35566 Annreport06 Txt 15-18
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INAUGURAL SCN MEETING 24 – 25 March 2009
INAUGURAL SCN MEETING 24 – 25 March 2009 Coombe Lodge, Bristol Dear Network Member, First of all, welcome to Coombe Lodge, and welcome to the Inaugural Meeting of the Synthetic Components Network (SCN). The SCN is one of seven Reseach Council-funded Networks in Synthetic Biology. Synthetic biology is one of the BBSRC’s ten new research priorities and is signposted at EPSRC. The Research Council’s aims in setting up the Networks include: to engender a culture of taking a synthetic-biology approach in biological sciences and engineering in the UK; to grow a UK community in synthetic biology; and to help define* what is new and emerging research area, with many interested parties from a broad collection of disciplines. *Though, like many, we feel that keeping this definition as loose and broad as possible may be the best and healthiest option. As stated in our original proposal for the SCN, in broad terms its scientific aim is ‘…to address the challenge of creating new biological and biomimetic systems by combining de novo designed molecular components, pared-down biological moieties and engineering-design principles to build self-organising, functional biomolecular systems’. Now that we are gathered together for the first time, some of the things that we should address are: is this aim appropriate and tractable, and can we better-define what we would like to achieve through the Network? In considering this, however, in some respects this a discussion exercise because we do not have funds for research as such, though we hope sincerely that major grant applications will emerge from it. -
Professor S. Mann FRS
Professor S. Mann FRS PERSONAL INFORMATION Family name, First name: MANN, STEPHEN Date of birth: 01/04/1955 URL for web site: http://www.stephenmann.co.uk EDUCATION PhD Award Date: 1982; Inorganic Chemistry Laboratory, University of Oxford, UK CURRENT POSITIONS Professor of Chemistry, University of Bristol, UK Director, Centre for Organized Matter Chemistry, University of Bristol, UK Principal, Bristol Centre for Functional Nanomaterials, University of Bristol, UK Director, Centre for Protolife Research, University of Bristol, UK. PREVIOUS POSITIONS Professor in Chemistry, University of Bath, UK (1990-1998) FELLOWSHIPS AND AWARDS L. G. Knafel Fellow, Radcliffe Institute for Advanced Study, Harvard University, USA (2011-2012) Royal Society of Chemistry, de Gennes Prize and Medal (2011) Chemical Society of France (SCF) French-British Prize (2011) European Research Council, Advanced Grant (2011-2016). Royal Society Senior Fellowship: Wolfson Research Merit Award (2006-2011) Joseph Chatt Lecture and Medal, Royal Society of Chemistry (2007-2008) Fellow of the Royal Society, UK (2003) Royal Society of Chemistry Interdisciplinary Award (1999) Max-Planck Society/Alexander von Humboldt Foundation Research Award (1998-2003) Fellow Royal Society of Chemistry (1996) Corday-Morgan Medal, Royal Society of Chemistry (1993) EPA Junior Research Fellowship, Keble College, Oxford, UK (1981-1984) Royal Society of Arts, Silver Medal Award, UMIST (1976) VISITING PROFESSORSHIPS Harvard University (2011-12) College de France (2009) University of California, Santa -
BBSRC Support for Industrial Biotechnology and Bioenergy
BBSRC support for Industrial Biotechnology and Bioenergy Dr Colin Miles What is UK Research and Innovation (UKRI) ? • UKRI is the new funding organisation for research and innovation in the UK. • UK Research and Innovation launched in April 2018. • UKRI comprises seven UK research councils, Innovate UK and a new organisation, Research England, working closely with its partners in the devolved administrations UKRI Strategic Prospectus : Objectives UKRI objectives: − Pushing the frontiers of human knowledge − Delivering economic impact and prosperity − Creating social and cultural impact − Providing the best foundation and environment for research and innovation − Delivering and being accountable as an outstanding organisation What does BBSRC do ? Invests in world- Invests in class bioscience bioscience training research in UK & skills for the next Universities & generation of Institutes bioscientists Drives the widest possible social & Promotes public economic impact dialogue on from our bioscience bioscience BBSRC Forward Look for UK Bioscience Advancing the frontiers of bioscience discovery Understanding Transformative the rules of life technologies Tackling strategic challenges Bioscience for Bioscience for Bioscience for renewable an integrated sustainable resources and understanding agriculture and food clean growth of health Building strong foundations Collaboration, People Infrastructure partnerships and talent and KE BBSRC Vision and Strategy: IBBE (2013-16) VISION: UK bioscience research delivering new products and processes for -
The 7Th Alpbach Workshop On: COILED-COIL, FIBROUS
The 7The 7th Ath Alpbach Workshop on: lpbach Workshop on: COILEDCOILED--COILCOIL, , FIBROUS FIBROUS & & REPEAT REPEAT COILED-COIL, FIBROUS & REPEAT PROTEINSPROTEINS At The Romantikhotel BöglerhofAt The Romantikhotel Böglerhof, Alpbach, Austria, Alpbach, Austria, Alpbach, Austria Sunday Sunday 3rd 3rd September– Friday September– Friday 8th 8th September September 20172017 7th Alpbach Workshop on: Coiled-coil, fibrous and repeat proteins SUNDAY SEPTEMBER 3 Arrivals, Reception and Dinner MONDAY SEPTEMBER 4 09:00 – 10:40 New developments in coiled coils (Andrei Lupas) Andrei Lupas (MPI Tübingen) - Coiled coils - between structure and unstructure Partho Ghosh (UC San Diego) - Functional essential instability in the M protein coiled coil Marcus Jahnel (MPI Dresden) - Coiled-coils as molecular motors: multistable polymer engines Jeni Lauer (MPI Dresden) - Structural Dynamics of the Rab5- Modulated Coiled-Coil Protein EEA1 Revealed by Hydrogen- Deuterium Exchange Mass Spectrometry 10:40 – 11:10 Tea break 11:10 – 12:30 Of α-fibers and β-fibers (Andrei Lupas) Birte Hernandez Alvarez (MPI Tübingen) - α/β-coiled coils Antoine Schramm (Marseille) - Characterization of measles virus phosphoprotein: A coiled-coil domain containing conserved motifs that are crucial for its function Michelle Peckham (Leeds) - Stable single α helices that do not form coiled coils - what makes them stable? 12:30 - Lunch Afternoon free 17:00 – 17:50 Flash Presentations for Posters 17:50 – 18:30 Posters 18:30 – 20:00 Dinner 20:00 – 21:40 Coiled coils at the membrane (Alexander -
Appendices Emerging Biotechnologies
Appendices Emerging biotechnologies Appendix 1: Method of working Background The Nuffield Council on Bioethics established the Working Party on ‗Emerging biotechnologies‘ in January 2011. The Working Party met eleven times over a period of 18 months. In order to inform its deliberations, it held an open consultation and a series of 'fact-finding‘ meetings with external stakeholders and invited experts. It also commissioned two reports on topics relevant to the work of the project and received comments on a draft of the Report from 12 external reviewers. Further details of each of these aspects of the Working Party‘s work are given below and in Appendix 2. The Working Party would like to express its gratitude to all those involved for the invaluable contribution they made to the development of the final Report. Consultation document The Working Party launched a consultation in April 2011, which ran until July 2011. 84 responses were received, of which 48 were submitted by individuals and 36 on behalf of organisations. Those responding to the consultation included students, academics, faith groups and professional organisations. A full list of those responding is set out in Appendix 2. A summary of the responses is available on the Council‘s website. Copies of individual responses will also be made available on the website in those instances where the Council has permission from respondents to do so. Fact-finding As part of its work, the Working Party held a series of 'fact-finding‘ meetings, the details of which can be found below. (Details -
Electronic Control of Protein Interactions Mark Anthony Sellick
1 Electronic Control of Protein Interactions Mark Anthony Sellick Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Centre for Doctoral Training in Molecular-Scale Engineering School of Electronic and Electrical Engineering September 2016 2 3 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2016 The University of Leeds and Mark Anthony Sellick The right of Mark Anthony Sellick to be identified as Author of this work has been asserted by Mark Anthony Sellick in accordance with the Copyright, Designs and Patents Act 1988. 4 5 Acknowledgements I would first like to acknowledge my supervisor Professor Christoph Wälti for his invaluable guidance and support during my studies. Doctor Steven Johnson and Doctor Simon White, the other members of the coiled coil team, have also been integral to this project and I thank them for their assistance and friendship. I would also like to thank Doctor Franziska Thomas and Professor Dek Woolfson for their insights and assistance designing and synthesising the peptides used in this work. I must also thank all the members of the Bioelectronics Group, past and present, for their expertise and friendship over the years. Thanks also to the members of the various biology and chemistry groups in Leeds and Bristol for helping the confused physicist who could occasionally be found in their labs asking odd questions and trying not to break anything. -
Year in Review
Year in review For the year ended 31 March 2017 Trustees2 Executive Director YEAR IN REVIEW The Trustees of the Society are the members Dr Julie Maxton of its Council, who are elected by and from Registered address the Fellowship. Council is chaired by the 6 – 9 Carlton House Terrace President of the Society. During 2016/17, London SW1Y 5AG the members of Council were as follows: royalsociety.org President Sir Venki Ramakrishnan Registered Charity Number 207043 Treasurer Professor Anthony Cheetham The Royal Society’s Trustees’ report and Physical Secretary financial statements for the year ended Professor Alexander Halliday 31 March 2017 can be found at: Foreign Secretary royalsociety.org/about-us/funding- Professor Richard Catlow** finances/financial-statements Sir Martyn Poliakoff* Biological Secretary Sir John Skehel Members of Council Professor Gillian Bates** Professor Jean Beggs** Professor Andrea Brand* Sir Keith Burnett Professor Eleanor Campbell** Professor Michael Cates* Professor George Efstathiou Professor Brian Foster Professor Russell Foster** Professor Uta Frith Professor Joanna Haigh Dame Wendy Hall* Dr Hermann Hauser Professor Angela McLean* Dame Georgina Mace* Dame Bridget Ogilvie** Dame Carol Robinson** Dame Nancy Rothwell* Professor Stephen Sparks Professor Ian Stewart Dame Janet Thornton Professor Cheryll Tickle Sir Richard Treisman Professor Simon White * Retired 30 November 2016 ** Appointed 30 November 2016 Cover image Dancing with stars by Imre Potyó, Hungary, capturing the courtship dance of the Danube mayfly (Ephoron virgo). YEAR IN REVIEW 3 Contents President’s foreword .................................. 4 Executive Director’s report .............................. 5 Year in review ...................................... 6 Promoting science and its benefits ...................... 7 Recognising excellence in science ......................21 Supporting outstanding science ..................... -
Bristol Biodesign Institute
WELCOME Bristol BioDesign Institute Biomolecules to biosystems from understanding to design The Bristol BioDesign Institute (BBI) is one of the University of Bristol’s Specialist Research Institutes. The BBI brings together BrisSynBio, a UK Synthetic Biology Research Centre, the SynBio Centre for Doctoral Training, our Innovation Programme and Public Engagement activities. With wide-ranging applications from health to food security, BBI combines pioneering synthetic biology approaches with understanding biomolecular systems to deliver the rational design and engineering of biological systems for useful purposes. This is delivered through multidisciplinary research which brings together postgraduate and postdoctoral researchers, academics, policy makers and industry, whilst also engaging the public with emerging solutions to global challenges. The BBI places the University of Bristol among the forerunners of UK and international synthetic biology and biodesign research, teaching and innovation. Director: Professor Dek Woolfson Co-Directors: Professor Imre Berger Professor Claire Grierson Professor Mario di Bernardo Conference organising committee: Imre Berger, BrisSynBio Director and Bristol BioDesign Institute Co-Director Graham Day, PhD Student, School of Cellular and Molecular Medicine Bethany Hickton, PhD student, School of Cellular and Molecular Medicine Kathleen Sedgley, Bristol BioDesign Institute Manager Mark Winfield, Post-doctoral Research Assistant, School of Biological Sciences Marie Woods, Bristol BioDesign Administrator Dek -
005 School of Biochemistry & Cell Biology Newsletter
VOLUME 1 ISSUE 5 SCHOOL OF BIOCHEMISTRY AND CELL BIOLOGY NEWSLETTERMARCH 2014 have the potential to offer major opportunities as well as Message from Head of School presenting enormous challenges. In this issue th February 28 was a red-letter day for this School as a Not to be outdone, a number of other PhD students Relay for Life total of 35 students graduated with MSc’s and 4 with have since successfully completed their PhD viva voce Biochemists in a Beautiful World PhD’s at the SEFS conferring ceremony held in Áras examinations and will be graduating next summer. Spring Conferrings na Mac Léinn. This is a testament to the hard work of Upcoming Events the students themselves, and also, their lab mates and I hope you find this Newsletter interesting and that it supervisors who helped them through their project helps keep you in touch with the School of Biochemistry Hot Off the Press work. and Cell Biology. In particular, it is noteworthy that of the 12 students who graduated at this conferring represented the first ever cohort of the MSc in Molecular and Cell Biology with Professor David Sheehan Bioinnovation organised by Dr Maryanne O’Donovan and Dr Kellie Dean. This MSc is a new taught programme that we plan to develop further into the future. The conferring was addressed by Rear Admiral Mark Mellet, the highest-ranking officer in the history of the Naval Service, who delivered a thoughtful and stirring speech around the idea of “constructive disruption”. He proposed that we are living through a time when novel SCHOOL(some as-yet unthought of) “disruptive” technologies PAGE 2 With students and staff from the School of Biochemistry and Cell Biology, Team Mad Scientists participated in Donations to sponsor the second Relay for Life UCC, on Friday, 28th February, Team Mad Scientists in 2014, in support of the Irish Cancer Society. -
Staff | 2 2 2002 | 2003 Annual Report
2002 | 2003 Annual Report Staff | 22 9 | Learning | 9 9 | Learning | 9 Left: Detail of one of the epaulets that feature in the uniform of the University porters Staff STRUCTURES AND PROCESSES around an innovative web-based approach to the recruitment of research staff.A A lot has been achieved this year to ensure website gives potential research staff access that the University’s academic structure fits to a wealth of information about the with its strategy and goals and provides University, its research, and working and clarity for members of staff.The revised living in Bristol, with links to the structure (see below) came into effect on University’s own website.The technology 1 August, and restructuring is under way in enables the University to measure the the new Faculty of Medicine and Dentistry. success of this approach and to respond quickly to feedback. New faculty structure In the spring, the University launched the final phase of its online recruitment Arts system.Candidates can now apply online Engineering for any vacancy, and recruiting departments Medical and Veterinary Sciences can access relevant applications Medicine and Dentistry immediately.Application information Science is also transferred automatically to the 2002 | 2003 Annual Report Social Sciences and Law University’s Personnel Information Management System. To ensure that support mechanisms 2002 | 2003 Annual Report underpin the new academic structure POSITIVE effectively, the University has embarked on a WORKING programme of process reviews, starting with ENVIRONMENT -
Contributors to the Emerging Investigators Issue
View Article Online / Journal Homepage / Table of Contents for this issue Analyst Dynamic Article LinksC< Cite this: Analyst, 2011, 136, 3406 www.rsc.org/analyst PROFILE Contributors to the Emerging Investigators Issue DOI: 10.1039/c1an90056k University of Illinois at Urbana-Cham- paign and is affiliated with the University’s Institute for Genomic Biology and Micro and Nanotechnology Laboratory. Ryan received his BS in Chemistry from Eastern Illinois University in 1999 and his PhD in Chemistry from Northwestern University in 2004, after which he was a joint post- doctoral fellow at the California Institute of Technology and Institute for Systems Biology. His research interests lie in the development of new multiparameter bio- logical analysis technologies for applica- Jeffrey Anker is an Assistant Professor of tions in informative disease diagnostics, Christa Brosseau is from Halifax, Nova Chemistry at Clemson with a BS in applied homeland security, and fundamental bio- Scotia. She attended Dalhousie University physics (Yale University, 1998), and PhD logical studies. (BSc) and Acadia University (MSc) before from the University of Michigan (2005). As goingontocompleteaPhDininterfacial a graduate student with Raoul Kopelman he electrochemistry and vibrational spectros- developed magnetically modulated optical copy under the supervision of Jacek Lip- nanoprobes (MagMOONs) for chemical kowski at the University of Guelph in and mechanical measurements. For this Ontario, Canada. She was a postdoctoral work, he received a Grand Prize at the 2003 fellow in the laboratory of Richard Van Published on 28 July 2011. Downloaded 30/10/2014 08:00:28. National Inventor’s Hall of Fame Collegiate Duyne, and worked towards the application Inventor’s Competition. -
The Chemistry of Form
Synthesis of barium sulfate from surfactant – inorganic nanoparticles REVIEWS The Chemistry of Form Stephen Mann* The emergence of complex form in and biomineralization. The equilibri- actions in self-assembled organic me- living and nonliving systems remains a um form of crystals can be modified by dia, such as surfactant micelles, block deep question for scientists attempting surface-active additives but only within copolymer aggregates and microemul- to understand the origins and develop- limits dictated by the symmetry of the sion droplets. Unusual inorganic forms ment of shape and structure. In recent unit cell. In contrast, biological miner- emerge when these reaction fields are years, biologists and physicists have als, such as shells, bones, and teeth, are subjected to instability thresholds and made significant advances in explain- distinguished by a complexity of form synthesis and self-assembly can be ing fundamental problems in fields that bears little resemblance to the coupled to produce materials with such as morphogenesis and pattern underlying order of their inorganic higher-order organization. Like their formation. Chemists, on the other crystals. By understanding the con- biological counterparts, these hard in- hand, are only just beginning to con- structional processes that give rise to organic structures represent new forms template the possibility of preparing the inorganic structures of life it should of organized matter which originate manmade materials with lifelike form. be possible to develop a chemistry of from soft chemistry. This review traces a route to the direct form in the laboratory. For example, synthesis of inorganic structures with complex small-scale inorganic archi- Keywords: biomimetics ´ biomineral- biomimetic form, beginning from an tectures are produced at room temper- ization ´ crystal growth ´ inorganic understanding of crystal morphology ature by undertaking precipitation re- materials ´ morphology 1.