The Role of China in World Fisheries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SUSTAINABLE FISHERIES and RESPONSIBLE AQUACULTURE: a Guide for USAID Staff and Partners
SUSTAINABLE FISHERIES AND RESPONSIBLE AQUACULTURE: A Guide for USAID Staff and Partners June 2013 ABOUT THIS GUIDE GOAL This guide provides basic information on how to design programs to reform capture fisheries (also referred to as “wild” fisheries) and aquaculture sectors to ensure sound and effective development, environmental sustainability, economic profitability, and social responsibility. To achieve these objectives, this document focuses on ways to reduce the threats to biodiversity and ecosystem productivity through improved governance and more integrated planning and management practices. In the face of food insecurity, global climate change, and increasing population pressures, it is imperative that development programs help to maintain ecosystem resilience and the multiple goods and services that ecosystems provide. Conserving biodiversity and ecosystem functions are central to maintaining ecosystem integrity, health, and productivity. The intent of the guide is not to suggest that fisheries and aquaculture are interchangeable: these sectors are unique although linked. The world cannot afford to neglect global fisheries and expect aquaculture to fill that void. Global food security will not be achievable without reversing the decline of fisheries, restoring fisheries productivity, and moving towards more environmentally friendly and responsible aquaculture. There is a need for reform in both fisheries and aquaculture to reduce their environmental and social impacts. USAID’s experience has shown that well-designed programs can reform capture fisheries management, reducing threats to biodiversity while leading to increased productivity, incomes, and livelihoods. Agency programs have focused on an ecosystem-based approach to management in conjunction with improved governance, secure tenure and access to resources, and the application of modern management practices. -
FAO Fisheries & Aquaculture
Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Fishing Techniques Midwater Pair Trawling Main Components Aquatic species Target Species Semi-pelagic/demersal species Atlantic herring European pilchard(=Sardine) Seabream Hake Seabass European sprat Target Species Pelagic species Gear types: Midwater pair trawls Midwater pair trawls It has similar characteristics as midwater trawls used with otter boards. Vessel types: Pair trawlers In the wet-fish trawler the fish is kept in the hold in the fresh/"wet" condition. Characteristics Midwater pair trawling Species Environment Midwater pair trawling can be effective in different situations: when fish are aggregated into large dense shoals and when (at another season or time of the day or according to physiological status) fishes are regularly distributed within a given water layer. In addition to the difference it makes whether the FAO Fisheries and Aquaculture Department fish are aggregated in a small volume or spread within a large one, fish may swim (and avoid the net) at different speeds according to its own physiological status and/or other external conditions. As a result, in addition to the fish which is targeted, other different conditions will affect the design and size of the midwater trawl, as well as the towing speed. Fishing Gear A midwater pair trawl has roughly similar design as other midwater trawls. Midwater pair trawls might, however, be designed to have a more rectangular opening than ordinary midwater otter trawls. Midwater pair trawls might be rigged with two towing warps from each vessel or alternatively with one towing warp from each vessel and a bridle arrangement. -
Cobia Database Articles Final Revision 2.0, 2-1-2017
Revision 2.0 (2/1/2017) University of Miami Article TITLE DESCRIPTION AUTHORS SOURCE YEAR TOPICS Number Habitat 1 Gasterosteus canadus Linné [Latin] [No Abstract Available - First known description of cobia morphology in Carolina habitat by D. Garden.] Linnaeus, C. Systema Naturæ, ed. 12, vol. 1, 491 1766 Wild (Atlantic/Pacific) Ichthyologie, vol. 10, Iconibus ex 2 Scomber niger Bloch [No Abstract Available - Description and alternative nomenclature of cobia.] Bloch, M. E. 1793 Wild (Atlantic/Pacific) illustratum. Berlin. p . 48 The Fisheries and Fishery Industries of the Under this head was to be carried on the study of the useful aquatic animals and plants of the country, as well as of seals, whales, tmtles, fishes, lobsters, crabs, oysters, clams, etc., sponges, and marine plants aml inorganic products of U.S. Commission on Fisheries, Washington, 3 United States. Section 1: Natural history of Goode, G.B. 1884 Wild (Atlantic/Pacific) the sea with reference to (A) geographical distribution, (B) size, (C) abundance, (D) migrations and movements, (E) food and rate of growth, (F) mode of reproduction, (G) economic value and uses. D.C., 895 p. useful aquatic animals Notes on the occurrence of a young crab- Proceedings of the U.S. National Museum 4 eater (Elecate canada), from the lower [No Abstract Available - A description of cobia in the lower Hudson Eiver.] Fisher, A.K. 1891 Wild (Atlantic/Pacific) 13, 195 Hudson Valley, New York The nomenclature of Rachicentron or Proceedings of the U.S. National Museum Habitat 5 Elacate, a genus of acanthopterygian The universally accepted name Elucate must unfortunately be supplanted by one entirely unknown to fame, overlooked by all naturalists, and found in no nomenclator. -
Recirculating Aquaculture Systems in China-Current Application And
quac d A ul n tu a r e s e J i o r u e r h n Ying et al., Fish Aquac J 2015, 6:3 s i a F l Fisheries and Aquaculture Journal DOI: 10.4172/2150-3508.1000134 ISSN: 2150-3508 ResearchCommentary Article OpenOpen Access Access Recirculating Aquaculture Systems in China-Current Application and Prospects Liu Ying, Liu Baoliang, Shi Ce and Sun Guoxiang Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China For the past 20 years, aquaculture has seen a worldwide expansion RAS with independent intellectual property rights achieved from the and is the fastest growing food-producing sector in the world, with an experimental stage gradually turns to industrialization, large-scale average annual growth rate of 6-8%. World aquaculture has grown popularization and application. tremendously during the last sixty years from a production of less than a million tonne in the early 1950s to 90.43 million tonnes by 2012. Of Integrative stage (2007~2011): China has made considerable this production, 66.63 million tonnes, or 73.68%, was fish. Aquaculture progress in research and application of marine industrial aquaculture, is now fully comparable to marine capture fisheries when measured by and established the suitable development mode of China’s RAS. volume of output on global scale. The contribution from aquaculture During this period, many species, such as grouper, half-smooth to the world total fish production of capture and aquaculture in 2012 tongue sole, fugu, abalone, and sea cucumber were firstly cultured in reached 42.2%, up from 25.7% in 2000. -
18 TILAPIA CULTURE in MAINLAND CHINA Lai Qiuming1 and Yang Yi2
TILAPIA CULTURE IN MAINLAND CHINA Lai Qiuming1 and Yang Yi2 1College of Aquaculture, Hainan University, Haikou, Hainan, China 2Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand Abstract The first tilapia species introduced to mainland China is Mozambique tilapia (Oreochromis mossambicus) from Vietnam in 1957. Since then, several tilapia species such as blue tilapia (O. aureus) and different strains of Nile tilapia (O. niloticus) have been introduced to China from different places. Tilapia culture in China started in early 1960s, but was not popular until early 1980s. Since then, tilapia culture has been expanded rapidly in response to the introduction of new strains, success in all-male tilapia production and improvement in both nursing and grow-out technologies. Tilapia production increased from 18,100 metric tons in 1984 to 706,585 metric tons in 2002, with an average annual growth rate of 25%. Considering the low seafood especially tilapia consumption per capita, large domestic markets and technology improvements, there is still a huge potential for further expansion of tilapia culture in China. Introduction There is a growing consensus that tilapias (Oreochromis spp.) can become one of the world’s most important cultured fishes (FAO, 1980). Since 1980s, culture of tilapias has been quickly expanded in many parts of the world, especially in China. The attributes which makes tilapias especially Nile tilapia (O. niloticus) so suitable for fish farming are their general hardiness, great tolerance to adverse environmental conditions, ease of breeding, rapid growth rate, ability to efficiently convert organic and domestic wastes into high quality protein, and good taste (Stickney et al., 1979; Balarin and Haller, 1982; Pullin and Lowe- McConnell, 1982). -
Impact of Bottom Trawling on Sediment Biogeochemistry: a Modelling Approach Emil De Borger1,2, Justin Tiano2,1, Ulrike Braeckman1, Adriaan D
https://doi.org/10.5194/bg-2020-328 Preprint. Discussion started: 21 September 2020 c Author(s) 2020. CC BY 4.0 License. Impact of bottom trawling on sediment biogeochemistry: a modelling approach Emil De Borger1,2, Justin Tiano2,1, Ulrike Braeckman1, Adriaan D. Rijnsdorp3, Karline Soetaert2,1. 1Ghent University, Department of Biology, Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium 5 2Royal Netherlands Institute of Sea Research (NIOZ), Department of Estuarine and Delta Systems, and Utrecht University, Korringaweg 7, P.O. Box 140, 4401 NT Yerseke, The Netherlands 3Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands Correspondence to : Emil De Borger ([email protected]) Abstract 10 Bottom trawling in shelf seas can occur more than 10 times per year for a given location. This affects the benthic metabolism, through a mortality of the macrofauna, resuspension of organic matter from the sediment, and alterations of the physical sediment structure. However, the trawling impacts on organic carbon mineralization and associated processes are not well known. Using a modelling approach, the effects of increasing trawling frequencies on early diagenesis were studied in five different sedimentary environments, simulating the effects of a deep penetrating gear (e.g. a tickler chain beam trawl) and a 15 shallower, more variable penetrating gear (e.g. an electric pulse trawl). Trawling events strongly increased oxygen and nitrate concentrations in surface sediment layers, and led to significantly lower amounts of ammonium (43 – 99 % reduction) and organic carbon in the top 10 cm of the sediment (62 – 96 % reduction). As a result, total mineralization rates in the sediment were decreased by up to 28 %. -
The Status of Mariculture in North China
The Status of Mariculture in North China Chang Yaqing1,Chen Jiaxin2 (1.Key Lab of Mariculture and Biotechnology.Dalian Fisheries University,Dalian, Liaoning, 116023, P.R China;2.Yellow Sea Fisheries Research Institute Chinese Academy of Fisheries Sciences, Qingdao, Shandong,266071, P.R China) Introduction China has a long history of mariculture production. The mariculture industry in China has obtained break through in the all artificial nursery and cultural technique of shrimps, mollusca and fishes of high commercial value since 1950s, which has advanced the development of mariculture industry. The first major development was seaweed culture during 1950s, prompted by breakthroughs in breeding technology. By the end of the 1970s, annual seaweed production reached 250,000 metric tons in dry weight ( approximately 1.5million tons of fresh seaweed ). Shrimp culture developed during the 1980s because of advances in hatchery technology and economic reform policies. Annual shrimp production reached 210,000 tons in 1992. Disease outbreaks since 1993, however, have reduced shrimp production by about two-thirds. Mariculture production increased steadily between 1954 and 1985, but has been exponential since 1986, mostly driven by molluscan culture. Molluscan 1 culture in China began to expand beyond the four traditional species: oyster,cockle,razor clam and ruditapes clam in the 1970s,Mussel culture was the first new industry to emerge ,followed by scallop aquaculture in 1980s. Abalone culture has become a major industry in 1990s. Traditional oyster and clam cultures have also advanced and expanded in recent years.Now more than 30 species of marine mollusks are cultured commercially in China. Because of the rapid development in recent years, molluscan culture has become the largest sector of the Chinese mariculture industry, accounting for 81% of the total production in weight. -
Chinese Academy of Fishery Sciences, State Oceanic
Contribution to GSDR 2015 – chapter 3 Vulnerability of Nearshore Ecosystems from Rapid Intensive Coastal Development LIU Hui, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences SU Jilan, Second Institute of Oceanography, State Oceanic Administration Introduction The Millennium Ecosystem Assessment pointed out that coastal systems are among the most productive systems in the world and are experiencing acute pressures from growing population and exploitation. It found that the greatest threat is development-related loss of habitats and services, while degradation from other exploitation also poses severe problems. Over recent decades, the world as a whole has experienced fast economic development, especially in the developing countries. Extensive land reclamation has accompanied such development in coastal countries. For example, around the Yellow Sea, bordered by China and the two Koreas, 28% of its tidal flats existing in the 1980s had been reclaimed by the late 2000s (Murray et al., 2014). At the same time, as part of the significant growth of aquaculture in developing countries over the decades, mariculture has also undergone rapid expansion with no sign of peaking, supplying over half of world seafood demand (FAO, 2007 and 2014). However, marine aquaculture is largely confined to relatively small areas in coastal seas. For example, China’s is credited with 63.3% and 54%, respectively, of the world’s farmed marine food fish and aquatic plants production (FAO 2014). For such high production, nearly 1/3 of China’s total intertidal wetlands and 10% of China’s total nearshore water have been converted for mariculture use (MOA, 2014). Significant pressure from the combined effects of large-scale reclamation and mariculture have resulted in serious deterioration of the coastal ecosystems (CCICED Task Force, 2013) 1 Impacts from reclamation on coastal ecosystems and their services are largely known. -
BOTTOM TRAWLING IMPACTS in the BALTIC Editorial and Production Team: Hannah Griffiths Berggren, Valerie De Liedekerke, Ottilia Thoreson, Evan Jeffries, Brandline
2020 BALTIC A SEA UNDER PRESSURE: BOTTOM TRAWLING IMPACTS IN THE BALTIC Editorial and Production Team: Hannah Griffiths Berggren, Valerie de Liedekerke, Ottilia Thoreson, Evan Jeffries, Brandline Authors: Valerie de Liedekerke, Ottilia Thoreson, Sian Owen, Hannah Griffiths Berggren Special thanks: Professor Rashid Sumaila (Institute for the Oceans and Fisheries – The University of British Columbia); Louise Lieberknecht, Georgios Fylakis, Màrk Aguera and Torben Dedring (GRID-Arendal); Andreas Struck (Navama – Technology for Nature); Marco Milardi (Principal Scientist, Fisheries New Zealand - Tini a Tangaroa, Ministry for Primary Industries - Manatū Ahu Matua). We would also like to thank everyone who kindly provided data and reviewed the report. This report was made possible thanks to a substantial contribution of funds from Monika Selkman. Cover Photo: © Stefan Rosengren / Alamy Stock Photo © Alamy Stock Photo / Solvin Zankl (montage) 2 • WWF BALTIC ECOREGION PROGRAMME 2020 CONTENTS i. EXECUTIVE SUMMARY 4 1. BACKGROUND 6 1a. The Baltic Sea under pressure 6 1b. What is ‘bottom trawling’? 8 2. THE IMPACTS OF BOTTOM TRAWLING 10 2a. Physical and biological impacts 10 2b. The future of the Baltic Sea fishing fleet 17 3. RELEVANT POLICY FRAMEWORKS AND COMMITMENTS 22 3a. Global policy frameworks 22 3b. European policy commitments 24 3c. Regional Baltic policy commitments 27 3d. Examples of how governance is failing 28 4. SHOWCASING POSITIVE MANAGEMENT EXAMPLES 30 5. RECOMMENDATIONS 38 ACRONYMS 40 REFERENCES 41 © Alamy Stock Photo / Solvin Zankl (montage) 3 • WWF BALTIC ECOREGION PROGRAMME 2020 EXECUTIVE SUMMARY The Baltic Sea is surrounded by nine countries, whose accordingly. Forty per cent of the entire Baltic seafloor, futures are tightly connected to each other and to their an area of 180,000km2, has been disturbed by maritime shared marine resources. -
FAO Fisheries & Aquaculture
Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Fishing Techniques Shrimp Otter Trawling Main Components Aquatic species Target Species Shrimps Gear types: Single boat bottom otter trawls Single boat bottom otter trawls A single boat bottom otter trawl is a cone-shaped net consisting of a body, normally made from two, four and sometimes more panels, closed by one or two codends and with lateral wings extending forward from the opening. A bottom trawl is kept open horizontally by two otter boards. A boat can be rigged to tow a single or two parallel trawls from the stern or from two outriggers. Vessel types: Otter trawlers These are trawlers on which the fish is preserved by freezing. Characteristics Shrimp otter trawling Species Environment Shrimps constitute one of the most valuable groups of marine species resources. Approximately 2 million tonnes are captured annually in world's fisheries. Targets in shrimp otter trawling encompasses a wide range of species in both tropical and temperate waters. Fishing Gear Trawls used in otter shrimp trawling encompass a range of designs and sizes. Shrimp trawls are typical made in relatively small meshes, with 20-60 mm in the codend. The mesh size in the belly part of the trawls seldom exceed 80 mm. Some larger shrimp trawls may have larger meshes in the wings, up till 100-200 mm. Vertical opening of shrimp trawls may range from less than 1 till 15-20 meters. Characteristic for otter shrimp trawling is that one or two trawls are towed from the stern of a vessel. -
Contribución Al Desarrollo Sostenible
Contribution to Sustainable Development 2019 - Nueva Pescanova Group FISHING – NAMIBIA – NOVANAM GENERAL SDG SDG SDG SDG SDG SDG SDG SDG SDG SDG SDG SDG SDG SDG SDG SDG SDG SPECIFIC PLAN CODE ACTION'S TITLE PLAN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Respecting the 12.2 - 14.2 NAM-PL-01 ISO 14001 certification 2.4 9.4 natural environment 12.6 14.7 Respecting the Private Standard of Sustainable 12.2 14.2 NAM-PL-02 2.4 9.4 natural environment Fishing of the Nueva Pescanova Group 12.6 14.7 Respecting the Seabird bycatch reduction programme 12.2 NAM-PL-03 9.4 14.7 natural environment (use of tori lines) 12.6 Respecting the Design of new seabed-friendly 12.2 14.2 NAM-PL-04 9.4 natural environment trawling nets 12.6 14.7 Reduction of water consumption - 12.2 Efficient consumption NAM-PL-05 6.4 9.4 Our glazing 12.6 Common PLANET Reduction of water consumption - 6.3 12.2 Efficient consumption NAM-PL-06 9.4 desalination 6.4 12.4 Circular valorisation organic of fish co- 9.2 12.5 Zero emissions NAM-PL-07 products as fish meal in Lüderitz 9.4 12.6 Circular valorisation of organic fish co- 9.2 12.5 Zero emissions NAM-PL-08 products as fish meal in Walvis Bay 9.4 12.6 Responsible waste management - 12.4 Zero emissions NAM-PL-09 9.4 11.6 management plan 12.5 12.2 13.2 14.2 Zero emissions NAM-PL-10 Improved design of trawl doors 9.4 12.a 13.a 14.7 II Report on the Contribution to Sustainable Development – CSR strategy of the Nueva Pescanova Group – FISHING – NAMIBIA– NOVANAM Page 1 of 7 Contribution to Sustainable Development 2019 - Nueva Pescanova -
TRAWLING in LAKE VICTORIA: Its History, Status and Effects
Socio-economics of the Lake Victoria Fisheries TRAWLING IN LAKE VICTORIA: Its History, Status and Effects James Siwo Mbuga and Albert Getabu Andrew Asila Modesta Medard Richard Abila Lake Victoria is the second biggest freshwater lake in the world. With its 69,000 km2, the lake has the same size as Ireland. The lake is shared between three countries; Tanzania (which possesses 49%), Uganda (45%) and Kenya (6%) of the lake. The findings, interpretations and conclusions in this publication are those of the authors and do not necessarily reflect those of IUCN or the partner organisations in this project. Newspaper Cuttings: All newspaper cuttings (clips) included in this report are excerpts of Daily Nation articles appearing on various dates on the subject of trawling (except the cutting on page 30 which is from the East African Standard of 6th July, 1998). Design & Layout: IUCN EARO Communications Unit Table of Contents PREFACE .............................................................................................................................................. 3 SUMMARY............................................................................................................................................ 4 TRAWLING IN THE KENYAN PART OF LAKE VICTORIA.......................................................... 5 THE DEVELOPMENT AND PROSPECTS OF EXPERIMENTAL AND COMMERCIAL TRAWLING IN LAKE VICTORIA.................................................................................................... 14 TRAWLING ON THE NYANZA GULF IN