And Toxicological Investigations of Ethanol Extract of the Leaves of Kigelia Africana (Lam.) Benth (Family Bignoniaceae )-Sausage Tree

Total Page:16

File Type:pdf, Size:1020Kb

And Toxicological Investigations of Ethanol Extract of the Leaves of Kigelia Africana (Lam.) Benth (Family Bignoniaceae )-Sausage Tree JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL SCIENCES Fredrick AC, Ebele OP,Chioma Obi,Utoh – Nedosa UA. Analgesic, Phytochemical and Toxicological Investigations Of Ethanol Extract Of The Leaves Of Kigelia Africana (Lam.) Benth (family Bignoniaceae )-Sausage Tree. J Pharm Biomed Sci 2014;04(07):588-595. The online version of this article, along with updated information and services, is located on the World Wide Web at: www.jpbms.info Journal of Pharmaceutical and Biomedical Sciences (J Pharm Biomed Sci.), Member journal. Committee of Publication ethics (COPE) and Journal donation project (JDP). ISSN NO- 2230 – 7885 CODEN JPBSCT NLM Title: J Pharm Biomed Sci. Research Article Analgesic, Phytochemical And Toxicological Investigations Of Ethanol Extract Of The Leaves Of Kigelia Africana (Lam.) Benth (Family Bignoniaceae)- Sausage Tree Anowi Chinedu Fredrick1,*, Obi Patrick Ebele2, Obi Chioma B,3 Utoh – Nedosa UA4 Affiliation:- Bignoniaceae)-Sausage Tree J Pharm Biomed Sci 1 Department of Pharmacognosy and Traditional 2014; 04(07):588-595. Available at www.jpbms.info Medicine Faculty of Pharm Sciences, Nnamdi Azikiwe University, Awka, Nigeria 2 ABSTRACT Department of Pharmacognosy, Faculty of Pharmacy, The plant of Kigelia africana had been in use from Madonna University, Elele, Rivers State, Nigeria time immemorial by the people of Ogidi in Idemili 3Department of Pharmacology, Faculty of Pharmacy, Madonna University, Elele, Rivers State, Nigeria Local Government area of Anambra State, Nigeria to 4Department of Pharmacology and Toxicology, Faculty treat pyrexia, analgesia and infectious diseases. For of Pharm Sciences, Nnamdi Azikiwe University, Awka, example the decoction of the plant is used to treat Nigeria wounds, running stomach (diarrhea), aches and pains as well as fever. This investigation was carried out to The name of the department(s) and institution(s) to ascertain the truth of this claim. which the work should be attributed: The leaves of Kigelia africana was collected and dried 1.Department of Pharmacognosy and Traditional at ambient temperature and pulverized. Exactly 200g Medicine Faculty of Pharm Sciences, Nnamdi Azikiwe University, Awka, Nigeria of the powdered drug was extracted with 400ml of 2.Department of Pharmacognosy, Faculty of Pharmacy, ethanol using the cold maceration technique for Madonna University, Elele, Rivers State, Nigeria 24hours with occasional shaking. This was filtered 3.Department of Pharmacology, Faculty of Pharmacy, and the procedure repeated with the marc. The Madonna University, Elele, Rivers State, Nigeria combined filtrates were concentrated under reduced 4.Department of Pharmacology and Toxicology, Faculty of Pharm Sciences, Nnamdi Azikiwe University, pressure with rotary evaporator. The preliminary Awka, Nigeria phytochemical tests were carried out using standard methods. The analgesic was conducted using hot Address reprint requests to plate method. The acute toxicity test of the extract Anowi Chinedu Fredrick was determined using the Lorke’s method. Department of Pharmacognosy and Traditional Medicine Faculty of Pharm Sciences, Nnamdi Azikiwe The leaves of Kigelia africana exhibited analgesic University, Awka, Nigeria or at property. Alkaloids, flavonoids, saponins, tannins, [email protected] proteins, steroids and carbohydrates were found. Toxicity test showed that the extract was safe at the J Pharm Biomed Sci 2014;04(07):588-595. dose of 1000mg/kg. Preliminary studies support the claim that the leaves Article citation: Fredrick AC,Ebele OP,Chioma Obi,Utoh – Nedosa UA. of Kigelia Africana possesses, analgesic properties. Analgesic, phytochemical and toxicological investigations of ethanol extract of the leaves of KEYWORDS: Kigelia Africana; hot plate method; Kigelia africana (Lam.) Benth (family Lork’s method. 588 ISSN NO- 2230 – 7885 CODEN JPBSCT NLM Title: J Pharm Biomed Sci. Source of support: None authors were equally involved in discussed research work. There is no financial conflict with the subject Competing interest / Conflict of interest matter discussed in the manuscript. The author(s) have no competing interests for financial Disclosure forms provided by the authors are support, publication of this research, patents and available with the full text of this article at jpbms.info royalties through this collaborative research. All INTRODUCTION KIGELIA AFRICANA (Bignoniaceae) erbal medicine practice plays an important Common Names: Sausage Tree, Cucumber Tree role in the primary healthcare delivery system in most developing countries CLASSIFICATION H 17 including Nigeria . Even the World Health KIGELIA AFRICANA (Lam.) Benth. Organization (WHO, 2002)36 is actively o Kingdom: Plantae-Plants encouraging national governments of member o Subkingdom: Tracheobionta-Vascular plants countries to utilize their traditional systems of o Super-division: Spermatophyta-Seed plants medicines with regulations suitable to their o Division: Magnoliophyta-Flowering plants national health care systems. The WHO estimates o Class: Magnoliopsida-Dicotyledons that 80% of the population living in rural areas use o Subclass: Asteridae or depend on herbal medicine for their health o Order: Scrophulariales needs (WHO Traditional Medicine Strategy, 2002). o Family: Bignoniaceae - Trumpet-creeper family However, in spite of the obvious and important o Genus: Kigelia DC. - Sausage tree contribution the herbal medicine makes to primary o Species: Kigelia africana (Lam.) Benth.- health care, it continues to be antagonised by Sausage Tree majority of allopathic medical practitioners as it is considered to have no scientific basis28. This work Synonyms is therefore a preliminary work to prove that there Some synonyms are still accepted by a few is scientific evidence to the use of leaves of Kigelia horticulturists as distinct species, but botanical Africana in the treatment of pyrexia. studies agree that the genus contains only one One major problem of herbal medicine practice is that there is no official standard and / or local monograph. In Nigeria, the Federal Government has urged the federating states to set up traditional medicine boards to license and regulate the practice of herbal practitioners under the supervision of ministries of health4. (a) Many medicines including reserpine, ergotamine, vincristine, and vinblastine are of herbal origin5. About one quarter of the present prescription drugs dispensed by community pharmacies in the United States contain at least one active principle originally derived from plant materials39. (b) Figure 1(a) & (b). Shows leaf and Figure 2.Bark in Kolkata, West Bengal, flower in Kolkata, West Bengal, India. India. 589 ISSN NO- 2230 – 7885 CODEN JPBSCT NLM Title: J Pharm Biomed Sci. species23. inflamed spleen (splenitis) and contains anti- Bignonia africana Lam. (basionym) inflammatory and antimicrobial properties11. Tecoma africana (Lam.) G.Don Traditionally made beer (muratina) from its fruit Crescentia pinnata Jacq. extract is bathed in a bath by children with Kigelia pinnata (Jacq.) DC. measles for treatment. Either its crushed dried Kigelia abyssinica A.Rich. fruits or its fresh fruits are used in ethnomedicine Kigelia aethiopica Decne. to treat ulcers, sores and syphillis. Its fruit contains antibacterial properties32. A decoction made from Kigelia Africana its roots is drunk to treat gastrointestinal (Lam.) Benth. problems. Its leaf extract is applied onto wounds to Name derivation treat them. A decoction made from its bark is Kigelia is based on an African name and africana drunk for relief from headaches, rheumatism, treat means from Africa. The genus Kigelia has one epilepsy and venereal diseases. A decoction made species and occurs only in Africa12. The genus from its leaf is drunk to treat malaria. A juice name comes from the Mozambican Bantu name, extract from its fruit is used for treating wounds. A kigeli-keia, while the common names sausage tree mixture made from mixing ash harnessed from and cucumber tree refer to the long, sausage-like roasting its leaf together with honey is used in fruit18. Its name in Afrikaans Worsboom also treating high blood pressure. In the cosmetic means Sausage Tree, and its Arabic name means industry, its fruit extracts are used in making "the father of kit bags"29. beauty, anti skin aging and skin ointment products that are used against eczema and psoriasis due to Other vernacular names its antimicrobial properties1. Its roots are used in AFRIKAANS: Worsboom. the dye or colourant industry to make related ARABIC: Abu shutor, Abu sidra, Um mashatur, Um products due to its bright colour extracts. Its fruit shutur. is traditionally used to make traditional beer FRENCH: Saucissonnier. commonly known as "muratina" by the Kikuyu GERMAN: Leberwurstbaum. people of Kenya. Its fresh fruit is poisonous and SPANISH: Arbol De Las Salchichas. cannot be directly eaten. The mode of propagation IGBO: Ogilisa ofia. is by seed. Constituents Growth The bark contains only a bitter principle and It is a tree growing up to 20 m tall. The bark is grey tannic acid. and smooth at first, peeling on older trees. It can be 8 Studies have yielded naphthaquinones, iridoids, as thick as 6mm on a 15cm branch . The wood is fatty acids, norviburtinal, sterols, lignans, pale brown or yellowish, undifferentiated and not 6 terpenoid, flavonoids, and volatile constituents. prone to cracking . The tree is easily propagated Study isolated pinnatal in a root bark extract. from the fresh seed sown in river sand in September, or from truncheons.
Recommended publications
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Reproductive Biology of the Sausage Tree (Kigelia Africana) in Kruger National Park, South Africa
    KOEDOE - African Protected Area Conservation and Science ISSN: (Online) 2071-0771, (Print) 0075-6458 Page 1 of 7 Short Communication Reproductive biology of the sausage tree (Kigelia africana) in Kruger National Park, South Africa Authors: Kigelia africana has large flowers that are vertebrate pollinated and very large fruits that are 1 Jah Namah likely to be vertebrate dispersed. Our field surveys of size–class distributions ofK. africana in Jeremy J. Midgley1 Laurence M. Kruger1,2 the southern Kruger National Park (KNP) suggest a lack of recruitment. This is possibly the result of a failure of mutualistic relationships with vertebrate dispersers and/or pollinators. Affiliations: Breeding system experiments indicated that K. africana is an obligate out-crosser. Despite 1Department of Biological being primarily adapted for bat pollination, in KNP that K. africana is presently mainly Sciences, University of Cape Town, Cape Town, pollinated by a diversity of largely facultatively nectarivorous bird species. Fruit-set is high, South Africa although trees isolated by > 50 m were found to suffer depressed seed output. Our preliminary investigation of dispersal suggests that fruits are largely ignored and are thus weakly 2Organisation for Tropical attractive to potential dispersers. Seedlings placed out in the field in KNP suffered high levels Studies, Skukuza, South Africa (> 50%) of mortality compared to 17.5% in control plots. This threefold difference is the result Corresponding author: of herbivory over a 2-month period. In summary, the adult centric population structure is Jeremy Midgley, probably not because of pollen or seed limitation but may result from dispersal limitation or [email protected] excessive herbivory.
    [Show full text]
  • Kigelia Pinnata (Jacq.) DC
    Kigelia pinnata (Jacq.) DC. Bignoniaceae LOCAL NAMES Afrikaans (worsboom); Arabic (abu shutor,um shutur,um mashatur,abu sidra); Bemba (mufungufungu); English (sausage tree); Fula (jilahi); German (Leberwurstbaum); Hausa (rawuya); Igbo (uturubein); Lozi (mufungufungu,muzungula,mPolata); Luganda (mussa); Lunda (ifungufungu,mufunofuno); Nyanja (chizutu,mvula); Swahili (mvungunya,mvungwa,mwegea,mwicha,mvungavunga); Tigrigna (mederba); Tongan (muzungula,muVeve); Yoruba (pandoro) BOTANIC DESCRIPTION K. pinnata in Kabalega Falls National Park, Kigelia africana is a medium to large tree, up to 25 m in height, with a Uganda. (Patrick Maundu) dense rounded crown; bark grey, generally smooth in large specimens, flaking in thin, round patches. Leaves opposite, crowded near the ends of branches, compound, with 3-5 pairs of leaflets plus a terminal leaflet; leaflets oblong, up to 6 x 10 cm, leathery, roughly hairy on both surfaces, rather yellowish-green above, paler green below, apex broadly tapering to rounded; base square, asymmetric in the lateral leaflets, symmetric in the terminal leaflet; margin entire, sometimes obscurely toothed, wavy; the lower leaflets shortly petiolulate, the terminal pair without petiolules; petiole up to 15 cm long. Fruit (Trade winds fruit) Flowers striking, dark maroon with heavy yellow veining on the outside, cup shaped, asymmetric, up to 15 cm across the mouth, unpleasant smelling; in 6- to 12-flowered, lax, pendulous sprays up to 90 cm long. Calyx shortly tubular with 2-5 ribbed lobes; corolla widely cup shaped with 5 broad spreading lobes; stamens 4, slightly protruding beyond the mouth of the corolla tube; ovary 1-chambered. Fruit very unusual, sausage shaped, up to 1 m x 18 cm, greyish-brown, heavily dotted with lenticels, indehiscent, heavy, weighing up to 12 kg, containing a fibrous pulp in which are embedded many seeds.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Chemical Composition and Antioxidant Potentials of Kigelia Pinnata Root Oil and Extracts
    EXCLI Journal 2011;10:264-273 – ISSN 1611-2156 Received: October 24, 2011, accepted: November 23, 2011, published: November 30, 2011 Original article: CHEMICAL COMPOSITION AND ANTIOXIDANT POTENTIALS OF KIGELIA PINNATA ROOT OIL AND EXTRACTS Olubunmi Atolani*1, Stephen O. Adeyemi 1, Essiet Akpan1, Charles B. Adeosun1, Gabriel A. Olatunji2 1 Atolani Olubunmi, Department of Chemical Sciences, Redeemer’s University, P.M.B. 3005, Redemption Camp, Mowe, Ogun State, Nigeria 2 Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria * corresponding author E-mail: [email protected]; Tel; +2348034467136 ABSTRACT The chemical composition of Kigelia pinnata root oil extracted with n-hexane was analyzed by GC/GCMS. The antioxidant potential of the oil was compared to that of ethyl acetate and methanol extracts of the root. UV and IR spectroscopic techniques were used to carry out par- tial characterization of the oil and extracts. The free radical scavenging activity by spectro- photometric assay on the reduction of 1,1-diphenyl-2-picrylhydrazyl (DPPH) was examined while the total antioxidant activity (TAA) and relative antioxidant activity (RAA) were com- pared with standard antioxidant, α-tocopherol. The antioxidant activity (which correlated with the total phenolic content of the extracts) was assumed to be from the total phenolic content of the extracts. TAA was found to be higher in methanol extract (at 0.25 mg/mL). We hereby report for the first time the major component of the oil from the root of Kigelia pinnata to be elaidic acid (56.12 %). It is a reported toxicant which thereby underscores the risk in the use of the plant in traditional therapies.
    [Show full text]
  • Forest Tree Persistence, Elephants, and Stem Scars1
    BIOTROPICA 36(4): 505±521 2004 Forest Tree Persistence, Elephants, and Stem Scars1 Douglas Sheil and Agus Salim Center for International Forestry Research (CIFOR), P.O. Box 6596 JKPWB, Jakarta 10065, Indonesia ABSTRACT Sixteen percent of tree stems 10 cm diameter or greater recorded in seven 1 ha plots in Rabongo Forest, Uganda had stem damage attributable to elephants (Loxodonta africana). We propose four strategies that may help tree species persist under these conditions: repellence, resistance, tolerance and avoidance. We sought and found evidence for each strategy. Large, shade-tolerant Cynometra alexandri dominated basal area (often .50%) and showed severe scarring. Nearly 80 percent of stems were small pioneer species. Scarring frequency and intensity increased with stem size. Stem-size distributions declined steeply, implying a high mortality to growth rate ratio. Tree species with spiny stems or with known toxic bark defenses were unscarred. Epiphytic ®gs escaped damage while at small sizes. Mid-successional tree species were scarce and appeared sensitive to elephants. Savanna species were seldom scarred. Taking stem size- effects into account by using a per-stem logistic modeling approach, scarring became more probable with slower growth and with increasing species abundance, and also varied with location. Pioneer and shade-bearer guilds showed a de®cit of intermediate-sized stems. Evidence that selective elephant damage is responsible for monodominant C. alexandri forests remains equivocal; however, elephants do in¯uence tree diversity, forest structure, and the wider landscape. Key words: African semi-deciduous rain forest; bark damage; Cynometra alexandri; herbivory; Loxodonta africana; monodominant; species richness; succession; tolerance; Uganda. TREE DAMAGE CAUSED BY ELEPHANTS (LOXODONTA AF- size, is long-lived (Sheil et al.
    [Show full text]
  • Kigelia Africana (Syn
    id3356234 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com Kigelia africana (syn. Kigelia pinnata) (Bignoniaceae) English: Sausage tree, cucumber tree, African sausage tree French: Saucissoner German: Leberwurstbaum African vernacular names: Shona: Impfungvani, muvete, muzangula, vunguti Suahili: Mwegea Zulu: Umgongoti, umzingulu The plant A small, spreading tree with pendulous racemes of dull liver coloured flowers and a long stalked large gourd-like fruit. It is widely grown in the tropics and is introduced in India. The species exhibits a range of features. Earlier several species were thought to exist but now only one is recognized with the name Kigelia africana. The fresh fruit cannot be eaten because it causes blisters in the mouth and on the skin. Therefore it is said to be toxic. Plant parts used The fruits, the roots, the wood, the bark of the stem, the bark of the roots, the leaves Constituents roots wood leaves The , the and the have been investigated chemically. They contain naphthoquinones, dihydroisocoumarines, flavonoids and aldehydic iridoids. Among the naphthoquinones kigelinole, isokigelinole, pinnatal and isopinnatal were isolated (1). roo bark ß From the t and its the usual plant substances stigmasterol, -sitosterol, ferulic acid, the naphthoquinones lapachol, 6-methoxymellein and two new phenolic compounds could be isolated. °C, molecular formula C Kigelin is the main component of the plant, (mp 144 H ). A minor °, molecular formula C 12 14 one, (mp 76.-.77 11H12O4) was commonly referred as 6- methoxymellein (4). In a special investigation the attributes of two cyclopenta-c-pyran aldehydes were determined: 1) Sonovoburtinal, a yellow compound, subliming at ambient temperature, molecular formula C9H6O2.
    [Show full text]
  • Selous & Ruaha
    Selous & Ruaha - Undiscovered Tanzania Naturetrek Tour Report 28 September - 8 October 2017 Nile Crocodile Hippopotamus with Grey Heron & Cattle Egret White-crowned Lapwing Leopard Report & Images compiled by Zul Bhatia Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Selous & Ruaha - Undiscovered Tanzania Tour participants: Zul Bhatia (leader) with Metele Nduya (local guide & driver – Selous GR) Yustin Kayombo (local guide & driver – Ruaha NP), Together with six Naturetrek clients Summary The trip to southern Tanzania, visiting Selous Game Reserve and Ruaha National Park (staying four nights in each) lived up to all its expectations and more. We saw plenty of wildlife and often had it to ourselves with no other vehicles present – a nice feature of these less-visited places. It was particularly dry at Ruaha and the Great Ruaha River was reduced to a few pools. We saw some very exciting wildlife including hundreds of Crocodiles and Hippopotamus, many Greater Kudu and Elephants, 23 Lions, two Leopards, five Cheetahs and two African Civets. Mammal spotting was generally the order of most days with birds as a bonus. There were some very keen mammal observers in the group resulting in a list of 34 species of mammal. 170 species of bird were recorded including some very special ones of course, with highlights being Black and Woolly-necked Storks, Malagasy Pond Heron, Martial, African Fish and Verreaux’s Eagles, Grey-crowned Crane, White-crowned Lapwing, three species of roller, four of kingfisher and five of bee-eater.
    [Show full text]
  • Elephants in the Plant World Dale J
    Elephant Volume 1 Article 10 Issue 2 Elephant Newsletter No. 2 5-1-1978 Elephants in the Plant World Dale J. Osborn Brookfield Zoo Follow this and additional works at: https://digitalcommons.wayne.edu/elephant Part of the Animal Studies Commons, Biology Commons, Environmental Studies Commons, Population Biology Commons, and the Zoology Commons Recommended Citation Osborn, D. J. (1974). Elephants in the plant world. Brookfield Bison, a newsletter of the Chicago Zoological Society, 9(7), 1-3. Rpt. In Elephant, 1(2), 19. Doi: 10.22237/elephant/1491234049 This Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Elephant by an authorized editor of DigitalCommons@WayneState. Elephants in the Plant World Cover Page Footnote Reprinted with permission from the "Brookfield Bison," Vol. 9, No. 7, 1974 This article is available in Elephant: https://digitalcommons.wayne.edu/elephant/vol1/iss2/10 Elephantiasis is a name given to various skin diseases of ichthyoproboscidea, was a comparison of a battlefield full of man which cause it to look like an elephant's hide, and to the elephants to a sea teeming with sharks and fishes, an analogy swollen condition of lower appendages accompanied with harden- difficult for the Western mind to comprehend. ing of the skin caused by blockage of the lymphatic system by a Elephantine, the adjective meaning anything elephant-like, minute roundworm, Wuchereria bancrofti. refers also to its movements, which are described in dictionaries Composite monsters or makaras, that have elephant heads as clumsy, ponderous and heavy.
    [Show full text]
  • Elephant Influenced Damage and Its Impact on Growth and Survival of Trees in the Restored Areas of Kibale National Park, Western
    Vol. 5(6), pp. 371-377, June 2013 DOI: 10.5897/IJBC2013.0573 International Journal of Biodiversity ISSN 2141-243X © 2013 Academic Journals http://www.academicjournals.org/IJBC and Conservation Full Length Research Paper Elephant damage and tree response in restored parts of Kibale National Park, Uganda Mnason Tweheyo1,, David Mwesigye Tumusiime2,4*, Timothy Muhairwe1 and Revocatus Twinomuhangi3 1Department of Forestry, Biodiversity and Tourism, School of Forestry, Environmental and Geographical Sciences, Makerere University, P. O. Box 7062, Kampala Uganda. 2Department of Environmental Management, School of Forestry, Environmental and Geographical Sciences, Makerere University, P. O. Box 7062, Kampala Uganda. 3Department of Geography, Geo-informatics and Climatic Sciences, School of Forestry, Environmental and Geographical Sciences, Makerere University, P. O. Box 7062, Kampala Uganda. 4Department of International Environment and Development Studies (Noragric), Norwegian University of Life Sciences (UMB), P. O. Box 1432, Norway. Accepted 11 June, 2013 Elephant tree damage is a key factor in conservation and restoration efforts of African rain forests. This study was conducted between June 2009 and February 2010 to examine elephant damage and tree response in restored parts of Kibale National Park, a rain forest in Uganda. First gazetted as Forest Reserve in 1932, the area had its southern block settled and degraded through human utilization between 1970 and 1987. In 1992, the government of Uganda relocated the settled people and embarked on a restoration process. Whereas, trees such as Ficus species exhibited high coping abilities to elephant damage through re-sprouting, coppicing and bark recovery; Prunus Africana struggled because it is highly preferred by elephant for feeding and is also demanded by humans.
    [Show full text]
  • Appendix 1 Vernacular Names
    Appendix 1 Vernacular Names The vernacular names listed below have been collected from the literature. Few have phonetic spellings. Spelling is not helped by the difficulties of transcribing unwritten languages into European syllables and Roman script. Some languages have several names for the same species. Further complications arise from the various dialects and corruptions within a language, and use of names borrowed from other languages. Where the people are bilingual the person recording the name may fail to check which language it comes from. For example, in northern Sahel where Arabic is the lingua franca, the recorded names, supposedly Arabic, include a number from local languages. Sometimes the same name may be used for several species. For example, kiri is the Susu name for both Adansonia digitata and Drypetes afzelii. There is nothing unusual about such complications. For example, Grigson (1955) cites 52 English synonyms for the common dandelion (Taraxacum officinale) in the British Isles, and also mentions several examples of the same vernacular name applying to different species. Even Theophrastus in c. 300 BC complained that there were three plants called strykhnos, which were edible, soporific or hallucinogenic (Hort 1916). Languages and history are linked and it is hoped that understanding how lan- guages spread will lead to the discovery of the historical origins of some of the vernacular names for the baobab. The classification followed here is that of Gordon (2005) updated and edited by Blench (2005, personal communication). Alternative family names are shown in square brackets, dialects in parenthesis. Superscript Arabic numbers refer to references to the vernacular names; Roman numbers refer to further information in Section 4.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]