(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 17 June 2010 (17.06.2010) WO 2010/068673 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09D 167/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/067347 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 9 December 2009 (09.12.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/121,454 10 December 2008 (10.12.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, VALSPAR SOURCING, INC. [US/US]; PO Box 1461, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Minneapolis, MN 55440-1461 (US). TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (72) Inventors; and MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, (75) Inventors/Applicants (for US only): LESPINASSE, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Robert [FR/FR]; Les Justices, F-71700 Boyer (FR). ML, MR, NE, SN, TD, TG). PROUVOST, Benoit [FR/FR]; En Breuille, F-71290 L'Abergement de Cuisery (FR). STENSON, Paul Published: [US/CH]; Buchenweg 1, CH-81 36 Gattikon (CH). — with international search report (Art. 21(3)) (74) Agent: DEMASTER, Andrew, A.; Valspar Sourcing, Inc., PO Box 1461, Minneapolis, MN 55440-1461 (US). (54) Title: POLYESTER POLYMER HAVING PHENOLIC FUNCTIONALITY AND COATING COMPOSITIONS FORMED THEREFROM (57) Abstract: A polyester polymer is provided that includes at least one pendant phenolic- containing group. In one embodiment, the polyester polymer is combined with an optional crosslinker and an optional carrier to form a coating composition suitable for use in coating articles such as packaging articles. The coating composition typically includes a resole phenolic crosslinker. In one embodiment, the polyester polymer has at least one phenolic-containing group that comprises an adduct of cardanol. POLYESTER POLYMER HAVING PHENOLIC FUNCTIONALITY AND COATING COMPOSITIONS FORMED THEREFROM CROSS-REFERENCE TO RELATED APPLICATION^) [001] This application claims the benefit of U.S. Provisional Application No. 61/121,454 filed on December 10, 2008, which is incorporated herein by reference in its entirety. TECHNICAL FIELD [002] This invention relates to a polyester polymer, and coating compositions including the polymer. BACKGROUND [003] The application of coatings to metals to retard or inhibit corrosion is well established. This is particularly true in the area of metal food and beverage cans. Coatings are typically applied to the interior of such containers to prevent the contents from contacting the metal of the container. Contact between the metal and the packaged product can lead to corrosion of the metal container, which can contaminate the packaged product. This is particularly true when the contents of the container are chemically aggressive in nature. Protective coatings are also applied to the interior of food and beverage containers to prevent corrosion in the headspace of the container between the fill line of the food product and the container lid, which is particularly problematic with high-salt-content food products. [004] Packaging coatings should preferably be capable of high-speed application to the substrate and provide the necessary properties when hardened to perform in this demanding end use. For example, the coating should be safe for food-contact; not adversely affect the taste of the packaged food or beverage product; have excellent adhesion to the substrate; resist staining and other coating defects such as "popping," "blushing" and/or "blistering;" and resist degradation over long periods of time, even when exposed to harsh environments. In addition, the coating should generally be capable of maintaining suitable film integrity during container fabrication and be capable of withstanding the processing conditions that the container may be subjected to during product packaging. [005] Various coatings have been used as interior protective can coatings, including epoxy-based coatings and polyvinyl-chloride-based coatings. Each of these coating types, however, has potential shortcomings. For example, the recycling of materials containing polyvinyl chloride or related halide-containing vinyl polymers can be problematic. There is also a desire to reduce or eliminate certain epoxy compounds commonly used to formulate food-contact epoxy coatings. [006] To address the aforementioned shortcomings, the packaging coatings industry has sought coatings based on alternative binder systems such as polyester resin systems. It has been problematic, however, to formulate polyester-based coatings that exhibit the required balance of coating characteristics (e.g., flexibility, adhesion, corrosion resistance, stability, resistance to crazing, etc.). For example, there has been a tradeoff between corrosion resistance and fabrication properties for such coatings. Polyester- based coatings suitable for food contact that have exhibited both good fabrication properties and an absence of crazing having tended to be too soft and exhibit unsuitable corrosion resistance. Conversely, polyester-based coatings suitable for food contact that have exhibited good corrosion resistance have typically exhibited poor flexibility and unsuitable crazing when fabricated. [007] What is needed in the marketplace is an improved binder system for use in coatings such as packaging coatings. SUMMARY [008] In one aspect, the present invention provides a binder system comprising a polyester polymer having phenolic functionality. The polyester polymer typically includes at least one, and more preferably a plurality, of phenolic -containing pendant and/or terminal groups. The polyester polymer preferably includes at least one phenolic- containing pendant (or side) group. In one embodiment, at least one of the phenolic- containing groups is a derivative of cardanol. In another embodiment, at least one of the phenolic-containing groups is provided by diphenolic acid, more preferably at least one of the phenolic-containing groups is a diphenolic-acid-based pendant group. [009] In another aspect, the invention provides a coating composition useful for coating a wide variety of articles, including food or beverage containers. Certain preferred coating compositions of the invention are particularly useful as food-contact coatings for use on surfaces of metal food or beverage containers. The coating composition typically includes a phenolic-functional polyester, an optional crosslinker, and an optional carrier. In a presently preferred embodiment, the optional crosslinker includes at least one resole phenolic crosslinker. [010] In yet another aspect, the invention provides an article coated on at least one surface with a coating composition described herein. In certain embodiments, the coated article comprises a food or beverage can, or a portion thereof, having a body portion and/or end portion coated with a coating composition of the invention. [Oil] In yet another aspect, the invention provides a method for producing a coated article. The method includes providing a coating composition described herein and applying the coating composition on a substrate (typically a planar metal substrate) prior to, or after, forming the substrate into an article such as food or beverage can or a portion thereof. [012] The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the application, guidance is provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list. [013] The details of one or more embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. SELECTED DEFINITIONS [014] Unless otherwise specified, the following terms as used herein have the meanings provided below. [015] As used herein, the term "organic group" means a hydrocarbon group (with optional elements other than carbon and hydrogen, such as oxygen, nitrogen, sulfur, and silicon) that is classified as an aliphatic group, cyclic group, or combination of aliphatic and cyclic groups (e.g., alkaryl and aralkyl groups). The term "aliphatic group" means a saturated or unsaturated linear or branched hydrocarbon group. This term is used to encompass alkyl, alkenyl, and alkynyl groups, for example. The term "alkyl group" means a saturated linear or branched
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages47 Page
-
File Size-