coatings Article Synthesis of Eugenol-Based Silicon-Containing Benzoxazines and Their Applications as Bio-Based Organic Coatings Jinyue Dai 1,2,3, Shimin Yang 4, Na Teng 1,3, Yuan Liu 1,2,5, Xiaoqing Liu 1,3,*, Jin Zhu 1,3 and Jun Zhao 4 1 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
[email protected] (J.D.);
[email protected] (N.T.);
[email protected] (Y.L.);
[email protected] (J.Z.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo 315201, China 4 Shanghai Space Propulsion Technology Research Institute, Shanghai 201100, China;
[email protected] (S.Y.);
[email protected] (J.Z.) 5 Engineering Research Center for Materials Protection of Wear and Corrosion of Guizhou Province, Guiyang University, Guiyang 550005, China * Correspondence:
[email protected] Received: 9 January 2018; Accepted: 21 February 2018; Published: 27 February 2018 Abstract: In this work, several bio-based main-chain type benzoxazine oligomers (MCBO) were synthesized from eugenol derivatives via polycondensation reaction with paraformaldehyde and different diamine. Afterwards, their chemical structures were confirmed by Fourier Transform Infrared Spectroscopy (FT-IR) and Nuclear Magnetic Resonance Spectroscopy (1H-NMR). The curing reaction was monitored by Differential Scanning Calorimetry (DSC) and FT-IR. The polybenzoxazine films were prepared via thermal ring-opening reaction of benzoxazine groups without solvent, and their thermodynamic properties, thermal stability, and coating properties were investigated in detail. Results indicated that the cured films exhibited good thermal stability and mechanical properties, ◦ showing 10% thermal weight loss (Td10%) temperature as high as 408 C and modulus at a room temperature of 2100 MPa as well as the glass transition temperature of 123 ◦C.