Geography: Topography & Mountains S

Total Page:16

File Type:pdf, Size:1020Kb

Geography: Topography & Mountains S Digital Atlas of Idaho Geography: Topography & Mountains Idaho's natural history online Exercise: 1 Instructions: Answer the following questions: 1. Much of the topography in southeast Idaho is the result of Basin and Range faulting, creating successive s mountain ranges and valleys. When did this Basin and Range faulting begin? 2. What is believed to be the total lateral extension undergone by southeast Idaho since Basin and Range fault- ing began? 3. Use the Eastern Idaho drainage & mountain range map and color all the mountain ranges named. Color those that you believe to be a result of Basin and Range faulting a different color than the others. (hint: use Rocks, Rails & Trails maps on page 4 and page 5 to help decide). 4. Those mountains that are not the result of Basin and Range faulting are the result of what? 5. Which mountain(s) have the oldest rocks? (look at maps on page 4 and page 5). 6. Using the Eastern Idaho Geology map label the following places with the corresponding letters: A. Middle Proterozoic rock in the northern Lemhi Range. B. Middle Proterozoic rocks near Borah Peak. C. Archean rocks of the Albion Mountains. D. The closest place in Idaho to the Tetons. E. Late Proterozoic rocks of the Bannock Range. F. Late Proterozoic rocks of the Portneuf Range, near Pebble Creek Ski area. 7. Locate the following geographic and geologic features on the Eastern Idaho drainage & mountain range map, and put the corresponding letter for each in the correct box on the map. Use each letter only one time: A. Albion Mountains core complex B. Craters of the Moon C. Lost River Sinks D. Location of Paris thrust fault E. Location of major springs where the Snake River aquifer feeds the Snake River system downstream from Massacre Rocks F. Sublett Range G. Shoshone Lava Field H. Pioneer Mountains core complex I. Location of the largest reservoir on the Snake River Plain J. Bannock Range K. Location of the thickest outcrops of the Permian Phosphoria Formation L. Portneuf Range M. Location of thick outcrops of the Pennsylvanian and Permian Sun Valley Group N. The Big Lost River.
Recommended publications
  • Idaho Mountain Goat Management Plan (2019-2024)
    Idaho Mountain Goat Management Plan 2019-2024 Prepared by IDAHO DEPARTMENT OF FISH AND GAME June 2019 Recommended Citation: Idaho Mountain Goat Management Plan 2019-2024. Idaho Department of Fish and Game, Boise, USA. Team Members: Paul Atwood – Regional Wildlife Biologist Nathan Borg – Regional Wildlife Biologist Clay Hickey – Regional Wildlife Manager Michelle Kemner – Regional Wildlife Biologist Hollie Miyasaki– Wildlife Staff Biologist Morgan Pfander – Regional Wildlife Biologist Jake Powell – Regional Wildlife Biologist Bret Stansberry – Regional Wildlife Biologist Leona Svancara – GIS Analyst Laura Wolf – Team Leader & Regional Wildlife Biologist Contributors: Frances Cassirer – Wildlife Research Biologist Mark Drew – Wildlife Veterinarian Jon Rachael – Wildlife Game Manager Additional copies: Additional copies can be downloaded from the Idaho Department of Fish and Game website at fishandgame.idaho.gov Front Cover Photo: ©Hollie Miyasaki, IDFG Back Cover Photo: ©Laura Wolf, IDFG Idaho Department of Fish and Game (IDFG) adheres to all applicable state and federal laws and regulations related to discrimination on the basis of race, color, national origin, age, gender, disability or veteran’s status. If you feel you have been discriminated against in any program, activity, or facility of IDFG, or if you desire further information, please write to: Idaho Department of Fish and Game, P.O. Box 25, Boise, ID 83707 or U.S. Fish and Wildlife Service, Division of Federal Assistance, Mailstop: MBSP-4020, 4401 N. Fairfax Drive, Arlington, VA 22203, Telephone: (703) 358-2156. This publication will be made available in alternative formats upon request. Please contact IDFG for assistance. Costs associated with this publication are available from IDFG in accordance with Section 60-202, Idaho Code.
    [Show full text]
  • Geologic Map of the Lemhi Pass Quadrangle, Lemhi County, Idaho
    IDAHO GEOLOGICAL SURVEY IDAHOGEOLOGY.ORG IGS DIGITAL WEB MAP 183 MONTANA BUREAU OF MINES AND GEOLOGY MBMG.MTECH.EDU MBMG OPEN FILE 701 Tuff, undivided (Eocene)—Mixed unit of tuffs interbedded with, and directly Jahnke Lake member, Apple Creek Formation (Mesoproterozoic)—Feldspathic this Cambrian intrusive event introduced the magnetite and REEs. CORRELATION OF MAP UNITS Tt Yajl below, the mafic lava flow unit (Tlm). Equivalent to rhyolitic tuff beds (Tct) quartzite, minor siltite, and argillite. Poorly exposed and only in the Whole-rock geochemical analysis of the syenite indicates enrichment in Y of Staatz (1972), who noted characteristic recessive weathering and a wide northeast corner of the map. Description based mostly on that of Yqpi on (54-89 ppm), Nb (192-218 ppm), Nd (90-119 ppm), La (131-180 ppm), and GEOLOGIC MAP OF THE LEMHI PASS QUADRANGLE, LEMHI COUNTY, IDAHO, AND Artificial Alluvial Deposits Mass-Movement Glacial Deposits and range of crystal, lithic, and vitric fragment (pumice) proportions. Tuffs lower the Kitty Creek map (Lewis and others, 2009) to the north. Fine- to Ce (234-325 ppm) relative to other intrusive rocks in the region (data from Deposits Deposits Periglacial Deposits in the sequence commonly contain conspicuous biotite phenocrysts. Most medium-grained, moderately well-sorted feldspathic quartzite. Typically Gillerman, 2008). Mineralization ages are complex, but some are clearly or all are probably rhyolitic. A quartzite-bearing tuff interbedded with mafic flat-laminated m to dm beds with little siltite or argillite. Plagioclase content m Paleozoic (Gillerman, 2008; Gillerman and others, 2008, 2010, and 2013) Qaf Qas Qgty Qalc Holocene lava flows north of Trail Creek yielded a U-Pb zircon age of 47.0 ± 0.2 Ma (12-28 percent) is greater than or sub-equal to potassium feldspar (5-16 as summarized below.
    [Show full text]
  • The Track of the Yellowstone Hot Spot: Volcanism, Faulting, and Uplift
    Geological Society of America Memoir 179 1992 Chapter 1 The track of the Yellowstone hot spot: Volcanism, faulting, and uplift Kenneth L. Pierce and Lisa A. Morgan US. Geological Survey, MS 913, Box 25046, Federal Center, Denver, Colorado 80225 ABSTRACT The track of the Yellowstone hot spot is represented by a systematic northeast-trending linear belt of silicic, caldera-forming volcanism that arrived at Yel- lowstone 2 Ma, was near American Falls, Idaho about 10 Ma, and started about 16 Ma near the Nevada-Oregon-Idaho border. From 16 to 10 Ma, particularly 16 to 14 Ma, volcanism was widely dispersed around the inferred hot-spot track in a region that now forms a moderately high volcanic plateau. From 10 to 2 Ma, silicic volcanism migrated N54OE toward Yellowstone at about 3 cm/year, leaving in its wake the topographic and structural depression of the eastern Snake River Plain (SRP). This <lo-Ma hot-spot track has the same rate and direction as that predicted by motion of the North American plate over a thermal plume fixed in the mantle. The eastern SRP is a linear, mountain- bounded, 90-km-wide trench almost entirely(?) floored by calderas that are thinly cov- ered by basalt flows. The current hot-spot position at Yellowstone is spatially related to active faulting and uplift. Basin-and-range faults in the Yellowstone-SRP region are classified into six types based on both recency of offset and height of the associated bedrock escarpment. The distribution of these fault types permits definition of three adjoining belts of faults and a pattern of waxing, culminating, and waning fault activity.
    [Show full text]
  • Representativeness Assessment of Research Natural Areas on National Forest System Lands in Idaho
    USDA United States Department of Representativeness Assessment of Agriculture Forest Service Research Natural Areas on Rocky Mountain Research Station National Forest System Lands General Technical Report RMRS-GTR-45 in Idaho March 2000 Steven K. Rust Abstract Rust, Steven K. 2000. Representativeness assessment of research natural areas on National Forest System lands in Idaho. Gen. Tech. Rep. RMRS-GTR-45. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 129 p. A representativeness assessment of National Forest System (N FS) Research Natural Areas in ldaho summarizes information on the status of the natural area network and priorities for identification of new Research Natural Areas. Natural distribution and abundance of plant associations is compared to the representation of plant associations within natural areas. Natural distribution and abundance is estimated using modeled potential natural vegetation, published classification and inventory data, and Heritage plant community element occur- rence data. Minimum criteria are applied to select only viable, high quality plant association occurrences. In assigning natural area selection priorities, decision rules are applied to encompass consideration of the adequacy and viability of representation. Selected for analysis were 1,024 plant association occurrences within 21 4 natural areas (including 115 NFS Research Natural Areas). Of the 1,566 combinations of association within ecological sections, 28 percent require additional data for further analysis; 8, 40, and 12 percent, respectively, are ranked from high to low conservation priority; 13 percent are fully represented. Patterns in natural area needs vary between ecological section. The result provides an operational prioritization of Research Natural Area needs at landscape and subregional scales.
    [Show full text]
  • Lemhi County, Idaho
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BUIJLETIN 528 GEOLOGY AND ORE DEPOSITS 1 OF LEMHI COUNTY, IDAHO BY JOSEPH B. UMPLEBY WASHINGTON GOVERNMENT PRINTING OFFICE 1913 CONTENTS. Page. Outline of report.......................................................... 11 Introduction.............................................................. 15 Scope of report......................................................... 15 Field work and acknowledgments...................................... 15 Early work............................................................ 16 Geography. .........> ....................................................... 17 Situation and access.........................--.-----------.-..--...-.. 17 Climate, vegetation, and animal life....................----.-----.....- 19 Mining................................................................ 20 General conditions.......... 1..................................... 20 History..............................-..............-..........:... 20 Production.................................,.........'.............. 21 Physiography.............................................................. 22 Existing topography.................................................... 22 Physiographic development............................................. 23 General features...............................................'.... 23 Erosion surface.................................................... 25 Correlation............. 1..........................................
    [Show full text]
  • Idaho: Lewis Clark Byway Guide.Pdf
    The Lewis and Clark Backcountry Byway AND ADVENTURE ROAD Tendoy, Idaho Meriwether Lewis’s journal entry on August 18, 1805 —American Philosophical Society The Lewis and Clark Back Country Byway AND ADVENTURE ROAD Tendoy, Idaho The Lewis and Clark Back Country Byway and Adventure Road is a 36 mile loop drive through a beautiful and historic landscape on the Lewis and Clark National Historic Trail and the Continental Divide National Scenic Trail. The mountains, evergreen forests, high desert canyons, and grassy foothills look much the same today as when the Lewis and Clark Expedition passed through in 1805. THE PUBLIC LANDS CENTER Salmon-Challis National Forest and BLM Salmon Field Office 1206 S. Challis Street / Salmon, ID 83467 / (208)756-5400 BLM/ID/GI-15/006+1220 Getting There The portal to the Byway is Tendoy, Idaho, which is nineteen miles south of Salmon on Idaho Highway 28. From Montana, exit from I-15 at Clark Canyon Reservoir south of Dillon onto Montana Highway 324. Drive west past Grant to an intersection at the Shoshone Ridge Overlook. If you’re pulling a trailer or driving an RV with a passenger vehicle in tow, it would be a good idea to leave your trailer or RV at the overlook, which has plenty of parking, a vault toilet, and interpretive signs. Travel road 3909 west 12 miles to Lemhi Pass. Please respect private property along the road and obey posted speed signs. Salmon, Idaho, and Dillon, Montana, are full- service communities. Limited services are available in Tendoy, Lemhi, and Leadore, Idaho and Grant, Montana.
    [Show full text]
  • Geologic Map of IDAHO
    Geologic Map of IDAHO 2012 COMPILED BY Reed S. Lewis, Paul K. Link, Loudon R. Stanford, and Sean P. Long Geologic Map of Idaho Compiled by Reed S. Lewis, Paul K. Link, Loudon R. Stanford, and Sean P. Long Idaho Geological Survey Geologic Map 9 Third Floor, Morrill Hall 2012 University of Idaho Front cover photo: Oblique aerial Moscow, Idaho 83843-3014 view of Sand Butte, a maar crater, northeast of Richfield, Lincoln County. Photograph Ronald Greeley. Geologic Map Idaho Compiled by Reed S. Lewis, Paul K. Link, Loudon R. Stanford, and Sean P. Long 2012 INTRODUCTION The Geologic Map of Idaho brings together the ex- Map units from the various sources were condensed tensive mapping and associated research released since to 74 units statewide, and major faults were identified. the previous statewide compilation by Bond (1978). The Compilation was at 1:500,000 scale. R.S. Lewis com- geology is compiled from more than ninety map sources piled the northern and western parts of the state. P.K. (Figure 1). Mapping from the 1980s includes work from Link initially compiled the eastern and southeastern the U.S. Geological Survey Conterminous U.S. Mineral parts and was later assisted by S.P. Long. County geo- Appraisal Program (Worl and others, 1991; Fisher and logic maps were derived from this compilation for the others, 1992). Mapping from the 1990s includes work Digital Atlas of Idaho (Link and Lewis, 2002). Follow- by the U.S. Geological Survey during mineral assess- ments of the Payette and Salmon National forests (Ev- ing the county map project, the statewide compilation ans and Green, 2003; Lund, 2004).
    [Show full text]
  • Regional Geology Sand Mineral Deposits in and Mear the Oentral
    Regional Geology sand Mineral Deposits In and Mear the Oentral Part of the Lemhl Range, Lemhi County, Itlaho tJ.S, GEOLOGICAL SURVEY PROFESSIONAL PAPER Regional Geology and Mineral Deposits In and Near the Central Part of the Lemhi Range, Lemhi County, Idaho By EDWARD T. RUPPEL and DAVID A. LOPEZ U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1480 A descriptive summary of the rocks and structure in part of east-central Idaho UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1988 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade names in this report is for descriptive purposes only and does not imply endorse­ ment by the U.S. Geological Survey. Library of Congress Cataloging-in-Publication Data Ruppel, Edward Thompson, 1925- Regional geology and mineral deposits in and near the central part of the Lemhi Range, Lemhi County, Idaho. (U.S. Geological Survey professional paper ; 1480) Bibliography: p. Supt. of Docs, no.: I 19.16:1480 1. Geology Idaho Lemhi Range. 2. Ore-deposits Idaho Lemhi Range. I. Lopez, David A. II. Title. III. Series. QE104.L43R86 1988 557.9678 87-600492 For sale by the Books and Open-File Reports Section, U.S. Geological Survey Federal Center, Box 25425, Denver, CO 80225 CONTENTS Page Page Abstract ........................................... 1 Granitic intrusive rocks Continued Introduction ....................................... 2 Petrography Continued Topography and drainage ......................... 2 Early Paleozoic granite in the Beaverhead Mountains 59 Present work and acknowledgments ................ 4 Eocene granitic rocks in the Lemhi Range ....... 62 Summary of earlier geologic studies ................ 7 Descriptions of intrusive masses ..................
    [Show full text]
  • Payette National Forest
    Appendix 2 Proposed Forest Plan Amendments Sawtooth National Forest Land and Resource Management Plan Chapter III Sawtooth WCS Appendix 2 Chapter III. Management Direction Table of Contents Management Direction......................................................................................................... III-1 Forest-Wide Management Direction ................................................................................ III-1 Threatened, Endangered, Proposed, and Candidate Species ....................................... III-1 Air Quality and Smoke Management .......................................................................... III-4 Wildlife Resources ....................................................................................................... III-5 Vegetation .................................................................................................................... III-9 Non-native Plants ....................................................................................................... III-13 Fire Management ....................................................................................................... III-14 Timberland Resources ............................................................................................... III-16 Rangeland Resources ................................................................................................. III-17 Minerals and Geology Resources .............................................................................. III-18 Lands and Special
    [Show full text]
  • Baseline and Stewardship Monitoring on Sawtooth National Forest Research Natural Areas
    Baseline and stewardship monitoring on Sawtooth National Forest Research Natural Areas Steven K. Rust and Jennifer J. Miller April 2003 Idaho Conservation Data Center Department of Fish and Game 600 South Walnut, P.O. Box 25 Boise, Idaho 83707 Steven M. Huffaker, Director Prepared for: USDA Forest Service Sawtooth National Forest ii Table of Contents Introduction ............................................... 1 Study Area ............................................... 1 Methods ................................................. 4 Results .................................................. 5 Recommendations and Conclusions .......................... 12 Literature Cited ........................................... 14 List of Figures ............................................ 16 List of Tables ............................................ 26 Appendix A .............................................. 35 Appendix B .............................................. 36 Appendix C .............................................. 61 iii iv Introduction Research natural areas are part of a national network of ecological areas designated in perpetuity for research and education and to maintain biological diversity on National Forest System lands. Seven research natural areas occur on Sawtooth National Forest: Basin Gulch, Mount Harrison, Pole Canyon, Pole Creek Exclosure, Redfish Lake Moraine, Sawtooth Valley Peatlands, and Trapper Creek (Figure 1). These natural areas were established in the late 1980s and mid 1990s to provide representation of a diverse
    [Show full text]
  • Geology of the Payette National Forest and Vicinity West-Central Idaho
    Geology of the Payette National Forest and Vicinity, West-Central Idaho Professional Paper 1666 Version 1.1, April 2021 Supersedes USGS Miscellaneous Geologic Investigations Map I–2599 and the GIS data in USGS Open-File Report 98–219–B U.S. Department of the Interior U.S. Geological Survey Cover. View to south of Big Creek airstrip and Edwardsburg in midground from McFadden Point. North end of hogback at airstrip is dated location of the Neoproterozoic Hogback Rhyolite Member of the Edwardsburg Formation, one of the herein named and dated formations of the Windermere Supergroup. Western and northern edge of Thunder Mountain caldera in peaks to left and middle of Profile Gap, and roof pendants of Windermere Supergroup floating above Cretaceous granite in peaks to right. Geology of the Payette National Forest and Vicinity, West-Central Idaho Frontispiece. A first publication on the Mesoproterozoic biotite gneiss migmatite (Ygn) of the Middle Fork Salmon River (date unknown). Geology of the Payette National Forest and Vicinity, West-Central Idaho By Karen Lund Chapter A Geologic Setting of the Payette National Forest, West-Central Idaho By Karen Lund Chapter B Description of Map Units for the Geologic Map of the Payette National Forest, West-Central Idaho By Karen Lund Chapters A and B are issued as a single volume and are not available separately Professional Paper 1666–A–B Version 1.1, April 2021 Supersedes USGS Miscellaneous Geologic Investigations Map I–2599 and the GIS data in USGS Open-File Report 98–219–B U.S. Department of the Interior U.S. Geological Survey U.S.
    [Show full text]
  • By David M. Miller Open-File Report 81-463 This Report Is Preliminary
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PROPOSED CORRELATION OF AN ALLOCHTHONOUS QUARTZITE SEQUENCE IN THE ALBION MOUNTAINS, IDAHO, WITH PROTEROZOIC Z AND LOWER CAMBRIAN STRATA OF THE PILOT RANGE, UTAH AND NEVADA by David M. Miller Open-File Report 81-463 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards and stratigraphic nomenclature. ABSTRACT A thick sequence of quartzite and schist exposed on Mount Harrison in the Albion Mountains, Idaho, is described and tentatively correlated with the upper part of Proterozoic Z McCoy Creek Group and Proterozoic Z and Lower Cambrian Prospect Mountain Quartzite (restricted) in the Pilot Range, Utah and Nevada, on the basis of lithology, thickness, and sedimentary structures. Correlations with early Paleozoic or middle Proterozoic strata exposed in central Idaho are considered to be less probable. Rapid thickness changes and locally thick conglomerates in Unit G of McCoy Creek Group (and its proposed correlatives in the Albion Mountains) indicate that cJepositional environments were variable locally. Environments were more uniform during the deposition of limy shaly and limestone in the top of Unit G and quartz sandstone in subsequent strata. The strata on Mount Harrison identified as Proterozoic Z and Lower Cambrian in this study are part of an overturned, structurally complicated sequence of metasedimentary rocks that lie tec topically on overturned, metamorphosed Ordovician carbonate strata and possible metamorphosed Cambrian shale, suggesting that a typical miogeoclinal sequence (Proterozoic Z to Ordovician) was possibly once present near the Albion Mountains area. Elsewhere in the Albion Mountains and the adjoining Raft River and Grouse Creek Mountains, however, Ordovician carbonate rocks appear to stratigraphically overlie metamorphosed clastic rocks of uncertain age that are dissimilar to miogeoclinal rocks of the region.
    [Show full text]