biophysique Mole´culaire, CNRS UPR 4301, Universite´ d’Orle´ans, Orle´ans, F-45071, France, 6INRA, UMR203 BF2I, Biologie Fonctionnelle Accepted Insecte et Interaction, F-69621, France.
    [Show full text]
  • Inoculation and Spread of Dickeya in Potatoes
    INOCULATION AND SPREAD OF DICKEYA IN POTATOES A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Blake William Greiner In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology May 2018 Fargo, North Dakota North Dakota State University Graduate School Title INOCULATION AND SPREAD OF DICKEYA IN POTATOES By Blake William Greiner The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Gary A. Secor Chair Asunta (Susie) Thompson Andrew Robinson Luis del Rio Mendoza Approved: January 22, 2019 Jack Rasmussen Date Department Chair ABSTRACT Field experiments were conducted in two different growing environments to evaluate the spread and movement of Dickeya dadantii. A procedure to inoculate seed potatoes with Dickeya dadantii was developed to use during this study. Spread of Dickeya dadantii from inoculated potato seed to healthy potato seed during the handling, cutting and planting procedures was not detected at either location. Spread of Dickeya dadantii from inoculated seed to surrounding progeny tubers in the field was documented in both locations. In Florida, 33% of progeny tubers tested positive for Dickeya using PCR, and in North Dakota, 13% of the progeny tubers tested positive. Stunting was observed in plants grown from Dickeya dadantii inoculated seed tubers in North Dakota, but not in Florida. These results indicate that Dickeya dadantii may spread during the seed handling and cutting processes and can spread in the field from infected seed tubers to progeny tubers.
    [Show full text]