Background on Plug-In Electric Vehicles

Total Page:16

File Type:pdf, Size:1020Kb

Background on Plug-In Electric Vehicles The submitted manuscript has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government Background on Plug-in Electric Vehicles Danilo J. Santini Senior Economist Center for Transportation Research Argonne National Laboratory The American Lung Association Electric Vehicle Forum May 23rd Palos Hills IL Preparation of this presentation was sponsored by Clean Cities and the Vehicle Technologies Program, Energy Efficiency & Renewable Energy, U.S. Department of Energy. Topics of the Presentation . Historical context . Distinguishing among three major kinds of plug-in electric cars . Operations and infrastructure . What are the motivators for development and sales of plug-in electric vehicles? The first electric vehicles (EVs) . First crude electric made between 1832 & 1839 . More practical & successful vehicles made around 1842 . Better battery storage invented in 1865 with further improvements in 1881 Jay Leno’s Baker EV 1900s Markets Were: Where Garages Were for Personal Vehicles; Slow MPH Urban Delivery . (Midwestern) cities with lower density had higher EV car share – houses, more new construction . New York was the first city to lose all personal use EVs (multifamily, long commutes, hills) . New York City was the most successful location for truck fleet EVs by far (slow average speed, many customers, large fleets, long hours, used most available range or even more via battery swapping) . Taxi fleets were also tried (slow average speed, high value for clean and quiet) . Increasing power and speed of gasoline killed the EV. Hybrid Electric Vehicles have been around for years Hybrids have been around for 100+ years, and plugged in. Lohner-Porsche (Vienna),1899 1916 Woods Gas-Electric Hybrid Ferdinand Porsche, hub motors 14 hp, 1 liter engine, 48v, $2650 5 Affordable* Neck Bending Take-Off Acceleration and Speed for Interstate Driving Revived Car EV Interest. (Efficient Quiet, Clean Operation has Always Been a Plus, Short Range and Cost Were Always Problems) * To well-off enthusiasts Lithium Ion Batteries Allowed a New Manufacturer, Tesla, to Actually See What Some Customers Would Pay . 1990s, Nickel Metal Hydride Battery . 6.5 sec 0-50 mph (yes, 50!) . 80 mph top speed . GM made it available only for lease, not purchase . 2008, Lithium Ion Battery based on consumer cells . 3.7-3.9 sec 0-60 (yes, 60!) . 125 mph top speed . $109,000+ There are Unique Capabilities and Charging Needs for Each Plug-in Car Type – Plug in Hybrid Electric Vehicle (PHEV) • Varying electric range – battery 5-10 kWh • Blended mode operation on highways, hard acceleration • Charge power presently 1.4 - 3.3 kW – Extended Range Electric Vehicle (EREV) • Increased electric range – medium battery 10-20 kWh energy • Nearly exclusively electric operation in metro areas • Charge power presently 1.4 to 3.3 kW – Battery Electric Vehicle (BEV) • All electric range – large battery >20kWh energy • Exclusively electric operation • Charge power presently 3.3 kW to 50 kW – “Super” Battery Electric Vehicle (BEV) • All electric range – large battery 85 kWh energy • Charge power 10 or 20kW; DC Fast, 35 kW Annual Fuel Cost Can Be More Than $1000 Less For EVs vs. Conventional Gasoline Nissan Leaf EV Ford Focus EV Mitsubishi MiEV Chevrolet Volt EREV Toyota Prius Electricity Gasoline Nissan Versa Ford Focus Chevrolet Cruze Toyota Corrola $- $1,000 $2,000 $3,000 Fuel Economy.gov Annual Fuel Cost Estimate HEVs Have Proven to Require Less Maintenance than Conventional Vehicles. Plug-in Vehicles are Also Anticipated to Require Less Maintenance. • HEVs and PHEVs require slightly less maintenance than conventional vehicles • Battery warranties are for 8 years or more • EVs should also require less maintenance than conventional vehicles • Battery, motor, and associated electronics require no regular maintenance, or very long intervals • No fluids to change, except brake fluid (one battery flush for Focus BEV however) • Regenerative braking reduces break wear • Fewer moving parts than a conventional vehicle Temperature Extremes Affect Electric Drive Energy Consumption More Than Gasoline Vehicles Advanced Powertrain Research Facility 2012 Electric Vehicle +101% +25% +92% +2% +42% +27% +21% +5% Note: Energy consumption does not include charger efficiency 11 However, With Your Cell Phone, You Can Use Grid Electricity to Heat or Cool Your Vehicle Before Leaving. But if Parked in a Lot With No Charger Mid Afternoon … Leaf Volt Electrification Possibilities Span Most Vehicle Classes, Have Lately Been in Flux . Pure EVs BMW Mini E Ford Focus BEV Nissan Leaf Smith Edison Navistar EV Tesla Roadster Coda Think EV Mitsubishi iMiEV EVI Truck Smith Newton Smart ED Light Azure Dynamics Ford Transit Connect Heavy Extended Range Bright Automotive Azure Dynamics Azure Dynamics Step Van Refrigerator Truck Chevy Volt EREV Fisker Karma EREV Electrics Light Ford Fusion PHEV Plug In Balquon HD Truck Odyne HEV Honda Accord Bucket Truck PHEV Hybrids Toyota Prius PHEV Ford C-Max Energi PHEV Modified from: M. Simpson, Plug-in Electric Vehicle Basics, Clean Cities 2011 Summit, Indianapolis IN June 27, 2011 A Couple of Points About Commercial Trucks Nissan Leaf Peak Range vs. Hours of Service Data. Urban Delivery: Slow Speed = Many Operating Hours Cars: A Day’s Use From One Charge Unless 55 mph 14 Steady 38 mph! 12 10 8 Range/10 6 Hours to depletion 4 Hottest, Hours or Miles/10 or Hours Coldest, 14° 2 95° 0 0 10 20 30 40 50 60 Average miles per hour Note: The “real world” high to low range ratio is 2.2 (105/47) http://green.autoblog.com/2010/06/14/nissan-pegs-leaf-range-between-47-and-138-miles-individual-resu/ EV Trucks are Medium & Light, Expensive, Only Fast Enough for Intra-Urban Use Smith Newton Zero Truck Electric Vehicles International Max Payload (100 lbs) Navistar e-Star Max Speed (mph) Transit Connect Price ($1000s) 0 60 120 180 Source: Long, M. Looking at Electric Trucks. Light and Medium Truck, May 2011 pp. 12-15. Back to Plug-in Cars Households May Have to Install a New Circuit to Have a Plug Close to the Vehicle • AC Level 1 – 120 v outlet – In most garages – Does outlet have the capacity? – Prefer dedicated outlet Level 1 at Wall Level 1 Portable Charge Equipment • AC Level 2 – 240 v special connector – Defined by SAE J1772 – Cord connected to a Level 1 or 2 at Level 2 Wall the Vehicle charging dock (EVSE) Mounted Charge Dock L1 Charge Equipment Goes With the Vehicle; L2 Is Placed at Usual Parking Spots; and L2 and DC at “Stations” Level 1 (L1) with Vehicle Level 2 (L2) on House Wall Level 1 or 2 in Parking Lot L2 & DC Fast in “Stations” We Have Recently Revised the Charging Pyramid to Illustrate Complexity of Plug-in Vehicle Charging On Behalf of Electric Utilities, EPRI is Worrying About Adding Charging Demand on Hottest Summer Days Average Peak Summer Demand Per Household (KW) Tesla (240V80A) 19.2 PEV (240V@32A) 7.7 PEV (240V@15A) 3.6 PEV (120V@12A) 1.4 SanFrancisco, CA 3.0 Feeders Hartford, CT 4.3 Dulles, VA 4.6 South Bend, IN 6.0 Springdale, AR 7.7 Source: A. Maitra (Electric Power Research Institute). Plug-In Vehicle Drive Impacts to the Grid TRB Environment and Energy Research Conference June 7-9, 2010 Due to Costs of Trenching and Rewiring, Costs Behind the Plug Can Vary Significantly. New Construction Can Be Far Less Expensive, But Most Will Involve Retrofits. Most owners will charge vehicles at home, making Level 1 and Level 2 the primary options. Workplace seems to be the next highest priority. Level 2 charging equipment now costs $1,500 to $2,500 when owners choose to install. Old dwellings with limited kW capacity could require rewiring, or investment in much more efficient appliances and/or lighting to create capacity for the PEV. Level 2 at work is generally more expensive, with longer runs to parking spots, needing trenching and paving replacement. Each of these installations requires permitting and licensed contractors. Market Drivers . Zero Emissions Vehicle Mandates . Subsidies . CAFE/GHG Regulation . Gasoline Prices Zero Emission Vehicle Mandates (ZEV) • California and the States that have adopted California emission regulations ZEV Mandates have established a Zero Emission Vehicle mandate, which requires the automotive OEMs to sell clean energy vehicles including ZEVs • Requirements are only for Large Volume Manufacturers (3 year average California sales greater than 60,000 units) ZEV target requirements Percent of California Sales Volume Year Total ZEV requirement 2009-2011 11% 0.82% 2012 - 2014 12% 0.79% 2015 - 2017 14% 3.00% 2018+ 16% TBD Illinois’ Financial Incentive May Enhance PEV Rollout Here •Driven by incentives and deployment initiatives the majority of the EV market growth will be in the West Coast in the near term – particularly in the highly incentivized markets •In the medium to long term EV deployment will likely gain momentum in the States that have adopted California emission regulations ZEV Mandates (Section 177 States) WA ME OR VT MA NY CT RI PA NJ CA MD State tax credit AZ NM incentives for Hawaii purchase of either PHEVs or EVs ($605-7500) vs. Section 177 States FL Requiring PHEVs and EVs Federal ($2500- $7500) 25 Note: Nissan’s site lists more states with at least
Recommended publications
  • Study on the Effects of Battery Capacity on the Performance of Hybrid Electric Vehicles
    Missouri University of Science and Technology Scholars' Mine Electrical and Computer Engineering Faculty Research & Creative Works Electrical and Computer Engineering 01 Sep 2008 Study on the Effects of Battery Capacity on the Performance of Hybrid Electric Vehicles Deepak Somayajula Andrew Meintz Mehdi Ferdowsi Missouri University of Science and Technology, [email protected] Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork Part of the Electrical and Computer Engineering Commons Recommended Citation D. Somayajula et al., "Study on the Effects of Battery Capacity on the Performance of Hybrid Electric Vehicles," Proceedings of the IEEE Vehicle Power and Propulsion Conference (2008, Harbin, China), Institute of Electrical and Electronics Engineers (IEEE), Sep 2008. The definitive version is available at https://doi.org/10.1109/VPPC.2008.4677504 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008, Harbin, China Study on the Effects of Battery Capacity on the Performance of Hybrid Electric Vehicles Deepak Somayajula, Andrew Meintz, and Mehdi Ferdowsi, Member, IEEE Power Electronics and Motor Drives Laboratory Missouri University of Science and Technology Rolla, MO 65409, USA Email: [email protected], [email protected], and [email protected] Abstract—Hybrid electric vehicles are gaining a significant the drive cycle and the battery assists the engine.
    [Show full text]
  • Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature
    UC Riverside 2020 Publications Title Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature Permalink https://escholarship.org/uc/item/4z12798n Journal World Electric Vehicle Journal, 11(2) ISSN 2032-6653 Author Jung, Heejung Publication Date 2020-03-31 DOI 10.3390/wevj11020031 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature Heejung Jung 1,2 1 Department of Mechanical Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA; [email protected] 2 College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507, USA Received: 10 December 2019; Accepted: 29 March 2020; Published: 31 March 2020 Abstract: Hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) are evolving rapidly since the introduction of Toyota Prius into the market in 1997. As the world needs more fuel-efficient vehicles to mitigate climate change, the role of HEVs and PHEVs are becoming ever more important. While fuel economies of HEVs and PHEVs are superior to those of internal combustion engine (ICE) powered vehicles, they are partially powered by batteries and therefore they resemble characteristics of battery electric vehicles (BEVs) such as dependence of fuel economy on ambient temperatures. It is also important to understand how different extent of hybridization (a.k.a., hybridization ratio) affects fuel economy under various driving conditions.
    [Show full text]
  • Electric Vehicle Demonstration Projects In
    ELECTRIC VEHICLE DEMONSTRATION PROJECTS IN THE UNITED STATES Prepared For TEKES The Finnish Funding Agency for Technology and Innovation NWV Market Discovery, Inc. 20781 Evergreen Mills Road · Leesburg, VA 20175, USA Tel 1-703-777-1727 · Cell 1-703-909-0603 · URL: www.nwv.com CONTENTS 1. BACKGROUND & OBJECTIVES ________________________________________ 4 2. INTRODUCTION ____________________________________________________ 6 2.1. POLITICAL CONTEXT _________________________________________________ 6 2.2. ELECTRICAL CAR MANUFACTURERS ___________________________________ 7 2.3. MUNICIPALITIES _____________________________________________________ 7 2.4. INFRASTRUCTURE ___________________________________________________ 7 2.5. TECHNOLOGY & COMPONENT SUPPLIERS______________________________ 9 2.6. RETAIL, SALES & CONSUMER SERVICE _________________________________ 9 2.7. FUNDING ___________________________________________________________ 9 2.8. INTERNATIONAL COLLABORATION ___________________________________ 10 2.9. GLOBAL INITIATIVES ________________________________________________ 10 2.10. SOURCES __________________________________________________________ 12 3. DEMONSTRATION & TEST PROJECTS _________________________________ 13 3.1. THE EV PROJECT ___________________________________________________ 13 3.2. PROJECT PLUG - IN _________________________________________________ 18 3.3. USPS PILOT PROGRAM “CONVERT LLVs TO EVs”_______________________ 23 3.4. PORT OF LOS ANGELES ELECTRIC TRUCK DEMONSTRATION PROJECTS ___ 26 3.5. SDG&E CTP EV DEMONSTRATION
    [Show full text]
  • FVEAA NEWSLETTER 2007 Fox Valley Electric Auto Association a Not-For-Profit IL Corporation & Chapter of the Electric Auto Association (Eaaev.Org)
    8 of 1 Page 2007-05.odt sletter- VEAA-new F mbers category? mbers me Honorary Business New Hirschberg Rich – Update xpo E AFV Midwest – Tim Moore Tim – ate Upd Project Club Update – Todd Martin Todd – Update re Infrastructu Charging Update – Ted Lowe Ted – Update Location New – Elgin – 6:30pm – 28 June – Show V E d an Showing C WKtE th Lockport - 2pm – 19 ay M – Show V E d an Showing C WKtE h t ents EV Upcoming d Business d Ol Dale Corel Dale - Report Treasurer’s Carroll Rich – inutes M of Approval tions Introduc and rder O to ll Ca e ow L ed T Meeting Agenda Meeting g) ev.or aa (e on Associati Auto ric Elect e th of er Chapt & on Corporati IL Profit - For Not- A ion Associat Auto ic ctr Ele ey Vall Fox 2007 ER LETT WS NE A VEA F y Ma Fox Valley Electric Auto Association PO Box 214 Wheaton, IL 60189-0214 Meeting: Friday, May 18th Doors open at 7:00PM Meeting starts at 7:30PM Clow International Airport 130 S Clow Intl. Pkwy, Bolingbrook, IL 60440 Directions: From the Boughton & Weber Rd intersection, go south 0.5mi (past all the malls) and turn right (west) on Clow Intl. Pkwy. Park in the lot next to Charlie’s Restaurant. The meeting is in the Packer Wings hangar (second hangar north from the parking lot). Enter the hangar from the side door on the south side. Business members recommendations Intermission – Networking, Refreshments and Raffle Programs The Making of the WGN Story – “Little Juice Coupe” John Jeide, John Emde and Ted Lowe will share their stories, pictures and video about the making of the excellent story that WGN recently produced and aired.
    [Show full text]
  • Autonomie Vehicle Validation Summary
    Autonomie Vehicle Validation Summary Aymeric Rousseau, Neeraj Shidore, Dominik Karbowski, Phil Sharer Argonne National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Outline . Validation Process . Component Model Development and Validation . Vehicle Validation Examples – Conventional Vehicles – Mild Hybrids – Full Hybrids – Plug-in Hybrids (Blended) – E-REV PHEV – BEV . Thermal Model Validation Overview 2 Generic Process to Validate Models Developed over the Past 15 Years Vehicle Instrumentation, Test Selection Test data analysis using ‘Import Test Data’ function in Autonomie - Evaluate individual sensors (QC) - Estimate additional signals for each component - Component performance data estimation - Find key parameter values and control scheme Calibration and validation of the vehicle model with test data Vehicle model development - Dynamic performance validation - Energy consumption validation - Develop models - Instantiate models To quickly and accurately predict or evaluate the energy - Develop low and high level control strategies consumption and dynamic performance of the vehicle under various driving conditions. 3 Advanced Vehicle Laboratory Capabilities 4 In-depth Approach to Vehicle Instrumentation . Significant instrumentation contributes to detailed vehicle/component understanding (120+ signals collected) Many Signal Sources . Torque sensors (axles) . Components Speeds . Coolant flow sensors . Coolant / Component temperatures . Exhaust temperatures, emissions
    [Show full text]
  • Advanced Manufacturing Cluster in Northeast Indiana
    ADVANCED MANUFACTURING CLUSTER IN NORTHEAST INDIANA Made possible with the support of Presented to the Northeast Indiana Fund by Rev. January, 2011 Report on the Advanced Manufacturing Cluster in Northeast Indiana Prepared for Northeast Indiana Fund and WorkOne Rev. January, 2011 TABLE OF CONTENTS INTRODUCTION 3 ADVANCED MANUFACTURING IN NORTHEAST INDIANA 6 AUTOMOTIVE SUBCLUSTER 23 DEFENSE SUBCLUSTER 44 WIRE SUBCLUSTER 48 ALTERNATIVE ENERGY 51 RECOMMENDATIONS FOR THE ADVANCED MANUFACTURING CLUSTER 56 APPENDIX 58 Taimerica Management Company | P. O. Box 977 | Mandeville LA 70470 | 985.626.9868 2 Report on the Advanced Manufacturing Cluster in Northeast Indiana Prepared for Northeast Indiana Fund and WorkOne Rev. January, 2011 INTRODUCTION Advanced Manufacturing is a term without an exact or consistent definition. The proponents know it when they see it but often can’t define it. The definition is not commonly agreed upon, even in the manufacturing community. This ambiguity has hamstrung communities and states hoping to develop a strategy for promoting and growing Advanced Manufacturing. If you can’t define it, how can you identify and develop it? Most experts now agree on several points. First, advanced manufacturing isn’t industry specific, although some industries such as defense, aerospace, and automotive have more advanced manufacturing companies than others. Advanced Manufacturing is identified at the company rather than the industry level. It is more useful to define Advanced Manufacturing based on “how” companies manufacture, rather than on their end products. Since all of the economic and employment information for manufacturing is collected based on the finished goods that are produced, traditional industry statistics aren’t useful for identifying it.
    [Show full text]
  • Green Automotive Company (OTCQB: GACR)
    GREEN AUTOMOTIVEALL TREETCOMPANYESEARCH.ORG www.thegreenautomotivecompany.com JanuaryJanuary 10, 2014 W S R www.WallStreetResearch.org NEW YORK, NY LOS ANGELES, CA PALM BEACH, FL INITIATING COVERAGE Green Automotive Company (OTCQB: GACR) Green Automotive Company, CURRENT PRICE: $0.13 headquartered in Riverside, CA, is a 52-WEEK RANGE: $0.105 - 0.45 vertically-integrated specialty vehicle AVG DAILY VOLUME (90-DAY): 149,335 design, engineering, manufacturing and OUTSTANDING SHARES: 396.1 million sales company focusing on low and zero emission technology solutions MARKET CAPITALIZATION: $51.5 million primarily for the emerging regular-route back-to-base electric vehicle (EV) markets throughout the US and Europe. INCOME STATEMENT HIGHLIGHTS REVENUE: $1.7 million Through Newport Coachworks, Inc., a wholly-owned subsidiary with a GROSS PROFIT: $540.2 thousand 20,000 sq. ft. production and assembly plant in Riverside, CA, the company EBITDA: ($1.6 million)* currently manufactures high-quality conventional-fuel shuttle and limousine NET INCOME: ($1.5 million)* buses, fulfilling an approximately $20 million 432-vehicle order by Don Brown Bus Sales, Inc., one of North America’s leading bus distributors. All figures for nine months ended September 30, 2013 Through its wholly-owned United Kingdom based subsidiary, Liberty Electric BALANCE SHEET HIGHLIGHTS Cars Ltd, the company designs and develops next-generation electric drive CASH: $62.2 thousand train technologies and other proprietary modules for in-house EV production WORKING CAPITAL: ($2.2 million)* and potential sales to OEMs. Leveraging several decades of combined EV TOTAL ASSETS: $2.3 million experience of its UK engineering team, the company is developing an all- LONG TERM DEBT: $631.0 thousand electric shuttle bus to be produced in Riverside, CA and introduced for the NET WORTH: ($51.1 million) regular-route, intra-city transit markets in the US and Europe in February 2014.
    [Show full text]
  • Key Barriers Affecting E-Truck Adoption, Industry and Policy Implications, and Recommendations to Move the Market Forward
    World Electric Vehicle Journal Vol. 8 - ISSN 2032-6653 - ©2016 WEVA Page WEVJ8-0657 EVS29 Symposium Montréal, Québec, Canada, June 19-22, 2016 2015 E-Truck Task Force: Key Barriers Affecting E-Truck Adoption, Industry and Policy Implications, and Recommendations to Move the Market Forward Tom Brotherton1, Alycia Gilde, Jasna Tomic 1CALSTART, 48 S Chester Ave, Pasadena, CA 91106, [email protected] Summary CALSTART’s E-Truck Task Force (ETTF) produced a report outlining the markets for electric drive trucks (E-Trucks), the prime barriers facing their success and provided key findings and recommendations to support expanding E-Truck adoption. Four key findings have been identified by the E-Truck Task Force as barriers currently affecting the growth and viability of E-Truck sales; 1) high incremental cost, 2) poor vehicle quality and support from supplier(s), 3) unexpected costs and energy planning with infrastructure, and 4) reduced operation in extreme climates. The E-Truck Task Force developed a set of action-oriented recommendations for overcoming each barrier. 1. E-Truck Task Force Background 1.1 Key Findings from 2012 E-TTF Report CALSTART’s E-Truck Task Force (E-TTF) was originally created in 2011 to help understand, support and expand the production and successful deployment and use of plug-in electric trucks and buses. CALSTART published E-Truck Task Force Findings and Recommendations in 2012 based on a year-long research and industry engagement process. In that report CALSTART outlined the best use profiles for successful E-Truck deployment, provided a business case calculator for fleets, highlighted early adopter user experience, developed an infrastructure planning guide, and then established industry recommendations of actions required to speed market success.
    [Show full text]
  • Joining Forces an Electric Motor/Generator and Batter- Ies
    HYBRID TECHNOLOGY Eaton’s parallel electric hybrid system. The vehicle’s diesel engine is coupled with Joining forces an electric motor/generator and batter- ies. It maintains a conventional drive- train architecture, such as Eaton’s Fuller UltraShift automated transmission, while A look at the work being done by OEMs and adding the ability to augment engine component suppliers to bring hydraulic and torque with electrical torque (Eaton photo). electric hybrid technology to on-highway trucks. are an inevitable by-product of burning by Michelle EauClaire hydrocarbon fuel. s a consumer, you can make fuel prices for nearly all of the vehicles used changes to your daily lifestyle in these applications is to improve their Electric and hydraulic Ain order to counteract the efficiency, and the best technology avail- There are two different kinds of effects of the rising fuel prices. Those able to do that today is hybrid technology. hybrids, electric and hydraulic. Electric options, however, don’t suit the obli- A hybrid powertrain system reduces hybrids more easily support other on- gations of commercial vehicle users. fuel consumption by blending the power board electronics and have a high energy Refuse has to be picked up, parcels generated by the internal combustion density — best suited to applications that need to be delivered, and the whole engine with power from other stored have a lot of cruising time because they scope of other services still need to be sources of energy on board. And of course, can support longer engine-off operation. provided, regardless of fuel prices. when you reduce fuel consumption, you Electric power is generated by the die- The only practical response to rising also reduce the polluting emissions that sel engine and through regenerative brak- 40 ■ OEM Off-Highway ■ March 2008 ing, which recovers power which would Glenn R.
    [Show full text]
  • Heavy-Duty Hybrid Vehicles – Technology Assessment
    September 2, 2014 Sacramento, California 1 Background Technologies Evaluated Key Performance Parameters/Performance Goals Costs/Economics Conclusions Contacts 2 Heavy-duty Hybrids In California Today 3 Over 1,800 heavy duty hybrid vehicles in CA* Fuel Economy: Driver for hybrids Primarily Hybrid Electric Vehicles (HEV); More Recently Hydraulic Hybrid Vehicles (HHV) and Plug-in Hybrid Electric Vehicles (PHEV) Industry Manufacturers . Vehicle OEMs: Daimler, Freightliner, Hino, Kenworth, Mack, Volvo, Navistar, PACCAR, Peterbilt . Powertrain: Allison, Azure Dynamics, BAE, Eaton, Enova, Hino, Odyne, Parker Hannifin, Volvo Hybrid Technologies . Catalyst technology towards zero-emission HDVs . Improve technology/reduce costs . Market size/vehicle penetration . CO2 and NOx emissions/Certification *Data from HVIP and Transit Fleet Rule reporting database 4 Types of Hybrids, Common Elements 5 Mild Hybrid and Full Hybrid Series, Parallel & Series-Parallel Hybrids HEV HHV PHEV Micro-turbine Hybrids Catenary Hybrids 6 Mild Hybrid . Limited hybrid utilization . Engine start/stop . Regenerative braking Full Hybrid . More extensive integration . Electric motor used as tractive power source (full or partial) . Power vehicle electrical accessories . Larger battery packs . Engine start/stop . Regenerative braking 7 Both the internal combustion engine (ICE) and the electric motor have direct, independent connections to the transmission Either power source –or both together-can be used to turn the vehicle’s wheels Smaller battery pack
    [Show full text]
  • Plug-In Hybrid Electric Vehicle Value Proposition Study
    DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Web site: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • Sizing and Fuel Consumption Evaluation Methodology for Hybrid Light Duty Vehicles
    World Electric Vehicle Journal Vol. 4 - ISSN 2032-6653 - © 2010 WEVA Page000249 EVS25 Shenzhen, China, Nov 5-9, 2010 Sizing and fuel consumption evaluation methodology for hybrid light duty vehicles Nicolas Marc1,3, Eric Prada1, Antonio Sciarretta2, Shadab Anwer1, Franck Vangraefschepe2, François Badin1, Alain Charlet3, Pascal Higelin3 1 IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France ([email protected]) 2 IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France 3 PRISME/EPM, Université d'Orléans, 8 rue Léonard de Vinci, 45072 Orléans Cedex 2, France Abstract This paper presents a methodology dedicated to component sizing and fuel consumption evaluation of different degree of hybridization for light duty vehicles applications. The methodology will be described together with vehicle and components simulation and sizing principles. To ensure a systematic approach, with no bias for any of the cases considered, the energy management of the hybrid drivetrain will be carried out thanks to an optimization based on the Pontryagin's Minimum Principle. As hybrid fuel consumption is highly dependant on vehicle type of use, the hybrid vehicles will be evaluated on different actual use driving patterns as well as on missions representing the daily usage of the vehicle. The methodology and a panel of results are presented in the paper. Keywords: HEV, plug-in HEV, components sizing, energy consumption, simulation, optimized energy management 1 Introduction of map representations of the differently sized components (battery, electric HEVs are complex systems in which many machine, IC engine, etc.); parameters could impact the fuel economy potential and it appears that car and component 2.
    [Show full text]