Riccardo Giacconi (1931-2018) Astronomer Who Opened the X-Ray Window Onto the Universe

Total Page:16

File Type:pdf, Size:1020Kb

Riccardo Giacconi (1931-2018) Astronomer Who Opened the X-Ray Window Onto the Universe COMMENT OBITUARY Riccardo Giacconi (1931-2018) Astronomer who opened the X-ray window onto the Universe. evolutionary discoveries in astron- Giacconi led the opening up of space obser- omy stem from new observing tech- vatories to general use — not just by special- nologies. And so it was with orbiting ist operating teams — and the establishment RX-ray telescopes. They revealed a Universe of calibrated data archives. Such archives are dominated by luminous, gravity-fed black now widely implemented by NASA, and are BETTMANN/GETTY holes and plasmas glowing at tens of mil- gaining ground in the new generation of large, lions of degrees, inside clusters of galaxies. ground-based observatories. As a result, more Now 60 years old, the discipline requires astronomers are embracing multi-wavelength space observatories — outside Earth’s X-ray- observations, from radio to X-rays. Archival blocking atmosphere — and new, specialized data get re-used, increasing their discovery optics and detectors. For pioneering these, potential with time (a typical Chandra data Riccardo Giacconi won the 2002 Nobel Prize set is re-published about six times). This in Physics. openness has catalysed a better understand- Giacconi shaped the tools and culture of ing of the Universe and its evolution. modern astronomy, which centres on large In 1981, Giacconi became the first facilities that serve the community. He real- director of the Space Telescope Science Insti- ized the importance of catering to the entire tute (STScI) at the Johns Hopkins Univer- observatory life cycle, across the electro- sity in Baltimore, Maryland, which operates magnetic spectrum — from conception to NASA’s Hubble Space Telescope. His man- hardware implementation and operations, agement style, developed during his AS&E including calibrations, software pipelines, of X-ray observatories. The first, NASA’s years, shaped the STScI into one of the pre- data archives and software tools for users. He Small Astronomy Satellite 1, was launched mier astronomy centres worldwide. He took championed scientific leadership and man- from the Italian San Marco platform off the same tack when he became director- agement, and integrated teams, with mem- the coast of Kenya, on 12 December 1970 general of the European Southern Observa- bers doing both technical work and research. — Kenya’s independence day — and was tory (ESO) in Garching, Germany, in 1992. His approach is now integral to all major renamed Uhuru, Swahili for ‘freedom’. At the ESO, he oversaw the development of international observatories. One result is the Uhuru performed the first X-ray survey the highly successful Very Large Telescope adoption of data interoperability standards of the entire sky. It led to the discovery of in Chile, and was involved in the early devel- for astronomy, developed by the International accreting neutron-star and black-hole opment of the revolutionary Atacama Large Virtual Observatory Alliance since 2002. sources in binary stars, X-ray emission from Millimeter/submillimeter Array (ALMA). Giacconi died on 9 December 2018 in San supernova remnants, active galactic nuclei He continued to oversee ALMA, together Diego, California, aged 87. He was born in and hot haloes in clusters. with other major US radio telescopes, during Genoa, Italy, in 1931. His mother, who taught In 1973, Giacconi and his group moved his five-year tenure as president of Associ- in a secondary school and wrote mathematics to the Harvard-Smithsonian Center for ated Universities, Inc., which started in 1999. textbooks, spurred him to excel. In 1956, with Astrophysics. Here, he led the collaboration Science was Giacconi’s driving force. His a doctorate on cosmic-ray detection from the that built and operated the first imaging professional, social and family lives were often University of Milan, he moved to the United X-ray telescope, the Einstein Observatory. intertwined, with friends and engagements States, as a Fulbright fellow at Indiana Univer- This detected X-rays from almost all types worldwide. Architecture and art were impor- sity Bloomington and later became a research of object in the cosmos, establishing the tant to him: he enjoyed copying Renaissance associate at Princeton University in New Jer- technique as a branch of astronomy. paintings, with which he decorated his home. sey. In 1959, Giacconi joined the Massachu- Understanding the X-ray background He could be blunt and push controversial setts Institute of Technology (MIT) spin-off drove Giacconi. It led him to pursue ideas, but he appreciated a vigorous discus- company American Science & Engineering telescopes with increasingly higher image sion. I remember his disappointment during (AS&E), then in Cambridge. resolution — notably, the Chandra X-ray the Harvard years that people did not argue Here, with Bruno Rossi of MIT and other Observatory, NASA’s flagship mission with him any more. As Giacconi wrote in AS&E physicists, Giacconi conducted a launched on the Space Shuttle Columbia in his autobiography, Secrets of the Hoary Deep series of experiments on the detection of July 1999. Thanks to Chandra, we know that (2008), he needed to explore uncharted seas. X-rays from space. In 1962, with Geiger this background is mostly due to giant black He opened new realms to discovery. ■ counters flown on an Aerobee rocket from holes with masses up to one billion times that the US White Sands Missile Range in New of the Sun, swallowing gas clouds and stars. Giuseppina Fabbiano is senior Mexico, Giacconi and his collaborators Early X-ray observations presented a whole astrophysicist at the Center for Astrophysics discovered the first celestial X-ray source new set of phenomena. They showed that, in | Harvard & Smithsonian, and head of (Sco X-1). It was later identified as a neutron some cases, the energy produced by celestial the Chandra X-ray Center Data Systems star that was accreting matter from a low- bodies is more than can be observed in visual Division. She met Giacconi in the early 1970s, mass star companion. The team also detected light. These findings underpin the present while working on Uhuru data for her doctoral a pervasive celestial X-ray background. understanding of the evolution of binary thesis. In 1975, she joined his High Energy These discoveries spurred Giacconi’s stars, galaxies and the giant black holes at Division of the Center for Astrophysics. proposal to NASA for a strategic programme their centres, and of the Universe at large. e-mail: [email protected] 430 | NATURE | VOL 565 | 24 JANUARY 2019 ©2019 Spri nger Nature Li mited. All ri ghts reserved. .
Recommended publications
  • The Cosmic X-Ray Background
    The Cosmic X-Ray Background Steven M. Kahn Kavli Institute for Particle Astrophysics and Cosmology Stanford University 1 Outline of Lectures Lecture I: * Historical Introduction and General Characteristics of the CXB. * Contributions from Discrete Source Classes * Spectral Paradoxes Lecture II: * The CXB and Large Scale Structure * The Galactic Contributions to the CXB * The CXB and the Cosmic Web 2 I. Historical Introduction and General Characteristics of the CXB. 3 Historical Introduction * The “birth” of the field of X-ray astronomy is usually associated with the flight of a particular rocket experiment in 1962 that yielded the detection of the first non-solar cosmic X-ray source: Scorpius X-1. (Giacconi et al. 1962) * That same rocket experiment also yielded the discovery of an apparent diffuse component of X-radiation, the Cosmic X-ray Background (CXB). (N.B. This was well in advance of the discovery of the Cosmic Microwave Background by Pensias and Wilson!) * In the ensuing 40 some odd years, our understanding of the X-ray Universe has progressed considerably. X-rays have now been detected from virtually all classes of astronomical systems, ranging from normal stars to the most distant galaxies. * Nevertheless, the precise origin of the CXB remains puzzling. This has been one of the great mysteries of high energy astrophysics! 4 Historical Introduction 5 Historical Introduction * “The diffuse character of the observed background radiation does not permit a positive determination of its nature and origin. However, the apparent absorption coefficient in mica and the altitude dependence is consistent with radiation of about the same wavelength responsible for the peak.
    [Show full text]
  • Chandra Was Launched Aboard Space Shuttle Columbia on July 23, 1999!!! Crew Lost During Re-Entry Modern X-Ray Telescopes and Detectors
    Chandra was launched aboard Space Shuttle Columbia on July 23, 1999!!! Crew Lost During Re-Entry Modern X-ray Telescopes and Detectors •X-ray Telescopes •X-ray Instruments •Some early highlights •Observations •Data characteristics •Calibration •Analysis X-ray Telescope: The advantages • Achieve 2-D imaging – Separate sources – Study morphology of extended sources – Simultaneously measure both source and local background • Reduce the background Æ increase the source 1/2 detection sensitivity: S/N ~ Fs t/(Fst+ ASbt) –t –exposure time –Fs – source count flux –A –source detection area –Sb – background surface brightness: Detector + sky background • Facilitate high-resolution dispersive spectrometers X-ray Telescope: Focusing mechanism External reflection at small grazing angles - an analogy of skipping stones on water •Snell’s law: sinφr=sinφi/n, where the index of refraction n=1-δ+iβ • External reflection occurs with sinφr > 1 Æ 1/2 The critical grazing angle θ = π/2- φi ~ (2δ) 1/2 (δ ∝ ne /E << 1) Focusing mechanism (cont.) • The critical angle (effective collecting area) decreases with increasing photon energy • High Z materials allow for reflecting high energy photon with the same grazing angle X-ray Telescope: Hans Wolter Configuraions • A Paraboloid gives a perfect image for on-axis rays. But it gives a coma blur of equivalent image size proportional to the off-axis angle. • Wolter showed that two reflections were needed to eliminate the coma. • A Paraboloid-Hyperboloid combination proves to be the most useful in X-ray astronomy. X-ray Telescopes • First used to observe the Solar corona • Then transferred to general astronomy with HEAO-2 (Einstein Observatory), launched in 1978: – imaged X-rays in 0.5-4.0 keV.
    [Show full text]
  • Nfap Policy Brief » O C T O B E R 2017
    NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» O CTOBER 2017 IMMIGRANTS AND NOBEL PRIZES : 1901- 2017 EXECUTIVE SUMMARY Immigrants have been awarded 39 percent, or 33 of 85, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Reiner Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. These achievements by immigrants point to the gains to America of welcoming talent from across the globe. It does not mean America should welcome only Nobel Prize winners. Such a policy would be impossible to implement, since most immigrant Nobel Prize winners enter the United States many years before being awarded this honor. Most people immigrate to another country in their 20s, particularly employment-based immigrants, who either study in America or come here to work shortly after obtaining a degree abroad. The average of age of Nobel Prize winners at the time of the award is 59.5 years, according to economist Mark J. Perry.1 Table 1 Immigrant Nobel Prize Winners in Chemistry, Medicine and Physics Since 2000 Immigrant Nobel Winners Since 2000 33 of 85 American winners have been immigrants Percentage of Immigrant Winners Since 2000 39% Source: Royal Swedish Academy of Sciences, National Foundation for American Policy, George Mason University Institute for Immigration Research.
    [Show full text]
  • Highlights and Discoveries from the Chandra X-Ray Observatory1
    Highlights and Discoveries from the Chandra X-ray Observatory1 H Tananbaum1, M C Weisskopf2, W Tucker1, B Wilkes1 and P Edmonds1 1Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138. 2 NASA/Marshall Space Flight Center, ZP12, 320 Sparkman Drive, Huntsville, AL 35805. Abstract. Within 40 years of the detection of the first extrasolar X-ray source in 1962, NASA’s Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08<E<10 keV, locating X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • Important Events in Chile
    No. 87 – March 1997 Important Events in Chile R. GIACCONI, Director General of ESO The political events foreseen in the December 1996 issue of The Messenger did take place in Chile in the early part of December 1996. On December 2, the Minister of Foreign Affairs of the Republic of Chile, Mr. Miguel Insulza, and the Director General of ESO, Professor Riccardo Giacconi, exchanged in Santiago Instruments of Ratification of the new “Interpretative, Supplementary and Amending Agreement” to the 1963 Convention between the Government of Chile and the European Southern Observatory. This agreement opens a new era of co-operation between Chilean and European Astronomers. On December 4, 1996, the “Foundation Ceremony” for the Paranal Observatory took place on Cerro Paranal, in the presence of the President of Chile, Mr. Eduardo Frei Ruiz-Tagle, the Royal couple of Sweden, King Carl XVI Gustaf and Queen Silvia, the Foreign Minister of the Republic of Chile, Mr. José Miguel Insulza, the Ambassadors of the Member States, members of the of the ESO Executive, ESO staff and the Paranal contractors’ workers. The approximately 250 guests heard addresses by Dr. Peter Creo- la, President of the ESO Council, Professor Riccardo Giacconi, Direc- tor General of ESO, Foreign Minis- ter José Miguel Insulza and Presi- dent Eduardo Frei Ruiz-Tagle. The original language version of the four addresses follows this introduction. (A translation in English of the Span- ish text is given on pages 58 and 59 in this issue of The Messenger.) A time capsule whose contents are described in Dr. Richard West's article was then deposited by Presi- dent Frei with the works being bless- ed by the Archbishop of Antofagas- ta, Monsignor Patricio Infante.
    [Show full text]
  • Eyes for Gamma Rays” Though the Major Peaks Suggest a Periodic- Whether These Are Truly Gamma-Ray Bursts for a Description of This System)
    sion of regularity and slow evolution in the They suggested that examination of the Vela exe-atmospheric nuclear detonation. Surpris- universe persisted into the 1960s. data might disclose evidence of bursts of ingly, however, the survey soon revealed that The feeling that transient cosmic events gamma rays at times close to the appearance the gamma-ray instruments on widely sepa- were rare was certainly prevalent in 1959 of supernovae. Such searches were con- rated satellites had sometimes responded when summit meetings were being held be- ducted; however, no distinctive signals were almost identically. Some of these events were tween England, the United States, and found. attributable to solar flare activity. However, Russia to discuss a nuclear test-ban treaty. On the other hand, there was evidence of one particularly distinctive event was dis- One key issue was the ability to detect treaty variability that had been ignored. For exam- covered for which a solar origin seemed violations unambiguously. A leading ple, the earliest x-ray data from small rocket inconsistent. Fortunately, the characteristics proposal for the detection of exo-at- probes and from satellites were often found of this event did not at all resemble those of a mospheric nuclear explosions was the use of to disagree significantly. The quality of the nuclear detonation, and thus the event did satellites with instruments that included de- data, rather than actual variations in the not create concern of a possible test-ban tectors sensitive to the gamma rays emitted sources, was suspected as the reason for treaty violation. by the explosion as well as those emitted these discrepancies.
    [Show full text]
  • Ccjun12-Cover Vb.Indd
    CERN Courier June 2012 Faces & Places I NDUSTRY CERN supports new centre for business incubation in the UK To bridge the gap between basic science and industry, CERN and the Science and Technology Facilities Council (STFC) have launched a new business-incubation centre in the UK. The centre will support businesses and entrepreneurs to take innovative technologies related to high-energy physics from technical concept to market reality. The centre, at STFC’s Daresbury Science and Innovation Campus, follows the success of a business-incubation centre at the STFC’s Harwell campus, which has run for 10 years with the support of the European Space Agency (ESA). The ESA Business Incubation Centre (ESA BIC) supports entrepreneurs and hi-tech start-up companies to translate space technologies, applications and services into viable nonspace-related business ideas. The CERN-STFC BIC will nurture innovative ideas based on technologies developed at CERN, with a direct contribution from CERN in terms of expertise. The centre is managed by STFC Innovations Limited, the technology-transfer office of STFC, which will provide John Womersley, CEO of STFC, left, and Steve Myers, CERN’s director of accelerators and successful applicants with entrepreneurial technology, at the launch of the CERN-STFC Business Incubation Centre on the Daresbury support, including a dedicated business Science and Innovation Campus. (Image credit: STFC.) champion to help with business planning, accompanied technical visits to CERN as business expertise from STFC and CERN. total funding of up to £40,000 per company, well as access to scientific, technical and The selected projects will also receive a provided by STFC.
    [Show full text]
  • The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus
    ISSN (Online) 2393-8021 IARJSET ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 5, Issue 10, October 2018 The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus Dr.(Prof.) V.C.A NAIR* Educational Physicist, Research Guide for Physics at Shri J.J.T. University, Rajasthan-333001, India. *[email protected] Abstract: The Research Paper consists mainly of the birth dates of scientists and philosophers Before Christ (BC) and After Death (AD) starting from Thales of Miletus with a brief description of their work and contribution to the development of Physics. The author has taken up some 400 odd scientists and put them in a chronological order. Nobel laureates are considered separately in the same paper. Along with the names of researchers are included few of the scientific events of importance. The entire chain forms a cascade and a ready reference for the reader. The graph at the end shows the recession in the earlier centuries and its transition to renaissance after the 12th century to the present. Keywords: As the contents of the paper mainly consists of names of scientists, the key words are many and hence the same is not given I. INTRODUCTION As the material for the topic is not readily available, it is taken from various sources and the collection and compiling is a Herculean task running into some 20 pages. It is given in 3 parts, Part I, Part II and Part III. In Part I the years are given in Chronological order as per the year of birth of the scientist and accordingly the serial number.
    [Show full text]
  • Highlights of Modern Physics and Astrophysics
    Highlights of Modern Physics and Astrophysics How to find the “Top Ten” in Physics & Astrophysics? - List of Nobel Laureates in Physics - Other prizes? Templeton prize, … - Top Citation Rankings of Publication Search Engines - Science News … - ... Nobel Laureates in Physics Year Names Achievement 2020 Sir Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity" Reinhard Genzel, Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy" 2019 James Peebles "for theoretical discoveries in physical cosmology" Michel Mayor, Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star" 2018 Arthur Ashkin "for groundbreaking inventions in the field of laser physics", in particular "for the optical tweezers and their application to Gerard Mourou, Donna Strickland biological systems" "for groundbreaking inventions in the field of laser physics", in particular "for their method of generating high-intensity, ultra-short optical pulses" Nobel Laureates in Physics Year Names Achievement 2017 Rainer Weiss "for decisive contributions to the LIGO detector and the Kip Thorne, Barry Barish observation of gravitational waves" 2016 David J. Thouless, "for theoretical discoveries of topological phase transitions F. Duncan M. Haldane, and topological phases of matter" John M. Kosterlitz 2015 Takaaki Kajita, "for the discovery of neutrino oscillations, which shows that Arthur B. MsDonald neutrinos have mass" 2014 Isamu Akasaki, "for the invention of
    [Show full text]
  • International Union of Pure and Applied Physics
    International Union of Pure and Applied Physics Newsletter SEPTEMBER President: Michel Spiro • Editor-in-Chief: Kok Khoo Phua • Editors: Maitri Bobba; Judy Yeo 2020 IUPAP Office hosted & supported by: NANYANG TECHNOLOGICAL UNIVERSITY, SINGAPORE PRESIDENTS' NOTE The Presidents believe that IUPAP should develop a Strategic Plan to build on that by finding more ways to incorporate (below) to guide its development through the start of its second these young physicists into our activities. century, and have prepared this preliminary version. It is distributed in this Newsletter with the request that all stakeholders offer their 4. IUPAP has long worked to ensure that the interaction proposals for changes in content and emphasis. It is anticipated that between physicists from different countries, which is the Strategic Plan will be further discussed in the Zoom meeting of key for the progress of physics, can continue even when the Council and Commission Chairs in October, so your reply should relations between the countries are strained. In the be received before 25th September 2020 to be part of the input for present international climate, this activity is as important those discussions. as it was 50 years ago. New activities being developed to play a key role in IUPAP. The Future of IUPAP During the three years between now and 2023, the year of the 1. IUPAP is collaborating with and leading fellow unions centenary of our first General Assembly, the International Union and other partners to promote and to organise an of Pure and Applied Physics (IUPAP) will be continuing its major International Year for Basic Sciences for Sustainable initiatives of the past, commencing new activities, and working Development in 2022.
    [Show full text]
  • High Energy Properties of X-Ray Sources Observed with Bepposax
    1 High energy properties of X–ray sources observed with BeppoSAX F. Fronteraa,b, D. Dal Fiumeb, G. Malagutib, L. Nicastrob, M. Orlandinib, E. Palazzib, E. Pianb, F. Favatac, A. Santangelod, a Dipartimento di Fisica, Universit`adi Ferrara, Via Paradiso 12, 44100 Ferrara, Italy b Istituto Tecnologie e Studio Radiazioni Extraterrestri (TeSRE), C.N.R., via Gobetti 101, 40129 Bologna, Italy c Astrophysics Division, Space Science Department of ESA, ESTEC Keplerlaan 1, 2200 AG Noordwijk, The Netherlands d Istituto Fisica Cosmica e Applicazioni all’Informatica (IFCAI), C.N.R., via La Malfa 153, 90146 Palermo, Italy We report on highlight results on celestial sources observed in the high energy band (> 20 keV) with BeppoSAX . In particular we review the spectral properties of sources that belong to different classes of objects, i.e., stellar coronae (Algol), supernova remnants (Cas A), low mass X–ray binaries (Cygnus X–2 and the X–ray burster GS1826–238), black hole candidates (Cygnus X–1) and Active Galactic Nuclei (Mkn 3). We detect, for the first 44 time, the broad-band spectrum of a stellar corona up to 100 keV; for Cas A we report upper limits to the Ti line intensities that are lower than those available to date; for Cyg X–2 we report the evidence of a high energy component; we report a clear detection of a broad Fe K line feature from Cyg X–1 in soft state and during its transition to hard state; Mkn 3 is one of several Seyfert 2 galaxies detected with BeppoSAX at high energies, for which Compton scattering process is important.
    [Show full text]