Cassia County, Qs Idaho 113O00’10” O Qw 42 35’05” 86 Qw Ke Iver Ppsp Sna R O Pps 114 03’50” Qa Burley O Qb Sublett Rge

Total Page:16

File Type:pdf, Size:1020Kb

Cassia County, Qs Idaho 113O00’10” O Qw 42 35’05” 86 Qw Ke Iver Ppsp Sna R O Pps 114 03’50” Qa Burley O Qb Sublett Rge Cassia County, Qs Idaho 113o0010 o Qw 42 3505 86 Qw ke iver PPsP Sna R o PPs 114 0350 Qa Burley o Qb Sublett Rge. 42 3055 Declo Qs 77 PPsP Qm PPsP Tov Zs Wm QTb Qa PPs QTb Tpf Idahome PPsP Qs Qs PPsP 27 Albion Tps Qs QTb Ps Qs 84 k Zs e Qw Qs e r Tpf 81 TsR Qw C Zs Sublett P Tpf Wm PPs e Malta Qs s Tov Cassia o Wm o Zs Wm Pzu G Tpf Mtns. or Mt. Harrison South Hills PPsP PPsP PPsP Qa Oakley PzZm Elba Ps Ps Qs Qs r e Pzu Tpf Zs Raft River Valley Ps PPsP Ps Blackpine Rge. v Zs i R Tps Tpf Qs Tpf Wm t PzZm f PPs Tpf Zs Tpf a Trapper Pk. Cache Pk. Tms R Qa Tpf Toi Toi PPsP Tpf Zs Tpf Toi Qs Qs Almo Tpf Ms PPsP Tpf Albion Mtns. Wm PPs Zs Zs Toi PPs PPs Almo Qs Qa PzZm Pluton Raft RiverTpf Narrows. Qa Tpf Zs City of Tms Qs Tps Tpf PPsP Qbo Qs Rocks Tpf Qs o o 42 0004 41 5932 o 114o1655 113 0005 Digital Atlas of Idaho, Nov. 2002 0 5 10 miles http://imnh.isu.edu/digitalatlas Compiled by Paul K. Link, 0 8 16 kilometers Idaho State University, Geosciences Dept. http://www.isu.edu/departments/geology/ Cassia County Cassia County, on the south side of the Snake River forms much of Idahos southern boundary with Utah and Nevada on the west. It contains a diverse assemblage of rocks, including the oldest rocks in Idaho, the metamorphic Green Creek gneiss in the Albion Mountains core complex. Most of the people in Cassia County live in irrigated agricultural areas near Burley, Declo and Oakley. This area, on the southern edge of the Snake River Plain, is underlain by Quaternary basalt, including shield volcanoes visible today, overlain by windblown loess and alluvium. Thick cobble gravel derived from the Albion Range in Pleistocene time underlies the Oakley valley. The Albion Mountains, south of Albion, and west of Elba and Almo, are one of a series of turtleback-shaped uplifts of metamorphosed middle crust that are found along the axis of the Mesozoic Cordilleran orogenic belt, generally at the location of maximum crustal thickening during compressional tectonics. They contain Archean gneiss overlain by Proterozoic Elba quartzite and Paleozoic Clarks Basin and Harrison Summit schist and quartzite, below a low-angle detachment fault. Above the fault are less metamorphosed, folded Paleozoic rocks. The Raft River Mountains, just to the south across the Utah border are a similar feature. The Oligocene Almo Pluton, which underlies the City of Rocks, was intruded 25 million years ago into this domal uplift. The City of Rocks contains distinctive granite monoliths that were a landmark to the California Trail and are now a rock climbers playground. The Raft River detachment fault, an east dipping structure, exhumed the Albion core complex and downdropped the Raft River Valley and the volcanic rocks of the Jim Sage and Cottrell Mountains between Elba and Malta. The U.S. Department of Energy drilled a several-thousand-foot geothermal well south of Malta in the 1980s, but the project did not demonstrate economic potential for electrical generation. Southeast of the Raft River Valley are the Black Pine Mountains, underlain by folded and thrust-faulted Paleozoic rocks in the hanging wall of the Raft River detachment. These rocks formerly were on top of the City of Rocks area, and have been downfaulted to the east to their present location. They contain gold mineralization that was mined in the 1990s and at several previous times in the 20th century. The Sublett Range, east of the Raft River Valley, contains thick upper Paleozoic limestones. To the west of the Albion Range is Middle Mountain, which contains schistose quartzite that is mined for Oakley Stone a decorative flagstone shipped across the world. West of there, across Goose Creek, is the extensive Miocene Trapper Creek basin filled with tuffs and rhyolite ignimbrites from the Twin Falls volcanic center. The Cassia Mountains or South Hills, on the western edge of the county, contain spectacular cliffs in deep canyons, all cut from these rhyolite ignimbrites and fallout tuffs. See several sections of text in Rocks Rails and Trails. P.K. Link, 10/02 Descripton of Geologic Units for Cassia County, Idaho Qa Quaternary alluvial deposits Qm Quaternary moraine (unsorted boulders, cobbles and sand) and glaciofluvial outwash (bedded stream deposits formed from streams draining active glacial ice). Qs Quaternary surficial cover, including colluvium, fluvial, alluvial fan, lake, and windblown deposits. Included fluveolian cover on Snake River Plain, (Snake River Group). Qw Quaternary windblown deposits; sand dunes and loess. Qbo Lake Bonneville deposits, fine-grained lake beds. Qb Pleistocene basalt lava, 2 million to 12,000 years old, flows have some vegetation and surface weathering. QTb Pleistocene and Pliocene basalt lava and associated basaltic tuff (deposited close to basaltic vent). Tps Pliocene and Upper Miocene stream and lake deposits (Salt Lake Formation, Starlight Formation, Idaho Group). Tpf Pliocene and Upper Miocene felsic volcanic rocks, rhyolite flows, tuffs, ignimbrites. (in Owyhee County and Mt. Bennett Hills, this should be Tmf). Tms Pliocene and Upper Miocene sedimentary rocks and interlayered basalts (parts of Starlight Formation, Salt Lake Formation). Tov Oligocene volcanics; Potlatch volcanics, basalt and trachytic pyroclastic rocks [alkali-rich basalts]) and Salmon Falls Creek volcanics [andesites]. Toi Oligocene City of Rocks granite (About 25 Ma). TR s Triassic sedimentary rocks. Pzu Upper Paleozoic sedimentary rocks. Ps Permian sedimentary rocks. PPPs Permian and Pennsylvanian sedimentary rocks. PPs Pennsylvanian sedimentary rocks. Ms Mississippian sedimentary rocks. PzZm Paleozoic/Neoproterozoic metasedimentary rocks, mainly quartzose sandstone (includes formation of Leaton Gulch). Zs Neoproterozoic sedimentary rocks undivided. Wm Archean gneiss and schist, Albion Range, and Priest River complex west of Sandpoint. Symbols Geologic unit contacts with unit Overturned anticline: trace of axial Yp designation. plane. Normal fault: certain; dashed where Overturnedsyncline: trace of axial approximately located; dotted where plane. concealed. Location of ISU Rockwalk rock Thrust fault: certain; dashed where from each county. approximately located; dotted where concealed. Cities Detachment fault: certain; dashed Feature location where approximately located; dotted where concealed. Roads Anticline: trace of axial plane: large Interstate Route arrow indicates direction of plunge. 15 U.S. Route Syncline: trace of axial plane: large 95 arrow indicates direction of plunge. 1 State route.
Recommended publications
  • 2448, Raft River Mountains Fault
    2448, RAFT RIVER MOUNTAINS FAULT Structure number: 2448. Comments: Hecker's (1993) fault number 6-17. Structure name: Raft River Mountains fault. Comments: Synopsis: Poorly understood middle to late Pleistocene(?) fault in the Raft River Mountains. The fault is in both Utah and Idaho. Date of compilation: 10/99. Compiler and affiliation: Bill D. Black (Utah Geological Survey) and Suzanne Hecker (U.S. Geological Survey). State: Utah. County: Box Elder. 1° x 2° sheet: Brigham City. Province: Basin and Range. Reliability of location: Poor. Comments: Mapped by Compton (1972) and Doelling (1980). Mapping from Doelling (1980). Geologic setting: North-trending normal fault near the Utah-Idaho border along the northeast side of the Raft River Mountains. The Raft River Mountains have a core of Precambrian metamorphic rocks and trend east-west, similar to the Uinta Mountains. Northern slopes of the mountains drain into the Snake River and are considered part of the Snake River Plain, rather than the Great Basin. Sense of movement: N. Comments: Dip: No data. Comments: Dip direction: E. Geomorphic expression: Faulted alluvium. Age of faulted deposits: Middle to late Pleistocene(?). Paleoseismology studies: None. Timing of most recent paleoevent: (4) Middle and late Quaternary (<750 ka). Comments: Recurrence interval: No data. Comments: Slip rate: Unknown, probably <0.2 mm/yr. Comments: Length: End to end (km): 2 Cumulative trace (km): 2 Average strike (azimuth): N1°E REFERENCES Compton, R.R., 1972, Geologic map of the Yost quadrangle, Box Elder County, Utah and Cassia County, Idaho: U.S. Geological Survey Miscellaneous Investigations Series Map I-672, scale 1:31,680.
    [Show full text]
  • The Track of the Yellowstone Hot Spot: Volcanism, Faulting, and Uplift
    Geological Society of America Memoir 179 1992 Chapter 1 The track of the Yellowstone hot spot: Volcanism, faulting, and uplift Kenneth L. Pierce and Lisa A. Morgan US. Geological Survey, MS 913, Box 25046, Federal Center, Denver, Colorado 80225 ABSTRACT The track of the Yellowstone hot spot is represented by a systematic northeast-trending linear belt of silicic, caldera-forming volcanism that arrived at Yel- lowstone 2 Ma, was near American Falls, Idaho about 10 Ma, and started about 16 Ma near the Nevada-Oregon-Idaho border. From 16 to 10 Ma, particularly 16 to 14 Ma, volcanism was widely dispersed around the inferred hot-spot track in a region that now forms a moderately high volcanic plateau. From 10 to 2 Ma, silicic volcanism migrated N54OE toward Yellowstone at about 3 cm/year, leaving in its wake the topographic and structural depression of the eastern Snake River Plain (SRP). This <lo-Ma hot-spot track has the same rate and direction as that predicted by motion of the North American plate over a thermal plume fixed in the mantle. The eastern SRP is a linear, mountain- bounded, 90-km-wide trench almost entirely(?) floored by calderas that are thinly cov- ered by basalt flows. The current hot-spot position at Yellowstone is spatially related to active faulting and uplift. Basin-and-range faults in the Yellowstone-SRP region are classified into six types based on both recency of offset and height of the associated bedrock escarpment. The distribution of these fault types permits definition of three adjoining belts of faults and a pattern of waxing, culminating, and waning fault activity.
    [Show full text]
  • California National Historic Trail City of Rocks National Reserve
    California National Historic Trail City of Rocks National Reserve A self-guided journey to discovering the California National Historic Trail at City of Rocks City of Rocks National Reserve is a partnership between the National Park Service and the Idaho Department of Parks and Recreation California National Historic Trail City of Rocks National Reserve A self-guided journey to discovering A self-guided journey to discovering the California National Historic Trail at City of Rocks Prepared by Idaho Department of Parks and Recreation and the National Park Service City of Rocks National Reserve PO Box 169 Almo, Idaho 83312 http://parksandrecreation.idaho.gov www.nps.gov/ciro 2015 Contents What’s in store before you explore? There are eight stops, six of which have interpretive signage, along the 10 mile auto route. Introduction 3 Map—Overview 4 Parting of the Ways to the Elba Basin 5 The Almo Valley 6 Twin Sisters in the Distance 7 The Salt Lake Alternate 8 Replica Wagons 9 Wagon Trains 10 Camp 11 Guide Books 12 Trails West Markers 12 Entrance to City of Rocks 13 Trail Ruts 14 First View of Circle Creek Basin 15 Tracy Homestead 16 Camp Rock 17 Treasure Rock 20 Map— Locations of the Waysides and Markers 21 Artists on the Trail 23 Register Rock 24 Pinnacle Pass 27 Ledyard and Margaret Ann Alsip Frink 29 Twin Sisters 30 Salt Lake Alternate-Boise Kelton Stage Route 32 Post Office 33 Granite Pass 34 The Mormon Battalion 35 Life on the Trail 36 Emigrant and Native American Interactions 38 Trouble on the Trail 39 Emigrant Names 40 For Further Study / Credits 41 Bibliography 42 2 Introduction City of Rocks National Reserve (Reserve) was established by Congress on November 18, 1988 in order to preserve and protect the significant historical and cultural resources; to manage recreational use; to protect and maintain scenic quality; and to interpret the nationally significant values of the Reserve.
    [Show full text]
  • U.S. Geological Survey Radiometric Ages—Compilation "C" Part Four: Idaho, Oregon, and Washington R.H
    U.S. Geological Survey radiometric ages—compilation "C" Part four: Idaho, Oregon, and Washington R.H. Marvin, H.H. Mehnert, C.W. Naeser, and R.E. Zartman Isochron/West, Bulletin of Isotopic Geochronology, v. 53, pp. 3-13 Downloaded from: https://geoinfo.nmt.edu/publications/periodicals/isochronwest/home.cfml?Issue=53 Isochron/West was published at irregular intervals from 1971 to 1996. The journal was patterned after the journal Radiocarbon and covered isotopic age-dating (except carbon-14) on rocks and minerals from the Western Hemisphere. Initially, the geographic scope of papers was restricted to the western half of the United States, but was later expanded. The journal was sponsored and staffed by the New Mexico Bureau of Mines (now Geology) & Mineral Resources and the Nevada Bureau of Mines & Geology. All back-issue papers are available for free: https://geoinfo.nmt.edu/publications/periodicals/isochronwest This page is intentionally left blank to maintain order of facing pages. U.S. GEOLOGICAL SURVEY RADIOMETRIC AGES-COMPILATION "C" Part four: Idaho, Oregon, and Washington RICHARD F. MARVIN HARALD H. MEHNERT U.S. Geological Survey, Federal Center, Denver, CO 80225 CHARLES W. NAESER ROBERT E. ZARTMAN This is part four of the third compilation of a planned series of age determinations by the U.S. Geological Survey appearing in Isochron/West. It contains both unpublished and published dates. However,the latter ages lacked either a specific sample location, petrologic information, or ana lytical data in their published form. Such specifics are often needed for evaluation and utilization of an isotopic age. That, we believe, is the value of this compilation—it sup plies such information for most of the listed samples.
    [Show full text]
  • Payette National Forest
    Appendix 2 Proposed Forest Plan Amendments Sawtooth National Forest Land and Resource Management Plan Chapter III Sawtooth WCS Appendix 2 Chapter III. Management Direction Table of Contents Management Direction......................................................................................................... III-1 Forest-Wide Management Direction ................................................................................ III-1 Threatened, Endangered, Proposed, and Candidate Species ....................................... III-1 Air Quality and Smoke Management .......................................................................... III-4 Wildlife Resources ....................................................................................................... III-5 Vegetation .................................................................................................................... III-9 Non-native Plants ....................................................................................................... III-13 Fire Management ....................................................................................................... III-14 Timberland Resources ............................................................................................... III-16 Rangeland Resources ................................................................................................. III-17 Minerals and Geology Resources .............................................................................. III-18 Lands and Special
    [Show full text]
  • CAI) As an Aid to Structural Interpretation in the Black Pine Mountains, Idaho
    Conodont Color Alteration (CAI) as an Aid to Structural Interpretation in the Black Pine Mountains, Idaho By J. Fred Smith, Jr. and Bruce R. Wardlaw Open-File Report 2012–1100 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1–888–ASK–USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1–888–ASK–USGS Suggested citation: Smith, J.F., Jr., and Wardlaw, B.R., 2012, Conodont color alteration (CAI) as an aid to structural interpretation in the Black Pine Mountains, Idaho: U.S. Geological Survey Open-File Report 2012–1100, 5 p., available only at http://pubs.usgs.gov/of/2012/1100. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Abstract ......................................................................................................................................................................... 1 Introduction ...................................................................................................................................................................
    [Show full text]
  • Baseline and Stewardship Monitoring on Sawtooth National Forest Research Natural Areas
    Baseline and stewardship monitoring on Sawtooth National Forest Research Natural Areas Steven K. Rust and Jennifer J. Miller April 2003 Idaho Conservation Data Center Department of Fish and Game 600 South Walnut, P.O. Box 25 Boise, Idaho 83707 Steven M. Huffaker, Director Prepared for: USDA Forest Service Sawtooth National Forest ii Table of Contents Introduction ............................................... 1 Study Area ............................................... 1 Methods ................................................. 4 Results .................................................. 5 Recommendations and Conclusions .......................... 12 Literature Cited ........................................... 14 List of Figures ............................................ 16 List of Tables ............................................ 26 Appendix A .............................................. 35 Appendix B .............................................. 36 Appendix C .............................................. 61 iii iv Introduction Research natural areas are part of a national network of ecological areas designated in perpetuity for research and education and to maintain biological diversity on National Forest System lands. Seven research natural areas occur on Sawtooth National Forest: Basin Gulch, Mount Harrison, Pole Canyon, Pole Creek Exclosure, Redfish Lake Moraine, Sawtooth Valley Peatlands, and Trapper Creek (Figure 1). These natural areas were established in the late 1980s and mid 1990s to provide representation of a diverse
    [Show full text]
  • IBT Hikers Guide PDF 6X9 Paper Version
    IDAHO BOUNDARY TRAIL HIKERS GUIDE 2020 By MIKE O’BRIEN & Jim “Yeti” Fulmis Copyright © 2020 www.fultek.com/ibt Please note that any discrepancies such as US Post office hour changes, prices, businesses closed or burned down is way beyond our control. If you discover changes, please send us information via email ([email protected]). This will help us to keep this guide up to date as best as possible. We did the trail in 2016 and updated everything, including all tracks and waypoints, which can be found at www.fultek.com/ibt. Trail closures, fires, or storms that blow down a lot of trees can and will happen. We discovered that ourselves in 2016. If you can, track anything you find different or just describe the differences and send those to the above email address. Tracks should be in GPX form. Also, there will be a text file named IBT_Hikers_Guide_Updates.txt online at www.fultek.com/ibt for any changes or additions we find out about after the book is published. Cover Photo: On the way to Owyhee State Park. Copyright © 2020 Mike O’Brien & Jim “Yeti” Fulmis Edited by: Melanie Simmerman All rights reserved. ISBN-13: 978-1793257536 Why another long trail? When we looked at a map of Idaho we saw a wide variety of terrain, desert, forest, mountains; lots of mountains. Not only that, but the border was mostly public land where we could choose where to hike and camp. Could we hike all the way around? It would be tough. First, we had to figure out a route, one that had reliable water in the desert (no trail angels in the Owyhee Desert!), and a route that touched the special places, like the Tetons, the Bitterroot and Selkirk Mountains, the cedar rainforests in the north.
    [Show full text]
  • Paleozoic Rocks in the Black Pine Mountains, Cassia County, Idaho
    Paleozoic Rocks in the Black Pine Mountains, Cassia County, Idaho GEOLOGICAL SURVEY BULLETIN 1536 Paleozoic Rocks in the Black Pine Mountains, Cassia County, Idaho By]. FRED SMITH, JR. GEOLOGICAL SURVEY BULLETIN 1536 Descriptions of eleven rock units which range in age from Devonian to Permian, the thickest parts being Early Pennsylvanian to· Early Permian UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Smith, J. Fred (Joe Fred), 1911-1982 Paleowic rocks in the Black Pine Mountains, Cassia County, Idaho. (Geological Survey Bulletin 1536) Bibliography: 36 p. Supt. of Docs. No.: I 19.3: 1. Geology, Stratigraphic-Paleozoic. 2. Geology-Idaho-Black Pine Mountains. I. Title. II. Series. QE75.B9 no. 1536 557.3s [551.7'2'0979639] 81-607193 [QE.654] AACR2 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract . 1 Introduction . 2 Stratigraphy . 7 Rocks south of West Dry Canyon fault . 8 Lower plate . 8 Devonian System . 8 Jefferson Formation . 8 Mississippian and Pennsylvanian Systems . 9 Manning Canyon Shale . 9 Middle plate . 11 Pennsylvanian System . 11 Oquirrh Formation, limestone member . 11 Lower part . 11 Middle part . 13 Upper part . 15 Oquirrh Formation, limestone, sandstone, and quartzite mem- ber . 17 Oquirrh Formation, limestone and dolomite member . 18 Upper plate . 21 Pennsylvanian and Permian Systems . 21 Oquirrh Formation sandstone and siltstone member . 21 Rocks north of West Dry Canyon fault . 23 Plate I . 23 Pennsylvanian and Permian Systems .
    [Show full text]
  • Ground-Water Possibilities South of the Snake River Between Twin Falls and Pocatello, Idaho
    Ground-Water Possibilities South of the Snake River Between Twin Falls and Pocatello, Idaho By E. G. CROSTHWAITE CONTRIBUTIONS TO HYDROLOGY GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1460-C Prepared for the United States Bureau of Reclamation with the cooperation of the Idaho Department of Reclamation UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Pag* Abstract _______________________ ...- _ . _____ - _ 99> Introduction-.... _________________________________________ _____ 100 Purpose and scope of report __ _________________________________ 100 Location of area_________________________________________ _ ____ 101 Previous investigations_____________________ ____________________ 102 Geography __ ___________________________________________________ 103' Surface features___-__-____-________--__-________-__--__-___- _ 108- Drainage. ___-___-__-__---_---_-__-_---______--_---_-____ __ _ 100 Climate.. ____________________ . ______________ 107 Precipitation _ ______________________________ _ _ __ ___ 107 Temperature _ ____________________________________ __ _ _ 109* Evaporation __ ___________________________________ _ ___ _ 110' Development ___ ____________________________________ _ _____ 111 Population __ _____________________________________ ___ __ 111 Agriculture. ___ __ _______________________________ _ _____ 113: Industry
    [Show full text]
  • Title 8 Cassia County Comprehensive Plan
    TITLE 8 CASSIA COUNTY COMPREHENSIVE PLAN CASSIA COUNTY, IDAHO COUNTY ADMINISTRATION PLANNING & ZONING / BUILDING DEPARTMENT Courthouse Room #4, 1459 Overland Avenue, Burley, Idaho 83318 Phone (208) 878-7302 • Fax: (208) 878-3510 CASSIA COUNTY, IDAHO COUNTY COMPREHENSIVE PLAN, Revised 2006, Amd. Oct. 2009, Amd. Feb. 2010, Amd. Nov. 2012. TABLE OF CONTENTS Summary .................................................................................................. 2 Introduction ................................................................................................. 2 Purposes of the Plan ...................................................................................... 4 Guidelines .................................................................................................... 5 Components ................................................................................................. 6 Goals, Policies, and Implementation Activities ................................................... 9 A. Property Rights ............................................................................. 12 B. Population .................................................................................... 15 C. School Facilities and Transportation ................................................. 19 D. Economic Development .................................................................. 23 E. Land Use ..................................................................................... 27 F. Natural Resources ........................................................................
    [Show full text]
  • Quaternary Geology of the Albion Mountains, Southern Idaho
    QUATERNARY GEOLOGY OF THE ALBION MOUNTAINS, SOUTHERN IDAHO Kevin Pogue Whitman College Robert Carson Whitman College Doug Clark Western Washington University INTRODUCTION associated with the nearby Yellowstone hot spot to be emplaced on the exposed granite Geologic History (Miller and Bedford, 1999). During the late The Albion Mountains stretch for 50 km Miocene, most of these rhyolitic rocks were between the Idaho/Utah border on the south translated to the east on low-angle normal and the Snake River Plain on the north. The faults as the core complex continued to rise range is part of the Albion–Raft River–Grouse (ref). Quaternary uplift of the range has Creek metamorphic core complex, which occurred along high-angle range-bounding exposes some of the most highly extended and normal faults. The present shape of the deeply-derived rocks of the Basin and Range mountains results primarily from the headward geologic province (Miller, 1980). Granite, erosion of streams that are tributaries of the granitic gneiss, schist and amphibolite Raft and Snake rivers on the north and east belonging to the 2.5 Ga Green Creek Complex and Birch and Goose creeks on the west. are the oldest rocks in the range. These Headward erosion by Raft River tributaries basement rocks are unconformably overlain by eventually breached resistant Proterozoic Proterozoic and Paleozoic sediments that were quartzites in the structural domes of the metamorphosed during crustal thickening in southern Albion Mountains. The Tertiary the hinterland of the Sevier orogenic belt granite cores of the domes where much more (Armstrong, 1968). The highland created by easily weathered, particularly in regions of the Sevier orogeny began to collapse and high joint density and hydrothermal alteration.
    [Show full text]