Daphnia Magna (Cladocera – Daphniidae) Under Experiment Conditions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia
Palaeontologia Electronica palaeo-electronica.org Ephippia belonging to Ceriodaphnia Dana, 1853 (Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia Thomas A. Hegna and Alexey A. Kotov ABSTRACT The first fossil ephippia (cladoceran exuvia containing resting eggs) belonging to the extant genus Ceriodaphnia (Anomopoda: Daphniidae) are reported from the Lower Cretaceous (Aptian) freshwater Koonwarra Fossil Bed (Strzelecki Group), South Gippsland, Victoria, Australia. They represent only the second record of (pre-Quater- nary) fossil cladoceran ephippia from Australia (Ceriodaphnia and Simocephalus, both being from Koonwarra). The occurrence of both of these genera is roughly coincident with the first occurrence of these genera elsewhere (i.e., Mongolia). This suggests that the early radiation of daphniid anomopods predates the breakup of Pangaea. In addi- tion, some putative cladoceran body fossils from the same locality are reviewed; though they are consistent with the size and shape of cladocerans, they possess no cladoceran-specific synapomorphies. They are thus regarded as indeterminate diplostracans. Thomas A. Hegna. Department of Geology, Western Illinois University, Macomb, IL 61455, USA. ta- [email protected] Alexey A. Kotov. A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia and Kazan Federal University, Kremlevskaya Str.18, Kazan 420000, Russia. alexey-a- [email protected] Keywords: Crustacea; Branchiopoda; Cladocera; Anomopoda; Daphniidae; Cretaceous. Submission: 28 March 2016 Acceptance: 22 September 2016 INTRODUCTION tions that the sparse known fossil record does not correlate with a meager past diversity. The rarity of Water fleas (Crustacea: Cladocera) are small, the cladoceran fossils is probably an artifact, a soft-bodied branchiopod crustaceans and are a result of insufficient efforts to find them in known diverse and ubiquitous component of inland and new palaeontological collections (Kotov, aquatic communities (Dumont and Negrea, 2002). -
5A-Cyprinol Sulfate, a Bile Salt from Fish, Induces Diel Vertical Migration in Daphnia Meike Anika Hahn1*, Christoph Effertz1, Laurent Bigler2, Eric Von Elert1
RESEARCH ARTICLE 5a-cyprinol sulfate, a bile salt from fish, induces diel vertical migration in Daphnia Meike Anika Hahn1*, Christoph Effertz1, Laurent Bigler2, Eric von Elert1 1Aquatic Chemical Ecology, Department of Biology, University of Koeln, Koeln, Germany; 2Department of Chemistry, University of Zurich, Zurich, Switzerland Abstract Prey are under selection to minimize predation losses. In aquatic environments, many prey use chemical cues released by predators, which initiate predator avoidance. A prominent example of behavioral predator-avoidance constitutes diel vertical migration (DVM) in the freshwater microcrustacean Daphnia spp., which is induced by chemical cues (kairomones) released by planktivorous fish. In a bioassay-guided approach using liquid chromatography and mass spectrometry, we identified the kairomone from fish incubation water as 5a-cyprinol sulfate inducing DVM in Daphnia at picomolar concentrations. The role of 5a-cyprinol sulfate in lipid digestion in fish explains why from an evolutionary perspective fish has not stopped releasing 5a- cyprinol sulfate despite the disadvantages for the releaser. The identification of the DVM-inducing kairomone enables investigating its spatial and temporal distribution and the underlying molecular mechanism of its perception. Furthermore, it allows to test if fish-mediated inducible defenses in other aquatic invertebrates are triggered by the same compound. DOI: https://doi.org/10.7554/eLife.44791.001 Introduction Predation is recognized as an important selective force which -
Juvenile and Adult Daphnia Magna Survival in Response to Hypoxia
Juvenile and adult Daphnia magna survival in response to hypoxia Erica Strom University of Minnesota Duluth University Honors – Senior Capstone Spring 2015 UROP Project Faculty Advisor: Dr. Donn Branstrator STROM Daphnia magna Hypoxia Abstract This study was undertaken to determine survival of juvenile and adult Daphnia magna under hypoxic conditions in comparison to its predators. Because D. magna perform diel vertical migration to avoid visually-oriented predators, they spend a significant portion of the day at depth where light and oxygen levels are low. In this series of experiments, Daphnia magna were exposed to low dissolved oxygen concentrations and assessed for survival. Juvenile D. magna were hypothesized to tolerate a lower dissolved oxygen concentration than adults because of their smaller size and presumed lower oxygen consumption. The dissolved oxygen concentration lethal to 50 percent of both juvenile and adult D. magna was found to be 0.47 mg/L, which is significantly lower than the minimum dissolved oxygen limits experienced by its predators. 2 STROM Daphnia magna Hypoxia Introduction Daphnia magna (Crustacea: Cladocera) is a species of zooplankton that resides in freshwater lakes, mainly in northeastern North America (EPA 1985). At night, D. magna feed on algae near the surface, but during the day they migrate lower into the water column to avoid predation by visually-oriented fish – a behavioral pattern called diel vertical migration, DVM (Lampert 1989). Going deeper into a lake can expose D. magna to a hypoxic (low-oxygen) environment, as well as a lower light and temperature levels (Wetzel 2001). Prolonged exposure to hypoxia can induce hemoglobin production, causing some Daphnia to turn red (Gorr et al. -
Reanalysis and Revision of the Complete Mitochondrial Genome of Artemia Urmiana Günther, 1899 (Crustacea: Anostraca)
diversity Article Reanalysis and Revision of the Complete Mitochondrial Genome of Artemia urmiana Günther, 1899 (Crustacea: Anostraca) Alireza Asem 1,2,† , Amin Eimanifar 3,†, Weidong Li 4,*, Chun-Yang Shen 5, Farnaz Mahmoudi Shikhsarmast 1,6, Ya-Ting Dan 7, Hao Lu 1,2, Yang Zhou 8, You Chen 1,9, Pei-Zheng Wang 1,9,* and Michael Wink 10 1 Key Laboratory of Utilization and Protection of Tropical Marine Living Resources, Hainan Tropical Ocean University, Sanya 572000, China; [email protected] (A.A.); [email protected] (F.M.S.); [email protected] (H.L.); [email protected] (Y.C.) 2 College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya 572000, China 3 Independent Senior Scientist, Industrial District, Easton, MD 21601, USA; [email protected] 4 College of Ecology and Environment, Hainan Tropical Ocean University, Haikou 570000, China 5 Department of Biology, Chengde Medical University, Chengde 067000, China; [email protected] 6 College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya 572000, China 7 College of Marine Science, Shanghai Ocean University, Shanghai 200000, China; [email protected] 8 Institute of Deep Sea Science and Engineering, Chinese Academy of Science, Sanya 572000, China; [email protected] 9 College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China 10 Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; [email protected] * Correspondence: [email protected] (W.L.); [email protected] (P.-Z.W.) † Equal contribution as first author. Abstract: In the previously published mitochondrial genome sequence of Artemia urmiana (NC_021382 [JQ975176]), the taxonomic status of the examined Artemia had not been determined, due to partheno- Citation: Asem, A.; Eimanifar, A.; Li, W.; Shen, C.-Y.; Shikhsarmast, F.M.; genetic populations coexisting with A. -
Uncovering Ultrastructural Defences in Daphnia Magna – an Interdisciplinary Approach to Assess the Predator- Induced Fortification of the Carapace
Uncovering Ultrastructural Defences in Daphnia magna – An Interdisciplinary Approach to Assess the Predator- Induced Fortification of the Carapace Max Rabus1,2*, Thomas Söllradl3, Hauke Clausen-Schaumann3,4, Christian Laforsch2,5 1 Department of Biology II, Ludwig-Maximilians-University Munich, Germany, 2 Department of Animal Ecology I, University of Bayreuth, Germany, 3 Department of Precision, and Micro-Engineering, Engineering Physics, University of Applied Sciences Munich, Germany, 4 Center for NanoScience, Ludwig-Maximilians- University Munich, Germany, 5 Geo-Bio Center, Ludwig-Maximilians-University Munich, Germany Abstract The development of structural defences, such as the fortification of shells or exoskeletons, is a widespread strategy to reduce predator attack efficiency. In unpredictable environments these defences may be more pronounced in the presence of a predator. The cladoceran Daphnia magna (Crustacea: Branchiopoda: Cladocera) has been shown to develop a bulky morphotype as an effective inducible morphological defence against the predatory tadpole shrimp Triops cancriformis (Crustacea: Branchiopoda: Notostraca). Mediated by kairomones, the daphnids express an increased body length, width and an elongated tail spine. Here we examined whether these large scale morphological defences are accompanied by additional ultrastructural defences, i.e. a fortification of the exoskeleton. We employed atomic force microscopy (AFM) based nanoindentation experiments to assess the cuticle hardness along with tapping mode AFM imaging to visualise the surface morphology for predator exposed and non-predator exposed daphnids. We used semi-thin sections of the carapace to measure the cuticle thickness, and finally, we used fluorescence microscopy to analyse the diameter of the pillars connecting the two carapace layers. We found that D. magna indeed expresses ultrastructural defences against Triops predation. -
Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio
Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 January 2012 Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller* and Kenneth A. Krieger Acknowledgements The authors are grateful for the assistance of Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve, for providing funding for this project, directing us to updated taxonomic resources and critically reviewing drafts of this atlas. We also thank Dr. Brenda Hann, Department of Biological Sciences at the University of Manitoba, for her thorough review of the final draft. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. -
Genetic Population Structure of the Fairy Shrimp Branchinecta Coloradensis (Anostraca) in the Rocky Mountains of Colorado
Color profile: Disabled Composite Default screen 2049 Genetic population structure of the fairy shrimp Branchinecta coloradensis (Anostraca) in the Rocky Mountains of Colorado Andrew J. Bohonak Abstract: Dispersal rates for freshwater invertebrates are often inferred from population genetic data. Although genetic approaches can indicate the amount of isolation in natural populations, departures from an equilibrium between drift and gene flow often lead to biased gene flow estimates. I investigated the genetic population structure of the pond- dwelling fairy shrimp Branchinecta coloradensis in the Rocky Mountains of Colorado, U.S.A., using allozymes. Glaciation in this area and the availability of direct dispersal estimates from previous work permit inferences regarding the relative impacts of history and contemporary gene flow on population structure. Hierarchical F statistics were used θ θ to quantify differentiation within and between valleys ( SV and VT, respectively). Between valleys separated by 5– θ 10 km, a high degree of differentiation ( VT = 0.77) corresponds to biologically reasonable gene flow estimates of 0.07 individuals per generation, although it is possible that this value represents founder effects and nonequilibrium ≤ θ conditions. On a local scale ( 110 m), populations are genetically similar ( SV = 0.13) and gene flow is estimated to be 1.7 individuals exchanged between ponds each generation. This is very close to an ecological estimate of dispersal for B. coloradensis via salamanders. Gene flow estimates from previous studies on other Anostraca are also similar on comparable geographic scales. Thus, population structure in B. coloradensis appears to be at or near equilibrium on a local scale, and possibly on a regional scale as well. -
Alewife Planktivory Controls the Abundance of Two Invasive Predatory Cladocerans in Lake Michigan
Freshwater Biology (2007) 52, 561–573 doi:10.1111/j.1365-2427.2007.01728.x Alewife planktivory controls the abundance of two invasive predatory cladocerans in Lake Michigan STEVEN A. POTHOVEN,* HENRY A. VANDERPLOEG,† JOANN F. CAVALETTO,† DAMON M. KRUEGER,‡ DORAN M. MASON† AND STEPHEN B. BRANDT† *National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory, Muskegon, MI, U.S.A. †National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, U.S.A. ‡University of Michigan, School of Natural Resources and Environment, Ann Arbor, MI, U.S.A. SUMMARY 1. We sampled along a nearshore transect (10-m bathymetric contour) in Lake Michigan to determine diet, 24-h feeding periodicity, daily ration and food requirements of an invasive fish, the alewife, Alosa pseudoharengus, relative to zooplankton abundance and production. Our objective was to determine whether the alewife controls the abundance of two invasive, predatory cladocerans, Bythotrephes longimanus and Cercopagis pengoi. 2. Bosminidae was the most abundant prey taxon and Chydoridae, Leptodora, Chironom- idae and Bythotrephes were the least abundant. Neither Bythotrephes nor Cercopagis were important prey for small alewives (£100 mm). Bythotrephes was eaten by over 50% of large alewives (>100 mm) and accounted for 10–27% of the diet weight. Cercopagis was eaten by about 30% of the large alewives but only accounted 1% of the diet weight. 3. Food weight in stomachs was highest early in the night for small alewives and lowest at night for large alewives. Chironomidae and large Chydoridae were the preferred prey of small alewives. Bythotrephes and large Chydoridae were the preferred prey for large alewives. -
An Overview of the Contribution of Studies with Cladocerans
Acta Limnologica Brasiliensia, 2015, 27(2), 145-159 http://dx.doi.org/10.1590/S2179-975X3414 An overview of the contribution of studies with cladocerans to environmental stress research Um panorama da contribuição de estudos com cladóceros para as pesquisas sobre o estresse ambiental Albert Luiz Suhett1, Jayme Magalhães Santangelo2, Reinaldo Luiz Bozelli3, Christian Eugen Wilhem Steinberg4 and Vinicius Fortes Farjalla3 1Unidade Universitária de Biologia, Centro Universitário Estadual da Zona Oeste – UEZO, CEP 23070-200, Rio de Janeiro, RJ, Brazil e-mail: [email protected] 2Departamento de Ciências Ambientais, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro – UFRRJ, CEP 23890-000, Seropédica, RJ, Brazil e-mail: [email protected] 3Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro – UFRJ, CEP 21941-590, Rio de Janeiro, RJ, Brazil e-mail: [email protected]; [email protected] 4Institute of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt Universität zu Berlin, 12437, Berlin, Germany e-mail: [email protected] Abstract: Cladocerans are microcrustaceans component of the zooplankton in a wide array of aquatic ecosystems. These organisms, in particular the genusDaphnia , have been widely used model organisms in studies ranging from biomedical sciences to ecology. Here, we present an overview of the contribution of studies with cladocerans to understanding the consequences at different levels of biological organization of stress induced by environmental factors. We discuss how some characteristics of cladocerans (e.g., small body size, short life cycles, cyclic parthenogenesis) make them convenient models for such studies, with a particular comparison with other major zooplanktonic taxa. -
A First AFLP-Based Genetic Linkage Map for Brine Shrimp Artemia Franciscana and Its Application in Mapping the Sex Locus
A first AFLP-Based Genetic Linkage Map for Brine Shrimp Artemia franciscana and Its Application in Mapping the Sex Locus Stephanie De Vos1,2,3, Peter Bossier1, Gilbert Van Stappen1, Ilse Vercauteren2,3, Patrick Sorgeloos1, Marnik Vuylsteke2,3* 1 Laboratory of Aquaculture, Artemia Reference Center (ARC), Department of Animal Production, Ghent University, Gent, Belgium, 2 Department of Plant Systems Biology, VIB, Gent, Belgium, 3 Department of Biotechnology and Bioinformatics, Ghent University, Gent, Belgium Abstract We report on the construction of sex-specific linkage maps, the identification of sex-linked markers and the genome size estimation for the brine shrimp Artemia franciscana. Overall, from the analysis of 433 AFLP markers segregating in a 112 full- sib family we identified 21 male and 22 female linkage groups (2n = 42), covering 1,041 and 1,313 cM respectively. Fifteen putatively homologous linkage groups, including the sex linkage groups, were identified between the female and male linkage map. Eight sex-linked AFLP marker alleles were inherited from the female parent, supporting the hypothesis of a WZ–ZZ sex-determining system. The haploid Artemia genome size was estimated to 0.93 Gb by flow cytometry. The produced Artemia linkage maps provide the basis for further fine mapping and exploring of the sex-determining region and are a possible marker resource for mapping genomic loci underlying phenotypic differences among Artemia species. Citation: De Vos S, Bossier P, Van Stappen G, Vercauteren I, Sorgeloos P, et al. (2013) A first AFLP-Based Genetic Linkage Map for Brine Shrimp Artemia franciscana and Its Application in Mapping the Sex Locus. -
Lineage Diversity, Morphological and Genetic Divergence in Daphnia Magna (Crustacea) Among Chinese Lakes at Different Altitudes
Contributions to Zoology 89 (2020) 450-470 CTOZ brill.com/ctoz Lineage diversity, morphological and genetic divergence in Daphnia magna (Crustacea) among Chinese lakes at different altitudes Xiaolin Ma* Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China Yijun Ni* Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China Xiaoyu Wang Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China Wei Hu Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China Mingbo Yin Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China [email protected] Abstract The biogeography and genetic structure of aquatic zooplankton populations remains understudied in the Eastern Palearctic, especially the Qinghai-Tibetan Plateau. Here, we explored the population-genetic di- versity and structure of the cladoceran waterflea Daphnia magna found in eight (out of 303 investigated) waterbodies across China. The three Tibetan D. magna populations were detected within a small geo- graphical area, suggesting these populations have expanded from refugia. We detected two divergent mi- tochondrial lineages of D. magna in China: one was restricted to the Qinghai-Tibetan Plateau and the * Contributed equally. © Ma et al., 2020 | doi:10.1163/18759866-bja10011 This is an open access article distributed under the terms of the cc by 4.0 license. -
Long-Term Patterns in the Population Dynamics of Daphnia Longispina, Leptodora Kindtii and Cyanobacteria in a Shallow Reservoir: a Self-Organising Map (SOM) Approach
RESEARCH ARTICLE Long-Term Patterns in the Population Dynamics of Daphnia longispina, Leptodora kindtii and Cyanobacteria in a Shallow Reservoir: A Self-Organising Map (SOM) Approach Adrianna Wojtal-Frankiewicz1*, Andrzej Kruk2, Piotr Frankiewicz1,3, Zuzanna Oleksińska1, Katarzyna Izydorczyk3 1 Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, 2 Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, 3 European Regional Centre for Ecohydrology, Polish Academy of Science, Lodz, Poland * [email protected] OPEN ACCESS Abstract Citation: Wojtal-Frankiewicz A, Kruk A, Frankiewicz P, Oleksińska Z, Izydorczyk K (2015) Long-Term The recognition of long-term patterns in the seasonal dynamics of Daphnia longispina, Lep- Patterns in the Population Dynamics of Daphnia todora kindtii and cyanobacteria is dependent upon their interactions, the water tempera- longispina, Leptodora kindtii and Cyanobacteria in a Shallow Reservoir: A Self-Organising Map (SOM) ture and the hydrological conditions, which were all investigated between 1999 and 2008 in Approach. PLoS ONE 10(12): e0144109. the lowland Sulejow Reservoir. The biomass of cyanobacteria, densities of D. longispina doi:10.1371/journal.pone.0144109 and L. kindtii, concentration of chlorophyll a and water temperature were assessed weekly Editor: Takeshi Miki, National Taiwan University, from April to October at three sampling stations along the longitudinal reservoir axis. The TAIWAN retention time was calculated using data on the actual water inflow and reservoir volume. A Received: February 17, 2015 self-organising map (SOM) was used due to high interannual variability in the studied Accepted: November 15, 2015 parameters and their often non-linear relationships.