Viability Report Builder - SIG: 002 - SIGARCH to Add Data to the Fields, Please Select from the Options in the Navigation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Architectures for Adaptive Low-Power Embedded Multimedia Systems
Architectures for Adaptive Low-Power Embedded Multimedia Systems zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften der Fakultät für Informatik Karlsruhe Institute of Technology (KIT) (The cooperation of the Universität Fridericiana zu Karlsruhe (TH) and the national research center of the Helmholtz-Gemeinschaft) genehmigte Dissertation von Muhammad Shafique Tag der mündlichen Prüfung: 31.01.2011 Referent: Prof. Dr.-Ing. Jörg Henkel, Karlsruhe Institute of Technology (KIT), Fakultät für Informatik, Lehrstuhl für Eingebettete Systeme (CES) Korreferent: Prof. Dr. Samarjit Chakraborty, Technische Universität München (TUM), Fakultät für Elektrotechnik und Informationtechnik, Lehrstuhl für Realzeit- Computersysteme (RCS) Muhammad Shafique Adlerstr. 3a 76133 Karlsruhe Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. ____________________________________ Muhammad Shafique Acknowledgements I would like to present my cordial gratitude to my advisor Prof. Dr. Jörg Henkel for his erudite and invaluable supervision with sustained inspirations and incessant motivation. He guided me to explore the challenging research problems while giving me the complete flexibility, which provided the rationale to unleash my ingenuity and creativity along with an in-depth exploration of various research issues. His encouragement and meticulous feedback wrapped in constructive criticism helped me to keep the impetus and to remain streamlined on the road of research that resulted in the triumphant completion of this work. -
PROFESSIONAL ACTIVITIES – Nam Ling
PROFESSIONAL ACTIVITIES – Nam Ling (1) MAJOR PROFESSIONAL LEADERSHIP POSITIONS: 1. General Co-Chair, 12th International Conference on Ubi-Media Computing (Umedia), Bali, Indonesia, August 6-9, 2019. 2. General Co-Chair, 4th International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec), Santa Clara, California, U.S.A, December 10-11, 2018. 3. General Co-Chair, 11th International Conference on Ubi-Media Computing (Umedia), Nanjing, China, August 22 – 25, 2018. 4. Honorary Co-Chair, 10th International Conference on Ubi-Media Computing and Workshops (Umedia), Pattaya, Thailand, August 1 - 4, 2017. 5. General Co-Chair, 9th International Conference on Ubi-Media Computing (Umedia), Moscow, Russia, August 15 - 17, 2016. 6. General Chair, 2015 IEEE Workshop on Signal Processing Systems (SiPS), Hangzhou, China, October 14 - 16, 2015. 7. General Co-Chair, 8th International Conference on Ubi-Media Computing (Umedia), Colombo, Sri Lanka, August 24 – 25, 2015. 8. General Co-Chair, 7th International Conference on Ubi-Media Computing (Umedia), Ulaanbaatar, Mongolia, July 12 – 14, 2014. 9. General Co-Chair, 2nd International Workshop on Video Coding and Video Processing (VCVP), Shenzhen, China, January 21 – 23, 2014. 10. Technical Program Co-Chair, 2013 IEEE Visual Communications and Image Processing Conference (VCIP), Kuching, Sarawak, Malaysia, November 17 - 20, 2013. 11. General Chair, 2013 IEEE International Conference on Multimedia and Expo (ICME), San Jose, California, USA, July 15 – 19, 2013. (ICME is the flagship conference on multimedia research for the IEEE and is sponsored by four of the largest IEEE societies – Computer, Communications, Signal Processing, and Circuits and Systems.) 12. Technical Program Co-Chair, 2010 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Singapore, December 14 – 17, 2010. -
Lillian C. Pentecost Lillian [email protected] (732) 533-9504
Lillian C. Pentecost lillian [email protected] (732) 533-9504 EDUCATION Harvard University Cambridge, MA Ph.D. in Computer Science Projected May 2022 Advisors: David Brooks and Gu-Yeon Wei Harvard University Cambridge, MA S.M. (masters in passing) in Computer Science May 2019 Coursework includes: Advanced Machine Learning, Advanced Computer Architecture, Data Visualization, Seminar in Teaching the History of Science and Technology, Algorithms at the End of the Wire, Critical Pedagogy Seminar Colgate University Hamilton, NY Bachelor of Arts May 2016 Double Major: Computer Science and Physics with High Honors GPAs: Cumulative: 3.95/4.00, Physics: 4.03/4.00, Computer Science: 4.05/4.00 RESEARCH EXPERIENCE Harvard University Cambridge, MA Ph.D. Candidate August 2016 - Present Investigating and enabling the design and optimization of memory systems, including inte- gration of emerging and embedded non-volatile memory technologies and specialized hard- ware for machine learning applications, with an emphasis on understanding resilience and evaluating system and application-level implications of technology design choices. NVIDIA Research Westford, MA Ph.D. Research Intern Summer 2020 Conducted design space exploration of memory architecture and floorplanning choices with intensive analysis of efficient workload mappings for highly-distributed on-chip memory by building upon existing, open-source evaluation frameworks. (Virtual internship conducted from Boston, MA, collaborating with NVIDIA Architecture Research Group.) Microsoft Research Redmond, WA Ph.D. Research Intern Summer 2018 Profiled and analyzed deep neural network performance on a variety of hardware platforms with an emphasis on transformer-based models for translation, in addition to surveying and evaluating the state of available profiling tools across several popular ML frameworks, as part of a collaborative project between Microsoft Research and the Silicon, AI, and Performance group under Azure. -
Newsletter-202009.Pdf
1 September 2020, Vol. 50, No. 9 Online archive: http://www.sigda.org/publications/newsletter 1. SIGDA News From: Xiang Chen <[email protected]> 2. SIGDA Local Chapter News From: Yanzhi Wang <[email protected]> 3. "What is" Column Contributing author: Cong (Callie) Hao <[email protected]> From: Xun Jiao <[email protected]> 4. Paper Submission Deadlines From: Xin Zhao <[email protected]> 5. Upcoming Conferences and Symposia From: Xin Zhao <[email protected]> 6. SIGDA Partner Journal From: Matthew Morrison <[email protected]> From: Deming Chen <[email protected]> 7. Call for Nomination -- ACM TCPS EiC From: Krithi Ramamritham <[email protected]> 8. Technical Activities From: Ying Wang <[email protected]> 9. Notice to Authors Comments from the Editors Dear ACM/SIGDA members, We are excited to present to you the September e-newsletter. We encourage you to invite your students and colleagues to be a part of the SIGDA newsletter. The newsletter covers a wide range of information from the upcoming conferences and hot research topics to technical news and activities from our community. From this month, we add a new column titled "SIGDA Partner Journal" where we will introduce the dynamics of SIGDA related journals. For this month, we are introducing the new editorial board of ACM TODAES and announcing a new partnership between SIGDA and ACM TRETS. Get involved and contact us if you want to contribute an article or announcement. The newsletter is evolving, let us know what you think. Happy reading! Debjit Sinha, Keni Qiu, Editors-in-Chief, SIGDA E-News To renew your ACM SIGDA membership, please visit http://www.acm.org/renew or call between the hours of 8:30am to 4:30pm EST at +1-212-626-0500 (Global), or 1-800-342-6626 (US and Canada). -
Shanlu › About › Cv › CV Shanlu.Pdf Shan Lu
Shan Lu University of Chicago, Dept. of Computer Science Phone: +1-773-702-3184 5730 S. Ellis Ave., Rm 343 E-mail: [email protected] Chicago, IL 60637 USA Homepage: http://people.cs.uchicago.edu/~shanlu RESEARCH INTERESTS Tool support for improving the correctness and efficiency of large scale software systems EMPLOYMENT 2019 – present Professor, Dept. of Computer Science, University of Chicago 2014 – 2019 Associate Professor, Dept. of Computer Sciences, University of Chicago 2009 – 2014 Assistant Professor, Dept. of Computer Sciences, University of Wisconsin – Madison EDUCATION 2008 University of Illinois at Urbana-Champaign, Urbana, IL Ph.D. in Computer Science Thesis: Understanding, Detecting, and Exposing Concurrency Bugs (Advisor: Prof. Yuanyuan Zhou) 2003 University of Science & Technology of China, Hefei, China B.S. in Computer Science HONORS AND AWARDS 2019 ACM Distinguished Member Among 62 members world-wide recognized for outstanding contributions to the computing field 2015 Google Faculty Research Award 2014 Alfred P. Sloan Research Fellow Among 126 “early-career scholars (who) represent the most promising scientific researchers working today” 2013 Distinguished Alumni Educator Award Among 3 awardees selected by Department of Computer Science, University of Illinois 2010 NSF Career Award 2021 Honorable Mention Award @ CHI for paper [C71] (CHI 2021) 2019 Best Paper Award @ SOSP for paper [C62] (SOSP 2019) 2019 ACM SIGSOFT Distinguished Paper Award @ ICSE for paper [C58] (ICSE 2019) 2017 Google Scholar Classic Paper Award for -
Software Engineering 0835
Software Engineering 0835 1. Objectives In order to cultivate top creative talents in the field of software engineering, this discipline is designed to help students develop awareness of innovation and innovation capacity. Focusing on relevant software engineering research, students are expected to master the solid and broad basic theory and in-depth expertise and to achieve innovative research results. Doctoral students in this field should have a rigorous scientific attitude, good scientific style and scientific ethics, a wide range of disciplinary perspectives, a pioneering spirit and the overall quality for independently conducting scientific research. 2. Length of Study Period Postgraduate classification Normal length of study period Length of study period 4 years full-time 3 to 5 years full-time Doctoral students or 5 years part-time or 5 to 7 years part-time Direct Doctoral students I 5 years full-time 5 to 7 years full-time Direct Doctoral students II 6 years full-time 5 to 7 years full-time Notes: (1) Direct Doctoral students I: Doctoral students pursuing a doctoral degree directly from a bachelor degree (2) Direct Doctoral students II: Doctoral students of successive postgraduate and doctoral programs of study without a master degree 3. Research Areas (1) Software engineering theory and methods (2) Embedded computing and the Internet of Things (3) Digital media technologies (4) Trustworthy software (5) Computer and network security 4. Curriculums and Credits 4.1 Doctoral students (14 Credits or above) Course Classification Course -
A ACM Transactions on Trans. 1553 TITLE ABBR ISSN ACM Computing Surveys ACM Comput. Surv. 0360‐0300 ACM Journal
ACM - zoznam titulov (2016 - 2019) CONTENT TYPE TITLE ABBR ISSN Journals ACM Computing Surveys ACM Comput. Surv. 0360‐0300 Journals ACM Journal of Computer Documentation ACM J. Comput. Doc. 1527‐6805 Journals ACM Journal on Emerging Technologies in Computing Systems J. Emerg. Technol. Comput. Syst. 1550‐4832 Journals Journal of Data and Information Quality J. Data and Information Quality 1936‐1955 Journals Journal of Experimental Algorithmics J. Exp. Algorithmics 1084‐6654 Journals Journal of the ACM J. ACM 0004‐5411 Journals Journal on Computing and Cultural Heritage J. Comput. Cult. Herit. 1556‐4673 Journals Journal on Educational Resources in Computing J. Educ. Resour. Comput. 1531‐4278 Transactions ACM Letters on Programming Languages and Systems ACM Lett. Program. Lang. Syst. 1057‐4514 Transactions ACM Transactions on Accessible Computing ACM Trans. Access. Comput. 1936‐7228 Transactions ACM Transactions on Algorithms ACM Trans. Algorithms 1549‐6325 Transactions ACM Transactions on Applied Perception ACM Trans. Appl. Percept. 1544‐3558 Transactions ACM Transactions on Architecture and Code Optimization ACM Trans. Archit. Code Optim. 1544‐3566 Transactions ACM Transactions on Asian Language Information Processing 1530‐0226 Transactions ACM Transactions on Asian and Low‐Resource Language Information Proce ACM Trans. Asian Low‐Resour. Lang. Inf. Process. 2375‐4699 Transactions ACM Transactions on Autonomous and Adaptive Systems ACM Trans. Auton. Adapt. Syst. 1556‐4665 Transactions ACM Transactions on Computation Theory ACM Trans. Comput. Theory 1942‐3454 Transactions ACM Transactions on Computational Logic ACM Trans. Comput. Logic 1529‐3785 Transactions ACM Transactions on Computer Systems ACM Trans. Comput. Syst. 0734‐2071 Transactions ACM Transactions on Computer‐Human Interaction ACM Trans. -
Thomas E. Anderson
Thomas E. Anderson November 2015 Personal Born in Orlando, Florida, August 28, 1961. Work Address: Home Address: 646 Allen Center 1201 18th Ave. E. Department of Computer Science and Engineering Seattle, WA 98112 University of Washington (206) 568{0230 Seattle, WA 98112 (206) 543-9348 [email protected] Research Operating systems, cloud computing, computer networks, computer security, local and Interests wide area distributed systems, high performance computer and router architectures, and education software, with a focus on the construction of robust, secure, and efficient computer systems. Education Ph.D. in Computer Science, 1991, University of Washington. Dissertation Title: Operating System Support for High Performance Multiprocessing, supervised by Profs. E.D. Lazowska and H.M. Levy. M.S. in Computer Science, 1989, University of Washington. A.B. cum laude in Philosophy, 1983, Harvard University. Professional Department of Computer Science and Engineering, University of Washington. Experience Warren Francis and Wilma Kolm Bradley Chair of Computer Science and Engineering, 2009 { present. Visiting Professor, Eidgenossische Technische Hoschschule Zurich (ETHZ), 2009. Department of Computer Science and Engineering, University of Washington. Professor, 2001 { 2009. Department of Computer Science and Engineering, University of Washington. Associate Professor, 1997 { 2001. Founder and Interim CEO/CTO, Asta Networks, 2000 - 2001 (on leave from UW). Computer Science Division, University of California, Berkeley. Associate Professor, 1996 { 1997. Computer Science Division, University of California, Berkeley. Assistant Professor, 1991 { 1996. Digital Equipment Corporation Systems Research Center. Research Intern, Fall, 1990. Thomas E. Anderson - 2 - November 2015 Awards USENIX Lifetime Achievement Award, 2014. USENIX Software Tools User Group Award (for PlanetLab), 2014. IEEE Koji Kobayashi Computers and Communications Award, 2012. -
AI Chips: What They Are and Why They Matter
APRIL 2020 AI Chips: What They Are and Why They Matter An AI Chips Reference AUTHORS Saif M. Khan Alexander Mann Table of Contents Introduction and Summary 3 The Laws of Chip Innovation 7 Transistor Shrinkage: Moore’s Law 7 Efficiency and Speed Improvements 8 Increasing Transistor Density Unlocks Improved Designs for Efficiency and Speed 9 Transistor Design is Reaching Fundamental Size Limits 10 The Slowing of Moore’s Law and the Decline of General-Purpose Chips 10 The Economies of Scale of General-Purpose Chips 10 Costs are Increasing Faster than the Semiconductor Market 11 The Semiconductor Industry’s Growth Rate is Unlikely to Increase 14 Chip Improvements as Moore’s Law Slows 15 Transistor Improvements Continue, but are Slowing 16 Improved Transistor Density Enables Specialization 18 The AI Chip Zoo 19 AI Chip Types 20 AI Chip Benchmarks 22 The Value of State-of-the-Art AI Chips 23 The Efficiency of State-of-the-Art AI Chips Translates into Cost-Effectiveness 23 Compute-Intensive AI Algorithms are Bottlenecked by Chip Costs and Speed 26 U.S. and Chinese AI Chips and Implications for National Competitiveness 27 Appendix A: Basics of Semiconductors and Chips 31 Appendix B: How AI Chips Work 33 Parallel Computing 33 Low-Precision Computing 34 Memory Optimization 35 Domain-Specific Languages 36 Appendix C: AI Chip Benchmarking Studies 37 Appendix D: Chip Economics Model 39 Chip Transistor Density, Design Costs, and Energy Costs 40 Foundry, Assembly, Test and Packaging Costs 41 Acknowledgments 44 Center for Security and Emerging Technology | 2 Introduction and Summary Artificial intelligence will play an important role in national and international security in the years to come. -
ACM JOURNALS S.No. TITLE PUBLICATION RANGE :STARTS PUBLICATION RANGE: LATEST URL 1. ACM Computing Surveys Volume 1 Issue 1
ACM JOURNALS S.No. TITLE PUBLICATION RANGE :STARTS PUBLICATION RANGE: LATEST URL 1. ACM Computing Surveys Volume 1 Issue 1 (March 1969) Volume 49 Issue 3 (October 2016) http://dl.acm.org/citation.cfm?id=J204 Volume 24 Issue 1 (Feb. 1, 2. ACM Journal of Computer Documentation Volume 26 Issue 4 (November 2002) http://dl.acm.org/citation.cfm?id=J24 2000) ACM Journal on Emerging Technologies in 3. Volume 1 Issue 1 (April 2005) Volume 13 Issue 2 (October 2016) http://dl.acm.org/citation.cfm?id=J967 Computing Systems 4. Journal of Data and Information Quality Volume 1 Issue 1 (June 2009) Volume 8 Issue 1 (October 2016) http://dl.acm.org/citation.cfm?id=J1191 Journal on Educational Resources in Volume 1 Issue 1es (March 5. Volume 16 Issue 2 (March 2016) http://dl.acm.org/citation.cfm?id=J814 Computing 2001) 6. Journal of Experimental Algorithmics Volume 1 (1996) Volume 21 (2016) http://dl.acm.org/citation.cfm?id=J430 7. Journal of the ACM Volume 1 Issue 1 (Jan. 1954) Volume 63 Issue 4 (October 2016) http://dl.acm.org/citation.cfm?id=J401 8. Journal on Computing and Cultural Heritage Volume 1 Issue 1 (June 2008) Volume 9 Issue 3 (October 2016) http://dl.acm.org/citation.cfm?id=J1157 ACM Letters on Programming Languages Volume 2 Issue 1-4 9. Volume 1 Issue 1 (March 1992) http://dl.acm.org/citation.cfm?id=J513 and Systems (March–Dec. 1993) 10. ACM Transactions on Accessible Computing Volume 1 Issue 1 (May 2008) Volume 9 Issue 1 (October 2016) http://dl.acm.org/citation.cfm?id=J1156 11. -
Tushar Krishna
Tushar Krishna 266 Ferst Drive • School of Electrical and Computer Engineering • Atlanta, GA 30332, USA PHONE (+1) 206 601 6213 • E-MAIL [email protected] • WEB http://tusharkrishna.ece.gatech.edu ……………………...…………………….…………………….…………………….…………………….…………………….………………………………...………… RESEARCH INTERESTS Computer Architecture: multicore, parallel, heterogeneous, spatial, AI/ML accelerators Interconnection Networks: Networks-on-Chip, HPC switches, data-centers, FPGA networks ……………………...…………………….…………………….…………………….…………………….…………………….………………………………...………… EDUCATION Feb 2014 Massachusetts Institute of Technology Ph.D. in Electrical Engineering and Computer Science • Advisor: Li-Shiuan Peh • Committee: Srinivas Devadas and Joel Emer • Thesis: “Enabling Dedicated Single-Cycle Connections Over A Shared Network-on-Chip” Sep 2009 Princeton University M.S.E. in Electrical Engineering • Advisor: Li-Shiuan Peh • Thesis: “Networks-on-Chip with Hybrid Interconnects” Aug 2007 Indian Institute of Technology (IIT), Delhi B.Tech. (Honors) in Electrical Engineering ……………………...…………………….…………………….…………………….…………………….…………………….………………………………...………… PROFESSIONAL APPOINTMENTS Sept’19 -- Georgia Institute of Technology, Atlanta, GA, USA present ON Semiconductor Professor (Endowed Junior Professorship) School of Electrical and Computer Engineering Aug ’15 – Georgia Institute of Technology, Atlanta, GA, USA present Assistant Professor School of Electrical and Computer Engineering. School of Computer Science (Adjunct). Jan ’15 – Jul ‘15 Massachusetts Institute of Technology, SMART Center, -
FCRC 2011 June 4 - 11, San Jose, CA TIMELINE SCHEDULE
FCRC 2011 June 4 - 11, San Jose, CA TIMELINE SCHEDULE Sponsored by Corporate Support Provided by Gold Silver CONFERENCE/WORKSHOP/EVENT ACRONYMS & DATES Dates Full Name Dates Full Name 3DAPAS 8 A Workshop on Dynamic Distrib. Data-Intensive Applications, Programming Abstractions, & Systs (HPDC) IWQoS 6--7 Int. Workshop on Quality of Service (ACM SIGMETRICS and IEEE Communications Society) A4MMC 4 Applications fo Multi and Many Core Processors: Analysis, Implementation, and Performance (ISCA) LSAP 8 P Workshop on Large-Scale System and Application Performance (HPDC) AdAuct 5 Ad Auction Workshop (EC) MAMA 8 Workshop on Mathematical Performance Modeling and Analysis (METRICS) AMAS-BT 4 P Workship on Architectural and Microarchitectural Support for Binary Translation (ISCA) METRICS 7--11 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems BMD 5 Workshop on Bayesian Mechanism Design (EC) MoBS 5 A Workshop on Modeling, Benchmarking, and Simulation (ISCA) CARD 5 P Workshop on Computer Architecture Research Directions (ISCA) MRA 8 Int. Workshop on MapReduce and its Applications (HPDC) CBP 4 P JILP Workshop on Computer Architecture Competitions: Championship Branch Prediction (ISCA) MSPC 5 Memory Systems Performance and Correctness (PLDI) Complex 8--10 IEEE Conference on Computational Complexity (IEEE TCMFC) NDCA 5 A New Directions in Computer Architecture (ISCA) CRA-W 4--5 CRA-W Career Mentoring Workshop NetEcon 6 Workshop on the Economics of Networks, Systems, and Computation (EC) DIDC 8 P Int. Workshop on Data-Intensive Distributed Computing (HPDC) PLAS 5 Programming Languages and Analysis for Security Workshop (PLDI) EAMA 4 Workshop on Emerging Applications and Manycore Architectures (ISCA) PLDI 4--8 ACM SIGPLAN Conference on Programming Language Design and Implementation EC 5--9 ACM Conference on Electronic Commerce (ACM SIGECOM) PODC 6--8 ACM SIGACT-SIGOPT Symp.