Yorkshire Orykshire Ory Rkshire
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geo.Acta Vol 2(1)
Geologica Acta, Vol.2, Nº1, 2004, 83-94 Available online at www.geologica-acta.com A new fossil ichneumon wasp from the Lowermost Eocene amber of Paris Basin (France), with a checklist of fossil Ichneumonoidea s.l. (Insecta: Hymenoptera: Ichneumonidae: Metopiinae) J.-J. MENIER, A. NEL, A. WALLER and G. DE PLOËG Laboratoire d’Entomologie and CNRS UMR 8569, Muséum National d’Histoire Naturelle 45 rue Buffon, F-75005 Paris, France. Menier E-mail: [email protected] Nel E-mail: [email protected] ABSTRACT We describe a new fossil genus and species Palaeometopius eocenicus of Ichneumonidae Metopiinae (Insecta: Hymenoptera), from the Lowermost Eocene amber of the Paris Basin. A list of the described fossil Ichneu- monidae is proposed. KEYWORDS Insecta. Hymenoptera. Ichneumonidae. n. gen., n. sp. Eocene amber. France. List of fossil species. INTRODUCTION Nevertheless, the present fossil record suggests that the family was already very diverse during the Eocene and Fossil ichneumonid wasps are not rare. Brues (1910a) Oligocene. listed 12 genera in the Baltic amber and 34 genera in the Oligocene Florissant shales (U.S.A.). Statz (1938) listed We describe the first fossil representative of the sub- 124 species of fossil Ichneumonidae from eight lacustrine family Metopiinae, discovered in the Lowermost Eocene outcrops ranging between the Eocene and the Miocene, amber of the Paris basin. The present discovery supports and only 15 species from the Upper Eocene Baltic amber. the hypothesis of a high diversity of the Ichneumonidae Currently, circa 190 species have been described (see during the Paleogene. We follow the standard conven- appendix). Fossil taxa from lacustrine outcrops are main- tions for wing veins proposed by Mason (1986) and the ly based on wing venational characters. -
(Hymenoptera: Ichneumonidae: Banchinae) GR
Труды Русского энтомологического общества. С.-Петербург, 2014. Т. 85(1): 63–76. Proceedings of the Russian Entomological Society. St Petersburg, 2014. Vol. 85(1): 63–76. A revision of Sachtlebenia Townes, with notes on the species of Townesion Kasparyan (Hymenoptera: Ichneumonidae: Banchinae) G.R. Broad Ревизия рода Sachtlebenia Townes с замечаниями к видам Townesion Kasparyan (Hymenoptera: Ichneumonidae: Banchinae) Г.Р. Броад Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD. E-mail: [email protected] Abstract. The genus Sachtlebenia (Ichneumonidae: Banchinae) is revised and two new species described, S. dmitrii sp. n. from Vietnam and S. gillae sp. n. from Brunei. The two species of the related genus Townesion are distinguished and T. japonicus Kasparyan is newly recorded from Russia (Sakhalin). Synapomorphies are proposed for Sachtlebenia and Townesion. Key words. Taxonomy, parasitoid. Резюме. Ревизован род Sachtlebenia (Ichneumonidae: Banchinae), в котором описаны 2 новых вида: S. dmitrii sp. n. из Вьетнама и S. gillae sp. n. из Брунея. В родственном роде Townesion рассмотрены 2 вида, включая T. japonicus Kasparyan, который впервые отмечен с Сахалина (Россия). Предложе- ны синапоморфии для родов Sachtlebenia и Townesion. Ключевые слова. Систематика, паразитоид. Introduction The genera Sachtlebenia Townes and Townesion Kasparyan (Hymenoptera: Ichneumonidae) com- prise a strikingly aberrant and distinctive pair of genera. Unlike any other ichneumonids, the second to fourth metasomal tergites are much more strongly sclerotized than the posterior tergites, which are hidden under the fourth tergite, and the metasomal insertion is high above the hind coxal insertions. Two genera of Cryptinae, Hemigaster and Rothneyia, have a similar sclerotization of the metasoma but differ most obviously in the petiolate first metasomal segment that is inserted level with the hind coxae. -
A Revision of the World Amphibulus Kriechbaumer (Hymenoptera: Ichneumonidae, Phygadeuontinae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida September 1991 A Revision of the World Amphibulus Kriechbaumer (Hymenoptera: Ichneumonidae, Phygadeuontinae) John C. Luhman Minnesota Department of Agriculture, St. Paul, MN Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Luhman, John C., "A Revision of the World Amphibulus Kriechbaumer (Hymenoptera: Ichneumonidae, Phygadeuontinae)" (1991). Insecta Mundi. 410. https://digitalcommons.unl.edu/insectamundi/410 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Vol. 5, No. 3-4, September-December 1991 129 A Revision of the World Amphibulus Kriechbaumer (Hymenoptera: Ichneumonidae, Phygadeuontinae) John C. Luhman Plant Industry Division Minnesota Department of Agriculture St. Paul, MN 55107 Abstract Amphibulus Kriechbaumer (Hymenoptera: Ichneumonidae, Phygadeuontinae = Gelinae, Gelini) is revised world-wide. It is separated from its sister group genus Endasys Foerster by means of a key and a di- agnosis. Keys are given to 3 speciesgroupsand 25 species, including EuropeangracilisKriechbaumer and fen- nicus Sawoniewicz. Mexican satageus (Cresson)isredescribed, and 22 species are newly described:africanus, awanticeps, aurarius, aweolus, bicolor, borealis, carinarum, dentatus, duodentatus, eurystomatus, flavipes, htioris, nigripes, orientalis, pentatylus, pilosus, pseudopustulae, pustulae, pyrrhoborealis, rugosus, salicis, and tetratylus. Thirty figures illustrate diagnostic characters. Introduction Acknowledgments This is the first revision of the known species of This study was based on specimens borrowed Amphibulus Kriechbaumer world-wide. -
Linnaeus at Home
NATURE-BASED ACTIVITIES FOR PARENTS LINNAEUS 1 AT HOME A GuiDE TO EXPLORING NATURE WITH CHILDREN Acknowledgements Written by Joe Burton Inspired by Carl Linnaeus With thanks to editors and reviewers: LINNAEUS Lyn Baber, Melissa Balzano, Jane Banham, Sarah Black, Isabelle Charmantier, Mark Chase, Maarten Christenhusz, Alex Davey, Gareth Dauley, AT HOME Zia Forrai, Jon Hale, Simon Hiscock, Alice ter Meulen, Lynn Parker, Elizabeth Rollinson, James Rosindell, Daryl Stenvoll-Wells, Ross Ziegelmeier Share your explorations @LinneanLearning #LinnaeusAtHome Facing page: Carl Linnaeus paper doll, illustrated in 1953. © Linnean Society of London 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrival system or trasmitted in any form or by any means without the prior consent of the copyright owner. www.linnean.org/learning “If you do not know Introduction the names of things, the knowledge of them is Who was Carl Linnaeus? Contents Pitfall traps 5 lost too” Carl Linnaeus was one of the most influential scientists in the world, - Carl Linnaeus A bust of ‘The Young Linnaeus’ by but you might not know a lot about him. Thanks to Linnaeus, we Bug hunting 9 Anthony Smith (2007). have a naming system for all species so that we can understand how different species are related and can start to learn about the origins Plant hunting 13 of life on Earth. Pond dipping 17 As a young man, Linnaeus would study the animals, plants, Bird feeders 21 minerals and habitats around him. By watching the natural world, he began to understand that all living things are adapted to their Squirrel feeders 25 environments and that they can be grouped together by their characteristics (like animals with backbones, or plants that produce Friendly spaces 29 spores). -
Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids. -
Kiwi First Aid and Veterinary Care
9. Acknowledgements Special thanks to Dr Brett Gartrell, Massey University, and Richard Jakob-Hoff, Auckland Zoo, for peer reviewing this document. Thanks also to Dr Maurice Alley, Massey University, and Kate McInnes, Department of Conservation, for their contributions. Jenny Youl and Vanessa Gray (Massey University), Trevor Kelly (The Vet Centre, Rotorua) and Claire Travers (Kiwi Encounter, Rainbow Springs, Rotorua) are acknowledged for the use of their photos. Dallas Bishop (Agresearch) and Ricardo Palma (Te Papa Tongarewa, Museum of New Zealand) confirmed the accuracy of the ectoparasites recorded from kiwi listed in Table 3. 10. References Abou-Madi, N.; Kollias, G.V. (Eds) 1992: Avian fluid therapy. Current veterinary therapy XI. W.B. Co, Philadelphia. Aguilar, R.F. 2004: The use of occlusive hydrocolloidal bandages in raptor wound management. Pp. 135–137 in: Proceedings of the Australian Committee of the Association of Avian Veterinarians, Kakadu. Andrews, J.R.H. 1977: A new species of Lyperosomum (Digenea: Dicrocoeliidae) from the North Island brown kiwi. New Zealand Journal of Zoology 4: 99–100. Bauck, L. 1994: Mycoses. Pp. 997–1006 in Ritchie, B.W.; Harrison, G.J.; Harrison, L.R. (Eds): Avian medicine: principles and application. Wingers Publishing Inc., Lake Worth, Florida. Bauck, L.; Kupersmith, D. 1991: Intraosseous fluids. Journal of the Association of Avian Veterinarians 5: 74–100. Benham, W.B. 1990: The structure of the rostellum in two new species of tapeworm, from Apteryx. Quarterly Journal of Microscopical Science 43: 83–96. Bennett, R.A. 1994: Neurology. Pp. 723–747 in Ritchie, B.W.; Harrison, G.J.; Harrison, L.R. (Eds): Avian medicine: principles and application. -
Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld. -
Assessing Symbiont Extinction Risk Using Cophylogenetic Data 2 3 Jorge Doña1 and Kevin P
1 Assessing symbiont extinction risk using cophylogenetic data 2 3 Jorge Doña1 and Kevin P. Johnson1 4 5 1. Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 6 1816 S. Oak St., Champaign, IL 61820, USA 7 8 *Corresponding authors: Jorge Doña & Kevin Johnson; e-mail: [email protected] & [email protected] 9 10 Abstract: Symbionts have a unique mode of life that has attracted the attention of ecologists and 11 evolutionary biologists for centuries. As a result of this attention, these disciplines have produced 12 a mature body of literature on host-symbiont interactions. In contrast, the discipline of symbiont 13 conservation is still in a foundational stage. Here, we aim to integrate methodologies on symbiont 14 coevolutionary biology with the perspective of conservation. We focus on host-symbiont 15 cophylogenies, because they have been widely used to study symbiont diversification history and 16 contain information on symbiont extinction. However, cophylogenetic information has never been 17 used nor adapted to the perspective of conservation. Here, we propose a new statistic, 18 “cophylogenetic extinction rate” (Ec), based on coevolutionary knowledge, that uses data from 19 event-based cophylogenetic analyses, and which could be informative to assess relative symbiont 20 extinction risks. Finally, we propose potential future research to further develop estimation of 21 symbiont extinction risk from cophylogenetic analyses and continue the integration of this existing 22 knowledge of coevolutionary biology and cophylogenetics into future symbiont conservation 23 studies and practices. 24 25 Keywords: coevolution, coextinction risk, conservation biology, cophylogenies, host-symbiont 26 interactions, parasites. -
Wide-Ranging Barcoding Aids Discovery of One-Third Increase Of
OPEN Wide-ranging barcoding aids discovery SUBJECT AREAS: of one-third increase of species richness TAXONOMY SYSTEMATICS in presumably well-investigated moths MOLECULAR EVOLUTION Marko Mutanen1, Lauri Kaila2 & Jukka Tabell3 PHYLOGENETICS 1Biodiversity Unit, Department of Biology, PO Box 3000, University of Oulu, Finland, 2Finnish Museum of Natural History, Zoology 3 Received Unit, PO Box 17, University of Helsinki, Finland, Laaksotie 28, FI-19600 Hartola, Finland. 3 July 2013 Accepted Rapid development of broad regional and international DNA barcode libraries have brought new insights 19 September 2013 into the species diversity of many areas and groups. Many new species, even within well-investigated species groups, have been discovered based initially on differences in DNA barcodes. We barcoded 437 collection Published specimens belonging to 40 pre-identified Palearctic species of the Elachista bifasciella group of moths 9 October 2013 (Lepidoptera, Elachistidae). Although the study group has been a subject of several careful morphological taxonomic examinations, an unexpectedly high number of previously undetected putative species is revealed, resulting in a 34% rise in species number in the study area. The validity of putative new species was subsequently supported with diagnostic morphological traits. We show that DNA barcodes provide a Correspondence and powerful method of detecting potential new species even in taxonomic groups and geographic areas that requests for materials have previously been under considerable morphological taxonomic scrutiny. should be addressed to M.M. (marko. [email protected]) stimates of the number of species on Earth vary from 3 to 100 million, the most recent survey concluding that there are about 8.7 million (61.3 million SE) species based on a quantitative extrapolation of current taxonomic knowledge1. -
Terrestrial Arthropods)
Fall 2004 Vol. 23, No. 2 NEWSLETTER OF THE BIOLOGICAL SURVEY OF CANADA (TERRESTRIAL ARTHROPODS) Table of Contents General Information and Editorial Notes..................................... (inside front cover) News and Notes Forest arthropods project news .............................................................................51 Black flies of North America published...................................................................51 Agriculture and Agri-Food Canada entomology web products...............................51 Arctic symposium at ESC meeting.........................................................................51 Summary of the meeting of the Scientific Committee, April 2004 ..........................52 New postgraduate scholarship...............................................................................59 Key to parasitoids and predators of Pissodes........................................................59 Members of the Scientific Committee 2004 ...........................................................59 Project Update: Other Scientific Priorities...............................................................60 Opinion Page ..............................................................................................................61 The Quiz Page.............................................................................................................62 Bird-Associated Mites in Canada: How Many Are There?......................................63 Web Site Notes ...........................................................................................................71 -
A New Genus and Two New Species of Phygadeuontini (Hymenoptera, Ichneumonidae, Cryptinae) from China
A peer-reviewed open-access journal ZooKeys 73:A 61–71 new (2010)genus and two new species of Phygadeuontini (Hymenoptera, Ichneumonidae... 61 doi: 10.3897/zookeys.73.836 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A new genus and two new species of Phygadeuontini (Hymenoptera, Ichneumonidae, Cryptinae) from China Mao-Ling Sheng†, Shu-Ping Sun‡ General Station of Forest Pest Management, State Forestry Administration, Shenyang, Liaoning, 110034, China † urn:lsid:zoobank.org:author:3C0EBDB7-26F7-469B-8DB1-5C7B1C6D9B89 ‡ urn:lsid:zoobank.org:author:974C0354-6118-4EA9-890F-EF5ECE8F257A Corresponding author : Mao-Ling Sheng ( [email protected] ) Academic editor: Gavin Broad | Received 5 September 2010 | Accepted 10 December 2010 | Published 29 December 2010 urn:lsid:zoobank.org:pub:869064F2-F69C-49B9-BBC3-8275FFCB76AF Citation: Sheng M-L, Sun S-P (2010) A new genus and two new species of Phygadeuontini (Hymenoptera, Ichneumonidae, Cryptinae) from China. ZooKeys 73 : 61 – 71 . doi: 10.3897/zookeys.73.836 Abstract Carinityla Sheng & Sun gen. n., Carinityla punctulata Sheng & Sun sp. n. and Carinityla pilosa Sheng & Sun sp. n. belonging to the tribe Phygadeuontini of the subfamily Cryptinae (Hymenoptera, Ichneumo- nidae), collected from Jiangxi Province, China, are described. A key to the species of the new genus, Carin- ityla Sheng & Sun, gen. n., is provided and the genus is placed in Townes’ key to genera of Endaseina. Keywords Ichneumonidae, Carinityla, new genus, new species, taxonomy, China. Introduction According to the most recent catalogue of Ichneumonoidea (Yu et al. 2005), the tribe Phygadeuontini of the subfamily Cryptinae (Hymenoptera, Ichneumonidae), com- prises 123 genera. -
Lepidoptera: Elachistidae)
LIETUVOS ENTOMOLOGŲ DRAUGIJOS DARBAI. 3 (31) tomas 73 NEW DATA ON NEW AND INSUFFICIENTLY KNOWN FOR LITHUANIAN FAUNA SPECIES OF ELACHISTINAE (LEPIDOPTERA: ELACHISTIDAE) VIRGINIJUS SRUOGA1, POVILAS IVINSKIS2, JOLANTA RIMŠAITĖ3 1Vytautas Magnus University, Education Academy. Donelaičio 58, LT-442448 Kaunas, Lithuania; 2, 3Institute of Ecology of Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania. E-mail: [email protected]; [email protected]; [email protected] Introduction The subfamily Elachistinae (family Elachistidae) belongs to the megadiverse lepidopteran superfamily Gelechioidea and contains presently 805 described species considered valid (Kaila, 2019). The larvae are obligate leaf miners, most species feed on monocotyledonous grasses and only some on dicotyledonous plants (Parenti & Varalda, 1994; Sruoga & Ivinskis, 2005). The moths are small, often cryptic, with a wingspan usually between 4 and 20 mm. Adults are poorly attracted to light and usually escape the general moth surveys and are poorly represented in museum and private collections. Therefore, the knowledge on species distribution is still insufficient. Since the monograph on Elachistidae of Lithuania (Sruoga & Ivinskis, 2005), only few papers dealing with the distribution of elachistid species in Lithuania have been published (Paulavičiūtė, 2006, 2008a, 2008b; Paulavičiūtė et al., 2017; Paulavičiūtė & Inokaitis, 2018; Ostrauskas et al., 2010a, 2010b; Sruoga & Ivinskis, 2011, 2017). The purpose of this paper is to provide new distribution data on two new and another eleven Elachistinae species reported from 11 administrative districts in Lithuania. Material and Methods Adult moths were collected by attracting them to mercury-vapour light and swept from low vegetation in the evening before sunset. The specimens were collected by Povilas Ivinskis (P.