Contributors to the Emerging Investigators Issue

Total Page:16

File Type:pdf, Size:1020Kb

Contributors to the Emerging Investigators Issue View Article Online / Journal Homepage / Table of Contents for this issue Analyst Dynamic Article LinksC< Cite this: Analyst, 2011, 136, 3406 www.rsc.org/analyst PROFILE Contributors to the Emerging Investigators Issue DOI: 10.1039/c1an90056k University of Illinois at Urbana-Cham- paign and is affiliated with the University’s Institute for Genomic Biology and Micro and Nanotechnology Laboratory. Ryan received his BS in Chemistry from Eastern Illinois University in 1999 and his PhD in Chemistry from Northwestern University in 2004, after which he was a joint post- doctoral fellow at the California Institute of Technology and Institute for Systems Biology. His research interests lie in the development of new multiparameter bio- logical analysis technologies for applica- Jeffrey Anker is an Assistant Professor of tions in informative disease diagnostics, Christa Brosseau is from Halifax, Nova Chemistry at Clemson with a BS in applied homeland security, and fundamental bio- Scotia. She attended Dalhousie University physics (Yale University, 1998), and PhD logical studies. (BSc) and Acadia University (MSc) before from the University of Michigan (2005). As goingontocompleteaPhDininterfacial a graduate student with Raoul Kopelman he electrochemistry and vibrational spectros- developed magnetically modulated optical copy under the supervision of Jacek Lip- nanoprobes (MagMOONs) for chemical kowski at the University of Guelph in and mechanical measurements. For this Ontario, Canada. She was a postdoctoral work, he received a Grand Prize at the 2003 fellow in the laboratory of Richard Van Published on 28 July 2011. Downloaded 30/10/2014 08:00:28. National Inventor’s Hall of Fame Collegiate Duyne, and worked towards the application Inventor’s Competition. Dr Anker was an of SERS analysis of paintings and textiles. NIH Ruth Kirschstein NSRA postdoctoral Christa is currently an assistant professor of research fellow under Richard Van Duyne chemistry at Saint Mary’s University in (Northwestern University), where he devel- Halifax, Nova Scotia, where her research oped real-time high-resolution plasmonic group focuses on the application of elec- nanosensors. Current research focuses on trochemical surface-enhanced vibrational developing novel nanosensors and imaging spectroscopy to varied systems ranging techniques for cell and tissue sensing. from biomembranes to ionic liquids. Perdita Barran is currently a Senior Lecturer in Biophysical Chemistry at the University of Edinburgh. She graduated from Manchester University with a degree in Chemistry with Industrial Experience (1994), and from Sussex University with a PhD in Chemical Physics (1998). She met Dek Woolfson at Sussex in 2000 and he suggested zinc fingers as a good target for IM-MS. After a postdoctoral appointment at UCSB, Perdita was awarded an EPSRC Advanced Research Fellowship which Ryan C. Bailey is an Assistant Professor allowed her to commence independent Christopher J. Easley earned his B.S. in in the Department of Chemistry at the research at Edinburgh University (2003). Chemistry (2002) at Mississippi State 3406 | Analyst, 2011, 136, 3406–3409 This journal is ª The Royal Society of Chemistry 2011 View Article Online University and his Ph.D. in Analytical Christy Haynes was an undergraduate at Chemistry (2006) from the University of Macalester College, a graduate student at Virginia. Dr. Easley’s postdoctoral work Northwestern University, and a post- (2006–2008) was conducted in the Molec- doctoral fellow at University of North ular Physiology and Biophysics Depart- Carolina, Chapel Hill – all in the field of ment at the Vanderbilt University Medical Chemistry. She currently mentors a group Center, after which he moved to Auburn of nine doctoral students and as many University as an Assistant Professor in the undergraduate researchers at the Univer- Chemistry and Biochemistry Department. sity of Minnesota where her group The Easley laboratory at Auburn is develops analytical techniques to explore focused on the development of microfluidic questions in immunology, toxicology, techniques for fundamental studies on and hematology while also keeping an murine islets and adipocytes, as well as the active materials chemistry effort. When development of aptamer- or antibody- not working, Christy does urban scav- based small-volume assays to complement enger hunts with her group members, these microfluidic systems. bakes, and plays with her 3 year old son. Department of Mechanical Engineering at University College London. His group has made several discoveries having signifi- cance to advanced bio-analysis and diag- nostics to tissue engineering and regenerative/therapeutic biology and medicine. These pioneering investigations are currently undergoing intense explora- tion for their possible exploitation in the clinic. Amanda J. Haes is currently an Assistant Professor in the Chemistry Department at Andrew Hudson received his training in the University of Iowa. She completed her molecular spectroscopy and dynamics in Ph.D. in Chemistry at Northwestern the group headed by John Polanyi at the Published on 28 July 2011. Downloaded 30/10/2014 08:00:28. University with Richard P. Van Duyne. University of Toronto, where he obtained Before beginning her independent career, his Ph.D. in 1998. This was followed by she was a National Research Council postdoctoral appointments in applied Research Associate with Greg E. Collins at science in chemistry and engineering the U.S. Naval Research Laboratory. Haes departments. He then took a role as group research activities include designing a senior scientist in a start-up company in and purifying novel nanomaterials for stable North America developing optical tech- spectroscopic studies, improving detection nologies for telecommunications and Andreu Llobera obtained his PhD in limits of biological and environmental medical diagnostics. He obtained an Physics from the Universitat Autonoma pathogens, and investigating how surface EPSRC Advanced Research Fellowship de Barcelona in 2002. Since 2009 he holds chemistry impacts nanomaterial function in in 2005, returning to academia at the a permanent position as researcher at the separations and spectroscopy. University of Bristol, before moving to IMB-CNM-CSIC. He has participated in a permanent position in the Department several research projects financed by the of Chemistry at the University Spanish Government and by the Euro- of Leicester. pean Community, has co-authored 65 Suwan N. Jayasinghe started his published articles, with a total of 384 academic career in the UK at Brunel citations and an h factor of twelve. He has University, where he received his first and contributed with 75 works to interna- second degrees in Mechanical Engineering. tional conferences. His research activities Subsequently he joined Queen Mary, include integrated optics devices, micro- University of London, where he studied opto-electro-mechanical systems Materials Sciences and earned his PhD. In (MOEMS) and lab-on-a-chip platforms. January 2005 he became an independent Finally, Dr Llobera was awarded with researcher at which time he instigated the a Starting Grant of the European BioPhysics Group, now based in the Research Council in 2008. This journal is ª The Royal Society of Chemistry 2011 Analyst, 2011, 136, 3406–3409 | 3407 View Article Online Director’s New Innovator Award, ONR Tech in 2007. Prof. Payne has received Young Investigator Award, IEEE Photonics many honors including an NIH Direc- Society Young Investigator Award, MIT’s tor’s New Innovator Award in 2009. TR35 Award, National Geographic Emerging Explorer Award, etc. Hajime Miyaguchi was born in Japan, in 1971. He received his BSc from Tokyo Institute of Technology in 1994 under the Brandon T. Ruotolo is currently an Assis- direction of Professor Yoshio Okahata, tant Professor in the Department of andhereceivedhisMScfromtheUniver- Dimitri Pappas is an Assistant Professor Chemistry, University of Michigan. He sity of Tokyo in 1996 under the direction of at Texas Tech University. He received his earned his PhD from Texas A&M Professor Shigeyuki Yokoyama. In 1997 he Ph.D. from the University of Florida in University in 2004 under the direction of joined the Saitama Prefectural Police 2002 and was a senior scientist at Johnson David H. Russell. He did his post- Headquarters. Since 2003 he joined the Space Center before assuming his faculty doctoral work at the University of Cam- National Research Institute of Police position. His students focus their atten- bridge with Carol V. Robinson, and was Science. He received his PhD in analytical tions on microfluidic and single-molecule awarded the first ever Waters Research chemistry from the University of Tokyo in spectroscopic assays for cell analysis. His Fellowship in 2008. He is the recipient of 2009 under the direction of Professor group works extensively in the areas of many other awards and honors, including Takehiko Kitamori. His research interests integrated cell analysis devices for the the 2011 ASMS Research Award. His are developing advanced and user-friendly study of cancer and heart disease. research is focused on both developing ion sample-preparation techniques for biolog- mobility- mass spectrometry as a tool for ical specimens. structural biology and understanding the influence of solvent on protein structure. Published on 28 July 2011. Downloaded 30/10/2014 08:00:28. Christine Payne earned an S.B. in Chem- istry from the University of Chicago Aydogan Ozcan received his Ph.D. degree at (1998) and a Ph.D.
Recommended publications
  • 35566 Annreport06 Txt 15-18
    02 pp15-18 students.qxp 24/11/06 12:54 Page 1 STUDENTS The student experience has always been characterised by transition, change and development – that’s what higher education is for. But as the landscape of education itself undergoes radical change, Bristol’s enterprising students continue to excel in their chosen fields and branch out into extra-curricular activities with energy and imagination. Postgrads rally to Mongolia Two Bristol postgraduates completed one of the most extreme car challenges in the world – the 8,000-mile Mongol Rally – in an old Volkswagen Polo. Dan Bailey (Department of Mathematics) and George Chapman (Department of Physics) covered a quarter of the Earth’s surface in a car with a one-litre Right: Key members of the Bristol/Havana engine, driving on roads ranging from bad to team.Top, l-r: Robert almost non-existent, with no support vehicles Cottrell, Hayley Sharp and obstacles including two deserts and five Jose Ernesto Gonzalez Hugo Baker. Bottom, mountain ranges. l-r: Ian Baggs, Alejandro Perez The Mongol Rally raises funds for two Malagon. Inset: Machinery inside a charities: ‘Send a Cow’, which provides poor pump house. farmers in Africa with livestock, training and advice; and ‘Save the Children in Mongolia’. Engineers without Borders Competitors’ cars must have an engine no bigger than 1,000cc. After completing the Four Bristol students flew out to Havana in rally in 27 days, Dan and George arrived in July in a bid to improve the Cuban capital’s Ulaan Bataar, where they donated their car to water supplies. The Engineers Without Save the Children in Mongolia.
    [Show full text]
  • INAUGURAL SCN MEETING 24 – 25 March 2009
    INAUGURAL SCN MEETING 24 – 25 March 2009 Coombe Lodge, Bristol Dear Network Member, First of all, welcome to Coombe Lodge, and welcome to the Inaugural Meeting of the Synthetic Components Network (SCN). The SCN is one of seven Reseach Council-funded Networks in Synthetic Biology. Synthetic biology is one of the BBSRC’s ten new research priorities and is signposted at EPSRC. The Research Council’s aims in setting up the Networks include: to engender a culture of taking a synthetic-biology approach in biological sciences and engineering in the UK; to grow a UK community in synthetic biology; and to help define* what is new and emerging research area, with many interested parties from a broad collection of disciplines. *Though, like many, we feel that keeping this definition as loose and broad as possible may be the best and healthiest option. As stated in our original proposal for the SCN, in broad terms its scientific aim is ‘…to address the challenge of creating new biological and biomimetic systems by combining de novo designed molecular components, pared-down biological moieties and engineering-design principles to build self-organising, functional biomolecular systems’. Now that we are gathered together for the first time, some of the things that we should address are: is this aim appropriate and tractable, and can we better-define what we would like to achieve through the Network? In considering this, however, in some respects this a discussion exercise because we do not have funds for research as such, though we hope sincerely that major grant applications will emerge from it.
    [Show full text]
  • BBSRC Support for Industrial Biotechnology and Bioenergy
    BBSRC support for Industrial Biotechnology and Bioenergy Dr Colin Miles What is UK Research and Innovation (UKRI) ? • UKRI is the new funding organisation for research and innovation in the UK. • UK Research and Innovation launched in April 2018. • UKRI comprises seven UK research councils, Innovate UK and a new organisation, Research England, working closely with its partners in the devolved administrations UKRI Strategic Prospectus : Objectives UKRI objectives: − Pushing the frontiers of human knowledge − Delivering economic impact and prosperity − Creating social and cultural impact − Providing the best foundation and environment for research and innovation − Delivering and being accountable as an outstanding organisation What does BBSRC do ? Invests in world- Invests in class bioscience bioscience training research in UK & skills for the next Universities & generation of Institutes bioscientists Drives the widest possible social & Promotes public economic impact dialogue on from our bioscience bioscience BBSRC Forward Look for UK Bioscience Advancing the frontiers of bioscience discovery Understanding Transformative the rules of life technologies Tackling strategic challenges Bioscience for Bioscience for Bioscience for renewable an integrated sustainable resources and understanding agriculture and food clean growth of health Building strong foundations Collaboration, People Infrastructure partnerships and talent and KE BBSRC Vision and Strategy: IBBE (2013-16) VISION: UK bioscience research delivering new products and processes for
    [Show full text]
  • The 7Th Alpbach Workshop On: COILED-COIL, FIBROUS
    The 7The 7th Ath Alpbach Workshop on: lpbach Workshop on: COILEDCOILED--COILCOIL, , FIBROUS FIBROUS & & REPEAT REPEAT COILED-COIL, FIBROUS & REPEAT PROTEINSPROTEINS At The Romantikhotel BöglerhofAt The Romantikhotel Böglerhof, Alpbach, Austria, Alpbach, Austria, Alpbach, Austria Sunday Sunday 3rd 3rd September– Friday September– Friday 8th 8th September September 20172017 7th Alpbach Workshop on: Coiled-coil, fibrous and repeat proteins SUNDAY SEPTEMBER 3 Arrivals, Reception and Dinner MONDAY SEPTEMBER 4 09:00 – 10:40 New developments in coiled coils (Andrei Lupas) Andrei Lupas (MPI Tübingen) - Coiled coils - between structure and unstructure Partho Ghosh (UC San Diego) - Functional essential instability in the M protein coiled coil Marcus Jahnel (MPI Dresden) - Coiled-coils as molecular motors: multistable polymer engines Jeni Lauer (MPI Dresden) - Structural Dynamics of the Rab5- Modulated Coiled-Coil Protein EEA1 Revealed by Hydrogen- Deuterium Exchange Mass Spectrometry 10:40 – 11:10 Tea break 11:10 – 12:30 Of α-fibers and β-fibers (Andrei Lupas) Birte Hernandez Alvarez (MPI Tübingen) - α/β-coiled coils Antoine Schramm (Marseille) - Characterization of measles virus phosphoprotein: A coiled-coil domain containing conserved motifs that are crucial for its function Michelle Peckham (Leeds) - Stable single α helices that do not form coiled coils - what makes them stable? 12:30 - Lunch Afternoon free 17:00 – 17:50 Flash Presentations for Posters 17:50 – 18:30 Posters 18:30 – 20:00 Dinner 20:00 – 21:40 Coiled coils at the membrane (Alexander
    [Show full text]
  • Appendices Emerging Biotechnologies
    Appendices Emerging biotechnologies Appendix 1: Method of working Background The Nuffield Council on Bioethics established the Working Party on ‗Emerging biotechnologies‘ in January 2011. The Working Party met eleven times over a period of 18 months. In order to inform its deliberations, it held an open consultation and a series of 'fact-finding‘ meetings with external stakeholders and invited experts. It also commissioned two reports on topics relevant to the work of the project and received comments on a draft of the Report from 12 external reviewers. Further details of each of these aspects of the Working Party‘s work are given below and in Appendix 2. The Working Party would like to express its gratitude to all those involved for the invaluable contribution they made to the development of the final Report. Consultation document The Working Party launched a consultation in April 2011, which ran until July 2011. 84 responses were received, of which 48 were submitted by individuals and 36 on behalf of organisations. Those responding to the consultation included students, academics, faith groups and professional organisations. A full list of those responding is set out in Appendix 2. A summary of the responses is available on the Council‘s website. Copies of individual responses will also be made available on the website in those instances where the Council has permission from respondents to do so. Fact-finding As part of its work, the Working Party held a series of 'fact-finding‘ meetings, the details of which can be found below. (Details
    [Show full text]
  • Electronic Control of Protein Interactions Mark Anthony Sellick
    1 Electronic Control of Protein Interactions Mark Anthony Sellick Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Centre for Doctoral Training in Molecular-Scale Engineering School of Electronic and Electrical Engineering September 2016 2 3 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2016 The University of Leeds and Mark Anthony Sellick The right of Mark Anthony Sellick to be identified as Author of this work has been asserted by Mark Anthony Sellick in accordance with the Copyright, Designs and Patents Act 1988. 4 5 Acknowledgements I would first like to acknowledge my supervisor Professor Christoph Wälti for his invaluable guidance and support during my studies. Doctor Steven Johnson and Doctor Simon White, the other members of the coiled coil team, have also been integral to this project and I thank them for their assistance and friendship. I would also like to thank Doctor Franziska Thomas and Professor Dek Woolfson for their insights and assistance designing and synthesising the peptides used in this work. I must also thank all the members of the Bioelectronics Group, past and present, for their expertise and friendship over the years. Thanks also to the members of the various biology and chemistry groups in Leeds and Bristol for helping the confused physicist who could occasionally be found in their labs asking odd questions and trying not to break anything.
    [Show full text]
  • Bristol Biodesign Institute
    WELCOME Bristol BioDesign Institute Biomolecules to biosystems from understanding to design The Bristol BioDesign Institute (BBI) is one of the University of Bristol’s Specialist Research Institutes. The BBI brings together BrisSynBio, a UK Synthetic Biology Research Centre, the SynBio Centre for Doctoral Training, our Innovation Programme and Public Engagement activities. With wide-ranging applications from health to food security, BBI combines pioneering synthetic biology approaches with understanding biomolecular systems to deliver the rational design and engineering of biological systems for useful purposes. This is delivered through multidisciplinary research which brings together postgraduate and postdoctoral researchers, academics, policy makers and industry, whilst also engaging the public with emerging solutions to global challenges. The BBI places the University of Bristol among the forerunners of UK and international synthetic biology and biodesign research, teaching and innovation. Director: Professor Dek Woolfson Co-Directors: Professor Imre Berger Professor Claire Grierson Professor Mario di Bernardo Conference organising committee: Imre Berger, BrisSynBio Director and Bristol BioDesign Institute Co-Director Graham Day, PhD Student, School of Cellular and Molecular Medicine Bethany Hickton, PhD student, School of Cellular and Molecular Medicine Kathleen Sedgley, Bristol BioDesign Institute Manager Mark Winfield, Post-doctoral Research Assistant, School of Biological Sciences Marie Woods, Bristol BioDesign Administrator Dek
    [Show full text]
  • 005 School of Biochemistry & Cell Biology Newsletter
    VOLUME 1 ISSUE 5 SCHOOL OF BIOCHEMISTRY AND CELL BIOLOGY NEWSLETTERMARCH 2014 have the potential to offer major opportunities as well as Message from Head of School presenting enormous challenges. In this issue th February 28 was a red-letter day for this School as a Not to be outdone, a number of other PhD students Relay for Life total of 35 students graduated with MSc’s and 4 with have since successfully completed their PhD viva voce Biochemists in a Beautiful World PhD’s at the SEFS conferring ceremony held in Áras examinations and will be graduating next summer. Spring Conferrings na Mac Léinn. This is a testament to the hard work of Upcoming Events the students themselves, and also, their lab mates and I hope you find this Newsletter interesting and that it supervisors who helped them through their project helps keep you in touch with the School of Biochemistry Hot Off the Press work. and Cell Biology. In particular, it is noteworthy that of the 12 students who graduated at this conferring represented the first ever cohort of the MSc in Molecular and Cell Biology with Professor David Sheehan Bioinnovation organised by Dr Maryanne O’Donovan and Dr Kellie Dean. This MSc is a new taught programme that we plan to develop further into the future. The conferring was addressed by Rear Admiral Mark Mellet, the highest-ranking officer in the history of the Naval Service, who delivered a thoughtful and stirring speech around the idea of “constructive disruption”. He proposed that we are living through a time when novel SCHOOL(some as-yet unthought of) “disruptive” technologies PAGE 2 With students and staff from the School of Biochemistry and Cell Biology, Team Mad Scientists participated in Donations to sponsor the second Relay for Life UCC, on Friday, 28th February, Team Mad Scientists in 2014, in support of the Irish Cancer Society.
    [Show full text]
  • EPSRC & BBSRC Synthetic Biology Centre for Doctoral Training
    EPSRC & BBSRC Synthetic Biology Centre for Doctoral Training Student Handbook 2015 1 Contents Introduction 3 Programme Background 4 Key Objectives Programme Summary 7 Module Outlines 8 Core Modules; Career Development Skills; DTC Teaching Experience, Graduate Academic Programme Projects 18 The Supervisory Relationship Monitoring and Assessment 20 Student Space, Weblearn, Module Assessment; Module Assessment Submission; Module Questionnaires; Project Assessment; Project Assessment Submission; Academic Integrity; Project Questionnaire; Transition to DPhil; DPhil Assessment; Oxford Digital Theses; Alumni DTC Fourth Year Symposium Student Representatives Internships Resources 34 Libraries; DTC Library; Computing Facilities; Seminar Programmes; Telephone/Email/Mail Staff 39 DTC Staff; SynBioCDT Staff, Affiliated Staff Rex Richards Building 53 Parking; Access and Security; Fire Alarms; Office Etiquette; First Aid University of Oxford, Bristol and Warwick 55 University Card; Careers Service; Medical Care; Student Associations; Student Counselling Service; Sports and Physical Recreation; Support for Student Parents Administrative Matters 61 Programme Management; Position within the University; Timekeeping; Attendance; Absence/Illness; Academic Terms; Finance; Proof of Study, Equality and Diversity Unit; Interruption of Studies; University Health and Safety; Data Protection City of Oxford, Bristol and Warwick 69 Travelling to Information; Maps Appendix 77 MPLS Research Supervision, A Brief Guide 2 Introduction Welcome to the EPSRC & BBSRC Centre for Doctoral Training in Synthetic Biology (SynBioCDT), which is a joint venture between the Universities of Oxford, Bristol and Warwick. SynBioCDT is a 4-year Doctorate Programme in the interdisciplinary field of Synthetic Biology, which has been identified as an emerging discipline with the potential to create new industries and economies in the recent UK Synthetic Biology Roadmap report (http://www.rcuk.ac.uk/publications/reports/syntheticbiologyroadmap/).
    [Show full text]
  • Baker, EG, Bartlett, GJ, Porter Goff, KL, & Woolfson, DN (2017
    Baker, E. G. , Bartlett, G. J., Porter Goff, K. L., & Woolfson, D. N. (2017). Miniprotein design: past, present, and prospects. Accounts of Chemical Research, 50(9), 2085-2092. https://doi.org/10.1021/acs.accounts.7b00186 Peer reviewed version License (if available): Unspecified Link to published version (if available): 10.1021/acs.accounts.7b00186 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via at ACS Publications http://pubs.acs.org/doi/abs/10.1021/acs.accounts.7b00186. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Miniprotein Design: Past, Present and Prospects Emily G. Baker,1† Gail J. Bartlett,1† Kathryn L. Porter Goff,1† and Derek N. Woolfson1,2,3†* 1School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK 2School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK 3BrisSynBio and the Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK *Corresponding author: DNW ([email protected]) †All authors contributed equally to this review. CONSPECTUS: The design and study of miniproteins – that is, polypeptide chains < 40 amino acids in length that adopt defined and stable 3D structures – is resurgent.
    [Show full text]
  • Brissynbio: a BBSRC/EPSRC-Funded Synthetic Biology Research Centre
    Sedgley, K. R., Race, P. R., & Woolfson, D. N. (2016). BrisSynBio: a BBSRC/EPSRC-funded Synthetic Biology Research Centre. Biochemical Society Transactions, 44(3), 389-391. DOI: 10.1042/BST20160004 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1042/BST20160004 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Portland Press at http://www.biochemsoctrans.org/content/44/3/689. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms Synthetic Biology UK 2015 689 BrisSynBio: a BBSRC/EPSRC-funded Synthetic Biology Research Centre Kathleen R. Sedgley*1, Paul R. Race*† and Derek N. Woolfson*†‡ *BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K. †School of Biochemistry, University of Bristol, Bristol BS8 1TD, Avon, U.K. ‡School of Chemistry, University of Bristol, Bristol BS8 1TS, Avon, U.K. Abstract BrisSynBio is the Bristol-based Biotechnology and Biological Sciences Research Council (BBSRC)/Engineering and Physical Sciences Research Council (EPSRC)-funded Synthetic Biology Research Centre. It is one of six such Centres in the U.K. BrisSynBio’s emphasis is on rational and predictive bimolecular modelling, design and engineering in the context of synthetic biology.
    [Show full text]
  • Relating the Structure of Insect Silk Proteins to Function
    Relating the structure of insect silk proteins to function Andrew A. Walker April 2013 A thesis submitted for the degree of Doctor of Philosophy of the Australian National University For Lucy Declaration This thesis represents my own original research work, and has not been submitted previously for a degree at any university. To the best of my knowledge and belief this thesis contains no material previously published or written by another person, except where due reference is made. One of the realities of doing research in a modern laboratory is the necessity of working closely with other members of a research team and external collaborators. For this reason some of the experimental results presented in this document were obtained by people other than myself. They are presented here to maintain a coherent narrative. A comprehensive list of these instances follows: liquid chromatography-mass spectrometry results in chapters 3, 4 and 6, and some of those in chapter 5, were obtained by Sarah Weisman; all Raman scattering spectra were obtained by Jeffrey S. Church; in chapters 4 and 6, I make use of a cDNA library constructed by Holly Trueman; all nuclear magnetic resonance spectra were obtained by Tsunenori Kameda; all amino acid analyses are results obtained by a commercial service at the Australian Proteome Analysis Facility. Andrew Walker April, 2013 Canberra, Australia Acknowledgements I would first like to thank my principal supervisor Tara Sutherland, who is the sort of person who can look at a lawn and see all the four-leaf clovers. She has taught me much about protein science but more about good management, good writing, happy workplaces, and how to publish.
    [Show full text]