View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Software institutes' Online Digital Archive Improved Linear Cryptanalysis of reduced-round SIMON-32 and SIMON-48 Mohamed Ahmed Abdelraheem1 ?, Javad Alizadeh2??, Hoda A. Alkhzaimi3, Mohammad Reza Aref2, Nasour Bagheri4, and Praveen Gauravaram5 ??? 1 SICS Swedish ICT, Sweden,
[email protected] 2 ISSL, E.E. Department, Sharif University of Technology, Iran,
[email protected] 3 Section for Cryptology, DTU Compute, Technical University of Denmark, Denmark,
[email protected] 4 E.E. Department of Shahid Rajaee Teachers Training University and the School of Computer Science of Institute for Research in Fundamental Sciences (IPM), Iran,
[email protected] 5 Queensland University of Technology, Brisbane, Australia,
[email protected] Abstract. In this paper we analyse two variants of SIMON family of light-weight block ciphers against linear cryptanalysis and present the best linear cryptanalytic results on these variants of reduced-round SIMON to date. We propose a time-memory trade-off method that finds differential/linear trails for any permu- tation allowing low Hamming weight differential/linear trails. Our method combines low Hamming weight trails found by the correlation matrix representing the target permutation with heavy Ham- ming weight trails found using a Mixed Integer Programming model representing the target differ- ential/linear trail. Our method enables us to find a 17-round linear approximation for SIMON-48 which is the best current linear approximation for SIMON-48. Using only the correlation matrix method, we are able to find a 14-round linear approximation for SIMON-32 which is also the current best linear approximation for SIMON-32.