Effects of Habitat Fragmentation on Abundance, Larval Food and Parasitism of a Spider-Hunting Wasp

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Habitat Fragmentation on Abundance, Larval Food and Parasitism of a Spider-Hunting Wasp Effects of Habitat Fragmentation on Abundance, Larval Food and Parasitism of a Spider-Hunting Wasp Vale´rie Coudrain1,2,3*, Felix Herzog1, Martin H. Entling3 1 Research Station Agroscope Reckenholz-Ta¨nikon ART, Zu¨rich, Switzerland, 2 Institute of Ecology and Evolution, University of Bern, Bern, Switzerland, 3 Institute for Environmental Sciences, University of Koblenz-Landau, Landau/Pfalz, Germany Abstract Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms underlying fragmentation effects often remain unresolved. Potential mechanisms are (1) reduced dispersal of a species or (2) altered species interactions in fragmented landscapes. We studied if abundance of the spider-hunting and cavity-nesting wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae) is affected by fragmentation, and then tested for any effect of larval food (bottom up regulation) and parasitism (top down regulation). Trap nests of T. figulus were studied in 30 agricultural landscapes of the Swiss Plateau. The sites varied in the level of isolation from forest (adjacent, in the open landscape but connected, isolated) and in the amount of woody habitat (from 4 % to 74 %). We recorded wasp abundance (number of occupied reed tubes), determined parasitism of brood cells and analysed the diversity and abundance of spiders that were deposited as larval food. Abundances of T. figulus were negatively related to forest cover in the landscape. In addition, T. figulus abundances were highest at forest edges, reduced by 33.1% in connected sites and by 79.4% in isolated sites. The mean number of spiders per brood cell was lowest in isolated sites. Nevertheless, structural equation modelling revealed that this did not directly determine wasp abundance. Parasitism was neither related to the amount of woody habitat nor to isolation and did not change with host density. Therefore, our study showed that the abundance of T. figulus cannot be fully explained by the studied trophic interactions. Further factors, such as dispersal and habitat preference, seem to play a role in the population dynamics of this widespread secondary carnivore in agricultural landscapes. Citation: Coudrain V, Herzog F, Entling MH (2013) Effects of Habitat Fragmentation on Abundance, Larval Food and Parasitism of a Spider-Hunting Wasp. PLoS ONE 8(3): e59286. doi:10.1371/journal.pone.0059286 Editor: Diego Fontaneto, Consiglio Nazionale delle Ricerche (CNR), Italy Received September 19, 2012; Accepted February 13, 2013; Published March 14, 2013 Copyright: ß 2013 Coudrain et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This study was supported by the Swiss National Science Foundation under grant number 3100A0-114058. http://www.snf.ch. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction Quantifying food availability to a species is difficult owing to factors, such as fluctuating spatial and temporal prey abundance Habitat fragmentation can strongly affect species distribution and the ability of the species to access to the resources. and abundance with consequences for ecosystem functioning and Studying the body condition of a species in different landscapes related ecosystem services [1], [2], [3], [4]. Fragmentation studies can indicate if fragmentation effects are due to altered food need to distinguish between (i) habitat loss, which is the reduction availability [22], [25]. More direct evidence for fragmentation in total amount of habitat within the landscape, and (ii) effects on food availability can be revealed by studying the actual fragmentation per se, which is the breakdown of habitat into diet of a species. Here, trap-nesting Trypoxylon wasps offer an ideal smaller patches that become isolated from one another [5]. These study system because prey items deposited as larval food can be two processes can have different effects on the abundance and collected and determined to species level [26], [27], [28], [29]. diversity of organisms [6], [7], [8], [9], [10]. Whereas this issue is Moreover, trap-nests allow a reliable assessment of parasitism increasingly being recognised, the mechanisms underlying species rate of brood cells. response to fragmentation often remain unresolved. This infor- Habitat loss and fragmentation can destabilize host-parasitoid mation is, however, essential to maintain or restore effective relationships [30], [31]. According to the trophic levels hypothesis, landscape connectivity [11], [12], [13], [14]. The effects of higher trophic levels, such as parasitoids, should suffer more from fragmentation can result from (1) altered migration of a species in fragmentation than their hosts [32], [33]. As a consequence, hosts fragmented habitats, caused e.g. by limited dispersal ability of the may be released from their parasitoids in isolated habitats [26], species [15], [16], or by the hostility of the surrounding matrix and [30], [34]. However, this hypothesis has been challenged [35], reduced availability of shelter and nesting opportunities [17], [18], [36] and the number of studies investigating parasitism in relation [19]. Alternatively, it can result from (2) altered species interac- to habitat loss and isolation is still limited [37]. tions in fragmented habitats, such as reduced food availability We studied the impact of fragmentation on the mud-dauber [20], [21], [22], or increased parasitism [23], [24]. wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae). The rarity of studies that distinguish between different This wasp nests in cavities in wood or other plant material and mechanisms behind fragmentation effects may be partly due to readily colonizes artificial trap-nests. It hunts spiders as larval food the difficulty to quantify trophic interactions in the field. [38], [39], [40]. Diet and brood parasitism of T. figulus were PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e59286 Fragmentation Effects on Trophic Interactions studied in 30 trap-nest locations that varied (a) in their isolation entrance. The tubes were closed again so that the wasp larvae in from other woody habitats and (b) in the percentage of woody the remaining cells could develop for subsequent species identi- habitats in the surrounding landscape. We predicted that (i) the fication. The number of spiders per cell was counted and the abundance of T. figulus decreases with increasing habitat isolation spiders were determined as close as possible to the species level. and / or decreasing amount of woody habitat. We expected (ii) The fresh weight of the total spider content of 202 cells with higher number and/or mean weight of spiders per brood cell in undamaged spider individuals was measured. Total spider weight sites with higher abundance of T. figulus. We further expected that per cell and the number of spiders per cell were positively (iii) if T. figulus hunts spiders according to their abundance in the correlated (Pearson correlation test: N = 204, r = 0.56, P , 0.001) landscape, its diet will vary as a function of the surrounding and we retained only the number of spiders per cell for further landscape, with higher frequencies of forest-related spider species analyses. Habitat preference of spiders was based on the ecological in habitats adjacent to forest and/or landscapes with large characterisation of Central European spiders by Entling et al. [45]. amounts of woody habitats. Eventually, according to the They identified shading as a main niche dimension and derived trophic-level hypothesis, we predicted lower parasitism rate in niche positions on a gradient from open habitats to closed forest isolated sites (iv). for 590 spider species. We considered spiders with niche position in the upper half of the shading gradient as forest-related species Materials and Methods (Table 1). The two trap nests per site that were not used for prey assessment were collected in October 2010 to determine wasp Ethics statements abundance and parasitism. They were stored at 5uC until All sites were visited with landowner permission, and no permits February 2011. Then, nesting tubes were singly transferred to for sampling were required. Our study did not involve any test tubes and stored in a greenhouse for hatching of T. figulus and endangered or protected species. any parasitoids that have developed on them. Abundance of T. figulus can be measured as the number of colonized nesting tubes Study sites ( = number of nest-building females) or as the number of brood We conducted our study in agricultural landscapes of the Swiss cells that have been built ( = productivity of nest-building females). Plateau between the cities of Bern, Solothurn and Fribourg. Thirty In our study, both measures were strongly correlated (Pearson experimental sites were chosen over an area of 23632 km varying correlation test: N = 30, r = 0.98, P , 0.001), such that we in altitude between 465 and 705 m above sea level [4]. Each site retained only the number of colonized nesting tubes as a measure consisted of an 18-m-long row of seven 6-year-old cherry trees that of wasp abundance. We additionally measured the number of cells had been planted on permanent
Recommended publications
  • Topic Paper Chilterns Beechwoods
    . O O o . 0 O . 0 . O Shoping growth in Docorum Appendices for Topic Paper for the Chilterns Beechwoods SAC A summary/overview of available evidence BOROUGH Dacorum Local Plan (2020-2038) Emerging Strategy for Growth COUNCIL November 2020 Appendices Natural England reports 5 Chilterns Beechwoods Special Area of Conservation 6 Appendix 1: Citation for Chilterns Beechwoods Special Area of Conservation (SAC) 7 Appendix 2: Chilterns Beechwoods SAC Features Matrix 9 Appendix 3: European Site Conservation Objectives for Chilterns Beechwoods Special Area of Conservation Site Code: UK0012724 11 Appendix 4: Site Improvement Plan for Chilterns Beechwoods SAC, 2015 13 Ashridge Commons and Woods SSSI 27 Appendix 5: Ashridge Commons and Woods SSSI citation 28 Appendix 6: Condition summary from Natural England’s website for Ashridge Commons and Woods SSSI 31 Appendix 7: Condition Assessment from Natural England’s website for Ashridge Commons and Woods SSSI 33 Appendix 8: Operations likely to damage the special interest features at Ashridge Commons and Woods, SSSI, Hertfordshire/Buckinghamshire 38 Appendix 9: Views About Management: A statement of English Nature’s views about the management of Ashridge Commons and Woods Site of Special Scientific Interest (SSSI), 2003 40 Tring Woodlands SSSI 44 Appendix 10: Tring Woodlands SSSI citation 45 Appendix 11: Condition summary from Natural England’s website for Tring Woodlands SSSI 48 Appendix 12: Condition Assessment from Natural England’s website for Tring Woodlands SSSI 51 Appendix 13: Operations likely to damage the special interest features at Tring Woodlands SSSI 53 Appendix 14: Views About Management: A statement of English Nature’s views about the management of Tring Woodlands Site of Special Scientific Interest (SSSI), 2003.
    [Show full text]
  • Arachnida, Araneae) Inventory of Hankoniemi, Finland
    Biodiversity Data Journal 5: e21010 doi: 10.3897/BDJ.5.e21010 Data Paper Standardized spider (Arachnida, Araneae) inventory of Hankoniemi, Finland Pedro Cardoso‡,§, Lea Heikkinen |, Joel Jalkanen¶, Minna Kohonen|, Matti Leponiemi|, Laura Mattila ¶, Joni Ollonen|, Jukka-Pekka Ranki|, Anni Virolainen |, Xuan Zhou|, Timo Pajunen ‡ ‡ Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland § IUCN SSC Spider & Scorpion Specialist Group, Helsinki, Finland | Department of Biosciences, University of Helsinki, Helsinki, Finland ¶ Department of Environmental Sciences, University of Helsinki, Helsinki, Finland Corresponding author: Pedro Cardoso (pedro.cardoso@helsinki.fi) Academic editor: Jeremy Miller Received: 15 Sep 2017 | Accepted: 14 Dec 2017 | Published: 18 Dec 2017 Citation: Cardoso P, Heikkinen L, Jalkanen J, Kohonen M, Leponiemi M, Mattila L, Ollonen J, Ranki J, Virolainen A, Zhou X, Pajunen T (2017) Standardized spider (Arachnida, Araneae) inventory of Hankoniemi, Finland. Biodiversity Data Journal 5: e21010. https://doi.org/10.3897/BDJ.5.e21010 Abstract Background During a field course on spider taxonomy and ecology at the University of Helsinki, the authors had the opportunity to sample four plots with a dual objective of both teaching on field methods, spider identification and behaviour and uncovering the spider diversity patterns found in the southern coastal forests of Hankoniemi, Finland. As an ultimate goal, this field course intended to contribute to a global project that intends to uncover spider diversity patterns worldwide. With that purpose, a set of standardised methods and procedures was followed that allow the comparability of obtained data with numerous other projects being conducted across all continents. New information A total of 104 species and 1997 adults was collected.
    [Show full text]
  • Final Report 1
    Sand pit for Biodiversity at Cep II quarry Researcher: Klára Řehounková Research group: Petr Bogusch, David Boukal, Milan Boukal, Lukáš Čížek, František Grycz, Petr Hesoun, Kamila Lencová, Anna Lepšová, Jan Máca, Pavel Marhoul, Klára Řehounková, Jiří Řehounek, Lenka Schmidtmayerová, Robert Tropek Březen – září 2012 Abstract We compared the effect of restoration status (technical reclamation, spontaneous succession, disturbed succession) on the communities of vascular plants and assemblages of arthropods in CEP II sand pit (T řebo ňsko region, SW part of the Czech Republic) to evaluate their biodiversity and conservation potential. We also studied the experimental restoration of psammophytic grasslands to compare the impact of two near-natural restoration methods (spontaneous and assisted succession) to establishment of target species. The sand pit comprises stages of 2 to 30 years since site abandonment with moisture gradient from wet to dry habitats. In all studied groups, i.e. vascular pants and arthropods, open spontaneously revegetated sites continuously disturbed by intensive recreation activities hosted the largest proportion of target and endangered species which occurred less in the more closed spontaneously revegetated sites and which were nearly absent in technically reclaimed sites. Out results provide clear evidence that the mosaics of spontaneously established forests habitats and open sand habitats are the most valuable stands from the conservation point of view. It has been documented that no expensive technical reclamations are needed to restore post-mining sites which can serve as secondary habitats for many endangered and declining species. The experimental restoration of rare and endangered plant communities seems to be efficient and promising method for a future large-scale restoration projects in abandoned sand pits.
    [Show full text]
  • Local Nature Reserve Management Plan 2020 – 2024
    Bisley Road Cemetery, Stroud Local Nature Reserve Management Plan 2020 – 2024 Prepared for Stroud Town Council CONTENTS 1 VISION STATEMENT 2 POLICY STATEMENTS 3 GENERAL DESCRIPTION 3.1 General background information 3.1.1 Location and site boundaries Map 1 Site Location 3.1.2 Tenure Map 2 Schedule Plan 3.1.3 Management/organisational infrastructure 3.1.4 Site infrastructure 3.1.5 Map coverage 3.2 Environmental information 3.2.1 Physical 3.2.2 Biological 3.2.2.1 Habitats Map 3 Compartment Map – Old Cemetery Map 4 Compartment Map – New Cemetery 3.2.2.2 Flora 3.2.2.3 Fauna 3.3 Cultural 3.3.1 Past land use 3.3.2 Present land use 3.3.3 Past management for nature conservation 3.3.4 Present legal status 4 NATURE CONSERVATION FEATURES OF INTEREST 4.1 Identification and confirmation of conservation features 4.2 Objectives 4.2.1 Unimproved grassland 4.2.1.1 Summary description 4.2.1.2 Management objectives 4.2.1.3 Performance indicators 4.2.1.4 Conservation status 4.2.1.5 Rationale 4.2.1.6 Management projects 4.2.2 Trees and Woodland 4.2.2.1 Summary description 4.2.2.2 Management objectives 4.2.2.3 Performance indicators 4.2.2.4 Conservation status 4.2.2.5 Rationale 4.2.2.6 Management projects 4.2.3 Lichens 4.2.3.1 Summary description 4.2.3.2 Management objectives 4.2.3.3 Performance indicators 4.2.3.4 Conservation status 4.2.3.5 Rationale 4.2.3.6 Management projects 4.3 Rationale & Proposals per compartment Bisley Rd Cemetery Mgmt Plan 2020-2024 2 5 HISTORIC INTEREST 5.1 Confirmation of conservation features 5.2 Objectives 5.3 Rationale 6 STAKEHOLDERS 6.1 Evaluation 6.2 Management projects 7 ACCESS / TOURISM 7.1 Evaluation 7.2 Management objectives 8 INTERPRETATION 8.1 Evaluation 8.2 Management Projects 9 OPERATIONAL OBJECTIVES 9.1 Operational objectives 9.2 Management projects 10 WORK PLAN Appendix 1 Species List Bisley Rd Cemetery Mgmt Plan 2020-2024 3 1 VISION STATEMENT Stroud Town Council are committed to conserving Stroud Cemetery to: • Enable the people of Stroud to always have a place of peace and quiet reflection and recreation.
    [Show full text]
  • 196 Arachnology (2019)18 (3), 196–212 a Revised Checklist of the Spiders of Great Britain Methods and Ireland Selection Criteria and Lists
    196 Arachnology (2019)18 (3), 196–212 A revised checklist of the spiders of Great Britain Methods and Ireland Selection criteria and lists Alastair Lavery The checklist has two main sections; List A contains all Burach, Carnbo, species proved or suspected to be established and List B Kinross, KY13 0NX species recorded only in specific circumstances. email: [email protected] The criterion for inclusion in list A is evidence that self- sustaining populations of the species are established within Great Britain and Ireland. This is taken to include records Abstract from the same site over a number of years or from a number A revised checklist of spider species found in Great Britain and of sites. Species not recorded after 1919, one hundred years Ireland is presented together with their national distributions, before the publication of this list, are not included, though national and international conservation statuses and syn- this has not been applied strictly for Irish species because of onymies. The list allows users to access the sources most often substantially lower recording levels. used in studying spiders on the archipelago. The list does not differentiate between species naturally Keywords: Araneae • Europe occurring and those that have established with human assis- tance; in practice this can be very difficult to determine. Introduction List A: species established in natural or semi-natural A checklist can have multiple purposes. Its primary pur- habitats pose is to provide an up-to-date list of the species found in the geographical area and, as in this case, to major divisions The main species list, List A1, includes all species found within that area.
    [Show full text]
  • Bees and Wasps of the East Sussex South Downs
    A SURVEY OF THE BEES AND WASPS OF FIFTEEN CHALK GRASSLAND AND CHALK HEATH SITES WITHIN THE EAST SUSSEX SOUTH DOWNS Steven Falk, 2011 A SURVEY OF THE BEES AND WASPS OF FIFTEEN CHALK GRASSLAND AND CHALK HEATH SITES WITHIN THE EAST SUSSEX SOUTH DOWNS Steven Falk, 2011 Abstract For six years between 2003 and 2008, over 100 site visits were made to fifteen chalk grassland and chalk heath sites within the South Downs of Vice-county 14 (East Sussex). This produced a list of 227 bee and wasp species and revealed the comparative frequency of different species, the comparative richness of different sites and provided a basic insight into how many of the species interact with the South Downs at a site and landscape level. The study revealed that, in addition to the character of the semi-natural grasslands present, the bee and wasp fauna is also influenced by the more intensively-managed agricultural landscapes of the Downs, with many species taking advantage of blossoming hedge shrubs, flowery fallow fields, flowery arable field margins, flowering crops such as Rape, plus plants such as buttercups, thistles and dandelions within relatively improved pasture. Some very rare species were encountered, notably the bee Halictus eurygnathus Blüthgen which had not been seen in Britain since 1946. This was eventually recorded at seven sites and was associated with an abundance of Greater Knapweed. The very rare bees Anthophora retusa (Linnaeus) and Andrena niveata Friese were also observed foraging on several dates during their flight periods, providing a better insight into their ecology and conservation requirements.
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Land at Balcombe Parish ESD/14/747 Prepared for Katherine Daniel (Balcombe Parish Council) 13th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Balcombe Parish 13/02/2014 Prepared for Katherine Daniel Balcombe Parish Council ESD/14/74 The following information is included in this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI M12 - Sedgy & Scott's Gills; M22 - Balcombe Lake & associated woodlands; M35 - Balcombe Marsh; M39 - Balcombe Estate Rocks; M40 - Ardingly Reservior & Loder Valley Nature Reserve; M42 - Rowhill & Station Pastures. SSSI Worth Forest. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; National Trust Property. Habitats Ancient tree; Ancient woodland; Ghyll woodland; Lowland calcareous grassland; Lowland fen; Lowland heathland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry.
    [Show full text]
  • Aculeate Bee and Wasp Survey Report 2015/16 for the Knepp Wildland Project
    Aculeate bee and wasp survey report 2015/16 for the Knepp Wildland Project Thomas Wood and Dave Goulson School of Life Sciences, The University of Sussex, Falmer, BN1 9QG Methodology Aculeate bees and wasps were surveyed on the Knepp Castle Estate as part of their biodiversity monitoring programme during the 2015/2016 seasons. The southern block, comprising 473 hectares, was selected for the survey as it is the most extensively rewilded section of the estate. Nine areas were identified in the southern block and each one was surveyed by free searching for 20 minutes on each visit. Surveys were conducted on April 13th, June 3rd and June 30th in 2015 and May 20th, June 24th, July 20th, August 7th and August 12th in 2016. Survey results and species of note A total of 62 species of bee and 30 species of wasp were recorded during the survey. This total includes seven bee and four wasp species of national conservation importance (Table 1, Table 2). Rarity classifications come from Falk (1991) but have been modified by TW to take account of the major shifts in abundance that have occurred since the publication of this review. The important bee species were Andrena labiata, Ceratina cyanea, Lasioglossum puncticolle, Macropis europaea, Melitta leporina, Melitta tricincta and Sphecodes scabricollis. Both A. labiata and C. cyanea show no particular affinity for clay. Both forage from a wide variety of plants and are considered scarce nationally for historical reasons and for their restricted southern distribution. M. leporina and M. tricincta are both oligolectic bees, collecting pollen from one botanical family only.
    [Show full text]
  • Hymenoptera: Chrysididae) in Estonia Ascertained with Trap-Nesting
    Eur. J. Entomol. 112(1): 91–99, 2015 doi: 10.14411/eje.2015.012 ISSN 1210-5759 (print), 1802-8829 (online) Host specificity of the tribe Chrysidini (Hymenoptera: Chrysididae) in Estonia ascertained with trap-nesting MADLI PÄRN 1, VILLU SOON 1, 2, *, TUULI VALLISOO 1, KRISTIINA HOVI 1 and JAAN LUIG 2 1 Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu 51014, Estonia; e-mails: [email protected]; [email protected]; [email protected]; [email protected] 2 Zoological Museum, Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; e-mail: [email protected] Key words. Hymenoptera, Chrysididae, cuckoo wasps, parasite specialization, trap nest, Chrysis, host specificity Abstract. Cuckoo wasps (Chrysididae) are a medium-sized and widespread family of Hymenoptera whose species are generally para- sitoids or cleptoparasites of solitary wasps and bees. The identities of the hosts are known from various studies and occasional records; however the utility of such data is often low due to unstable taxonomy of the species and the inappropriate methods used to determine the host species. Therefore, despite numerous publications on the subject, the host-parasite relationships of cuckoo wasps are poorly understood. Moreover, a revision of existing literature reveals that cuckoo wasps are often unreasonably considered to be unspecialized (i.e., sharing host species). In this study we use an accurate method (trap-nests) to determine the host relationships of Estonian cuckoo wasps of the genera Chrysis and Trichrysis and determine their level of specialization. 568 trap nest bundles (each containing 15–20 single reed stems) were established at 361 locations across Estonia during the vegetation periods of 2009–2011.
    [Show full text]
  • The Bees and Wasps of Marsland Nature Reserve
    The Bees and Wasps of Marsland Nature Reserve Mason wasp Invertebrate survey and habitat evaluation Patrick Saunders [email protected] http://kernowecology.co.uk 1 Introduction This document consists of habitat evaluation and management recommendations for Bees and Wasps (Aculeate hymenoptera) for the Devon Wildlife Trust Nature Reserve Marsland mouth. The survey and report was commissioned by DWT Reserve warden. Marsland Nature reserve description (Pilkington & Threlkeld 2012) • The reserve comprises 212 hectares, of which 186 hectares occurs in the Marsland Valley and 26 hectares in the Welcombe Valley. The site was designated a SSSI in 1952. In addition the reserve includes an unknown acreage of foreshore north of Welcombe Mouth for 4 kilometres, extending beyond South Hole Farm (SS219201). The boundary of the reserve is approximately 18 miles long and is very complex, mainly through following the seven separate tributary streams. The reserve is freehold owned by Devon Wildlife Trust • The primary interest of the reserve is as an example of a north Devon/Cornwall coombe valley with a variety of slopes, soil types and aspects and coastal area that gives rise to a similar diversity of habitats. The most important of these are the extensive areas of relatively pure oak woodland and oak coppice, the maritime grassland and grass heath and the alder woodland and wet flushes in the valley bottoms. • There is approximately 36h of grassland, 130h of woodland, 43h of coastal habitat and 1h of open water. • The reserve also lies within an Area of Outstanding Natural Beauty with the Marsland Valley being highly representative of an unspoilt coastal coombe habitat.
    [Show full text]
  • Horizontal Transfer of Wolbachia Between Different Hymenopteran
    Horizontal transfer of Wolbachia between different Hymenopteran host‐parasitoid pairs Aileen Berasategui López th 1 26 September 2011 Master thesis by Aileen Berasategui López University of Bremen September 2011 Supervisors: Prof. Dr. Thomas Hoffmeister Dr. Martin Kaltenpoth 2 To my family 3 “For the present, I suggest that any doubting readers should “look out of the window” and list every organism they can see. I can guarantee that most, probably all, organisms on the list are a product of symbiosis.” Angela E. Douglas 4 Acknowledgements It has been a while already since I left home to study biology in Oviedo. I always thought I would come back home after College, but life turned my plans upside down giving me the opportunity to do my degree’s last year abroad. Now that I have finished my master in Germany, I would like to thank the people that have helped me through these last years. I would first like to thank Prf. Dr. Thomas Hoffmeister, who gave me the opportunity to continue my studies in Ecology in University of Bremen, which ultimately opened for me the doors of science. I am extremely thankful to my supervisor Dr. Martin Kaltenpoth, for teaching me everything I know about insect symbiosis. Thank you for making of the lab such a nice atmosphere, for encouraging us to develop as critical scientists and to provide us with all the resources (technical but also personal) we need to do our best. I would also like to thank Dr. Oliver Niehuis, Thomas Schmitt and Mareike Wurdack for providing some of the samples I have used in this project and Dr.
    [Show full text]
  • The Wasp and Bee Fauna of the Ridti Archipelago in Lake Milaren, Sweden (Hymenoptera, Aculeata)
    The wasp and bee fauna of the Ridti archipelago in Lake Milaren, Sweden (Hymenoptera, Aculeata) CONEN E. NILSSON Nilsson, G. E.: The wasp and bee fauna of the Ridd archipelago in Lake Miilaren, Sweden (Hymenoptera, Aculeata). IInventering av gaddstekelfaunan i Riddarkipelagens nat-trrreservat i Malaren (Hymenoptera, Aculeata).1 - Ent. Tidskr. ll2:'79-92. UmeA, Sweden 1991. ISSN 0013-886x. The aculeate fauna (excluding Formicidae, Apidae s.str- Andrenidae, and Halictidae) was surveyed in the Ridd arghipei-ago nature reserve (19 km2) and the small adjacent mainland area Solbacken (0.5 km2). The-Ridi, archipelago is characterized by a mosaic of deciduous forests (including some of nearly primeval type), coniferous forests, wet and d-ry meadows, grazing ground. grazing marshes, and parkland. During 1982 - 1990. a total of I 139 specimens iere c-ollected ii the alchipelago and more than 2000 specimens at Solbacken. 222 species (45 Vo of the Swedish fauna) arelepresented in the material ( I 50 species from the archipelago). Of the species found, 35 occur on red data lists from Britain and/or Central Eurgpe.. The wood-neiting fauna was the richest. Wood-nesting sphecid wasps were_represented by.57 species (72 4o of the wood-nesting Swedish faunaj, a figure that outnumbe-rs most Swedish piovinces (including SkAne. Oland and Gotland) and equ_als_the lqTlgr of Danish. spec-ies. bf-wood-nesting eumenid wasps and megachilid bees, 63Vo and 8lo/o, respectively, of all Swedish wood-iesting species were found. The richness of the wood-nesting aculeate fauna is probably related to the wealth of dead trees and fallen logs, the rich flora of flowe-ring plants, ttui exceptionally mild and dry local climate, and a continuous influence from ireighbouring populationi.
    [Show full text]