Pauropoda (Myriapoda) in Australia, with Descriptions of New Species from Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

Pauropoda (Myriapoda) in Australia, with Descriptions of New Species from Western Australia RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 82 001–133 (2013) DOI: 10.18195/issn.0313-122x.82.2013.001-133 SUPPLEMENT Pauropoda (Myriapoda) in Australia, with descriptions of new species from Western Australia U. Scheller Häggeboholm, Häggesled, S-53194 Järpås, Sweden. ABSTRACT – In a collection of 4,604 specimens of Pauropoda from the Western Australian jarrah forest 10 genera were represented and 59 species have been identifi ed, 51 of them new species named and described below: four in Pauropus, six in Allopauropus, 33 in Decapauropus, three in Stylopauropoides, and one each in Juxtapauropus, Rabaudauropus, Nesopauropus, Hemipauropus and Antichtopauropus. The genus Amphipauropus is reported from Australia for the fi rst time. Harrison’s collection from 1914 from New South Wales has been restudied. Keys to the families and genera so far known from Australia are given. All valid species known from Australia, 89 at present, have been listed in a systematic section. The main part of the Australian species is not known from elsewhere. KEYWORDS: taxonomy, biodiversity, soil fauna, biogeography, endemism INTRODUCTION further investigation of the taxonomy and distribution of the Pauropoda in Australia. The study is two parted, The Pauropoda is a class within the Myriapoda, and it groups together all the species so far known from are the smallest ones with a body length of 0.5-2 mm Australia into the classifi cation of today but it describes and are whitish-brownish, with bifurcate antennae and also a large collection from a Western Australian survey 8-11 pairs of legs as adults (Scheller 1988, 1990, 2011b). at Dwellingup of soil and litter invertebrates in a jarrah Pauropods seem to be much more diverse than expected, forest (Postle et al. 1991). Thanks to Dr Postle the at present 12 families have been described with 47 pauropods found, all 4604 specimens, were entrusted genera and more than 830 species. They are generally to the author. The identifi cation revealed 59 species, 51 soil-living and widely distributed on all continents. of them new species described below: four in Pauropus, There are two orders, Hexamerocerata and six in Allopauropus, 33 in Decapauropus, three in Tetramerocerata. The former is characterised by Stylopauropoides, and one each in Juxtapauropus, 6-segmented telescopic antennae and 10-11 pairs of Rabaudauropus, Nesopauropus, Hemipauropus and legs as adults, the latter has 4-segmented not telescopic Antichtopauropus. The main part of our present antennae and 8-10 pairs of legs as adults. All Australian knowledge of the Australian Pauropoda comes from pauropods known so far belong to Tetramerocerata. The Dr Postle’s collection and the survey of the Tasmanian Hexamerocerata is tropical and poor in species, only temperate rain forest published a few years ago (Scheller eight known, and has not yet been found in Australia but 2009b, 2011a). These surveys are discussed in some might occur, at least in the northern part. details below after the section Systematics. The Pauropoda has world-wide distribution and occur To facilitate search of information the species have in all climatic zones. Because of their cryptozoic living been listed alphabetically within the genera. The and generally narrow ecological tolerances they may be species are presented with information of name, author, a most valuable material for studies of the zoogeography and publication data for the original description and later additions, also other literature references and and good indicators of the status of forest lands. distribution records so far known, and if a species has been collected outside Australia the general distribution MATERIAL AND METHODS too. The descriptive terms are listed in Scheller (1988). The information presented below, although of variable The specimens of the collection from Dwellingup quality and completeness, may provide a basis for the were studied in ethanol using a Zeiss light microscope urn:lsid:zoobank.org:pub:1E8DB13B-4DA9-407D-BE10-B33F83943A02 2 U. SCHELLER and have been deposited in the Western Australian from Western Australia, partly from Kimberly Research Museum, Perth (WAM). Station, south of Wyndham, and partly from Gnangara, Abbreviations: ad. …, subad. … and juv. … = an north of Perth. He found there (Remy 1957b) two species adult, a subadult or a juvenile specimen with the from the former place, the new Kionopauropus lituiger number of pairs of legs indicated. Body lengths are in (Remy) and the wide-spread Polypauropus duboscqi mm, otherwise the text refers to relative lengths. In Remy, and four species at the latter place, three new Allopauropus eumekes sp. nov. some lengths are given species, Decapauropus notius Remy, D. spicatus in μm. Range of variation in adult paratype(s) given in Remy, Stylopauropoides bornemisszai Remy, and brackets (in subadults in Decapauropus fruticulus sp. Juxtapauropus dugdalei (Remy), the latter earlier known nov. and Juxtapauropus fl exus sp. nov.) from New Zealand. In later years two collections of great interest have LITERATURE RECORDS been accounted for, a large material from the temperate rainforests in Tasmania (Scheller 2009b, 2011a) with Though nearly one and a half centuries have passed 19 species most of them new, discussed in some details after the discovery of the Pauropoda in London after Systematics, and a small but valuable material from (Lubbock, 1867) only a limited number of species has the southern part of Western Australia (Scheller 2011a) been reported from Australia and knowledge of them, with Decapauropus tenuis Remy and three new species: from its humble beginning in the nineteenth century has Stylopauropoides wungongensis, S. lapicidarius and increased slowly and sporadically. Antichtopauropus brevitarsus, the latter belonging to No scientific interest was shown until Launcelot a new family. These papers have defi nitely told us that Harrison, the University of Sydney, in 1914 collected the pauropods show a high variability in Australia with and described five species from the Sydney area, many probably endemic species, from Western Australia Lindfi eld and Broken Bay (Harrison 1914). He placed even a new family, Antichtoauropodidae, which might four of them in Pauropodidae (Pauropus amicus, P. be endemic. australis, P. novae-hollandiae, P. Burrowesi) and one Two more papers have been published in later years in Eurypauropodidae (Eurypauropus speciosus). His but they are of little value and are mentioned here records were then repeated by R.V. Chamberlin (1920), only for the sake of completeness, Greenslade and who however placed wrongly the Eurypauropus species Scheller 2002, a summing up of the Australian species, in Pauropodidae. unfortunately not correct in all details, and Greenslade Next time the Australian pauropods appear in the 2008, a paper with many errors and not to trust upon. literature is when K.W. Verhoeff (1934) expressed his doubt of Harrison’s generic placing of his species, and HARRISON’S COLLECTION a year later R.S. Bagnall (1935) established a new genus In May 1914 Launcelot Harrison, University of in Eurypauropodidae, Australopauropus, for Harrison’s Sydney, discovered the first two species of the Eurypauropus speciosus. Australian Pauropoda which he collected among fallen With the studies in the 1940s by Professor O.W timber at Lindfi eld, now a suburb of Sydney, and under Tiegs, Melbourne, and Professor P.A. Remy, Brunoy, a stone at Broken Bay, just north of Sydney, Pauropus the study of the Australian pauropods got a well- amicus at both sites and P. novae-hollandiae from founded approach. Tiegs described a new species from Broken Bay only. Later he found three more species, Victoria (1943) which he also used for his study “The Pauropus australis, a common species in bark-sheets development and affi nities of the Pauropoda, based at Lindfi eld and Broken Bay, P. Burrowesi a single on a study of Pauropus silvaticus” (Tiegs 1947), an subadult specimen under a stone at Broken Bay, excellent and detailed study, still of great interest. Lobster Beach, and Eurypauropus speciosus, four A few years later P.A. Remy (1949) made a short specimens under small stone on mossy bank at Broken summing up of the species known and reported fi ve Bay. At this time the development of taxonomy and species from Victoria, Tiegs’s Pauropus silvaticus, the systematics of the Pauropoda was in their beginning two new species Stylopauropoides tiegsi (Remy) and so his descriptions are incomplete and his species have Stylopauropus brito Remy and the two wide-spread partly to be transferred to other genera. Harrison’s study Stylopauropus pedunculatus (Lubbock) and Pauropus is treated below. His material is lodged in Australian lanceolatus Remy. The latter two were reported from Museum, Sydney, and is regrettably in a bad condition. gardens, for the other three species Remy did not give The descriptions are fairly detailed but partly diffi cult the habitat, but from Remy’s collecting elsewhere to understand. The type specimens have been restudied it is known that he most often collected in habitats and the result is given below. Three of the fi ve species more or less infl uenced by man. In a later study Remy are incertae sedis and two are valid. The latter are also accounted for some pauropods collected by G.F. treated in the systematic section where the descriptions Bornemissza, CSIRO, Canberra, in the early 1950s have been amended as far as it has been possible. PAUROPODA IN AUSTRALIA 3 Pauropus amicus Harrison, 1914 a1 distinctly shorter than a2 and a3; st cylindrical, the length 0.5 of interdistance. The pygidial sternum has sparse, long pubescence behind the setaeb , the latter Pauropus amicus Harrison 1914: 617–620, plate 70, 3 fi gures 1–11. long, blunt. The anal plate (Figure 1A here) proportionally large MATERIAL EXAMINED and with four branches directed posteriorly and much more slender than shown in the original description. Type specimen (AM KS 042009) from Lindfi eld, New South Wales, Australia.
Recommended publications
  • The Pauropoda
    "* IX «- THE PAUROPODA THE members of this group are minute, elongate, soft-bodied arthropods of the myriapod type of structure (fig. 70 A, B), but because of their relatively few legs, usually nine pairs in the adult stage, they have been named pauropods (Lubbock, 1868 ). A pauro­ pod of average size is about a millimeter in length, but some species are only half as long, and others reach a length of nearly 2 mm. Probably owing to their small size, the pauropods have no circulatory system and no tracheae or other differentiated organs of respiration. They live in moist places under logs and stones, on the ground among decaying leaves, and in the soil to a depth of several inches. The feeding habits of the pauropods are not well known, but their food has been thought to be humus and decaying plant and animal tissue. Starling (1944) says that mold fungi were observed to be the usual food of Pauropus carolinensis and that a "correlation appears to exist between the optimum temperature for mold growth in gen­ eral and high incidence of pauropod population." He gives reasons for believing that pauropods, where abundant, regardless of their small size, play a Significantpart in soil formation. A typical adult pauropod (fig. 70 B) has a relatively small, conical head and an elongate body of 12 segments, counting as segments the first and the last body divisions, which are known respectively as the collum (Col) and the pygidium (Pyg). Statements by other writers as to the number of segments may vary, because some do not include the pygidium as a segment and some exclude both the collum and the pygidium, but such differences are merely a matter of definition for a "segment." 250 THE PAUROPODA The number of legs in an adult pauropod, except in one known species, is invariably nine pairs, the first pair being on the second body segment, the last on the tenth (fig.
    [Show full text]
  • MYRIAPODS 767 Volume 2 (M-Z), Pp
    In: R. Singer, (ed.), 1999. Encyclopedia of Paleontology, MYRIAPODS 767 volume 2 (M-Z), pp. 767-775. Fitzroy Dearborn, London. MYRIAPODS JVlyriapods are many-legged, terrestrial arthropods whose bodies groups, the Trilobita, Chelicerata, Crustacea, and the Uniramia, the are divided into two major parts, a head and a trunk. The head last consisting of the Myriapoda, Hexapoda, and Onychophora (vel- bears a single pair of antennae, highly differentiated mandibles (or vet worms). However, subsequent structural and molecular evidence jaws), and at least one pair of maxillary mouthparts; the trunk indicates that there are several characters uniting major arthropod region consists of similar "metameres," each of which is a func- taxa. Moreover, paleobiologic, embryologie, and other evidence tional segment that bears one or two pairs of appendages. Gas demonstrates that myriapods and hexapods are fiindamentally exchange is accomplished by tracheae•a branching network of polyramous, having two major articulating appendages per embry- specialized tubules•although small forms respire through the ological body segment, like other arthropods. body wall. Malpighian organs are used for excretion, and eyes con- A fourth proposal (Figure ID) suggests that myriapods are sist of clusters of simple, unintegrated, light-sensitive elements an ancient, basal arthropod lineage, and that the Hexapoda that are termed ommatidia. These major features collectively char- emerged as an independent, relatively recent clade from a rather acterize the five major myriapod clades: Diplopoda (millipeds), terminal crustacean lineage, perhaps the Malacostraca, which con- Chilopoda (centipeds), Pauropoda (pauropods), Symphyla (sym- tains lobsters and crabs (Ballard et al. 1992). Because few crusta- phylans), and Arthropleurida (arthropleurids). Other features cean taxa were examined in this analysis, and due to the Cambrian indicate differences among these clades.
    [Show full text]
  • Shymphyla Y Pauropoda
    6 BIBLIOTECA UC 53060642B7 4 1 UNIVEPSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS SIOLOGICAS SHYMPHYLA Y PAUROPODA (MYRIAPODA) DE SUELOS DE ESPAÑA.I M~ Teresa Domínquez Rodr íquez 1992 PÁQÁI¿ cí) UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLQOICAS [ ~> 01’ A 1’~’ SYMPHYLA Y PAUROPODA St <ASdI 2,~ (NYRIAPODA) DE SUELOS DE ESPAÑA Memoria presentada por M?4 Teresa Domínguez Rodríguez para optar al grado de Doctor en Ciencias Biológicas VQ B~ de la Directora: ~QCWvK Fdo. Dra. Dolores Seiqa Serra Madrid 1992 A MIS HIJOS AGRADECIMIENTOS La elaboración de esta Memoria se ha llevado a cabo en el Museo Nacional de Ciencias Naturales de Madrid y en el Colegio Universitario San Pablo C.E.U., bajo la dirección de la Dra. Dolores Selga Serra, a la que estoy profundamente agradecida ya que, no sólo puso a mi disposición el material existente en la Sección de Fauna del Suelo, sino por la aportación a lo largo de los años de sus grandes conocimientos en Zoología del suelo. Quiero agradecer de un modo especial el apoyo e interés de los Profs. Drs. Rafael Alvarado y Salvador Peris. Así mismo, la desinteresada ayuda del Dr. Julio Alvarez. A la Dra. Juberthie-Jupeau y al Dr. Scheller, por acogerme en sus laboratorios y aportarme sus conocimientos. A Dña. Florita Tordesillas, por su cariño y preocupación A los compañeros del Museo de Ciencias , Dña. Dolores Muñoz-Mingarro, D. Julio Gómez-Llusá, Dra. Teresa Aparicio y Dr. Alberto Fernández, por su compañía y amistad. En el Colegio Universitario San Pablo CEU, donde he trabajado en los últimos años, han sido numerosas las personas que me han apoyado y estimulado a concluir este trabajo.
    [Show full text]
  • Annotated Inventory of the Pauropoda Species in Austria
    Annotated inventory of the Pauropoda species in Austria Autor(en): Scheller, Ulf Objekttyp: Article Zeitschrift: Contributions to Natural History : Scientific Papers from the Natural History Museum Bern Band (Jahr): - (2009) Heft 12/3 PDF erstellt am: 25.09.2021 Persistenter Link: http://doi.org/10.5169/seals-787021 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Annotated inventory of the Pauropoda species in Austria Ulf Scheller ABSTRACT Contrib. Nat. Hist. 12:1165-1177. The Pauropoda fauna of Austria is catalogued from the literature and 36 species are listed. Each species is presented with information of current name, provincial occurence with literature records and, if distributed outside Austria, the general distribution.
    [Show full text]
  • Morphological Data, Extant Myriapoda, and the Myriapod Stem-Group
    Contributions to Zoology, 73 (3) 207-252 (2004) SPB Academic Publishing bv, The Hague Morphological data, extant Myriapoda, and the myriapod stem-group Gregory+D. Edgecombe Australian Museum, 6 College Street, Sydney, NSW 2010, Australia, e-mail: [email protected] Keywords: Myriapoda, phylogeny, stem-group, fossils Abstract Tagmosis; long-bodied fossils 222 Fossil candidates for the stem-group? 222 Conclusions 225 The status ofMyriapoda (whether mono-, para- or polyphyletic) Acknowledgments 225 and controversial, position of myriapods in the Arthropoda are References 225 .. fossils that an impediment to evaluating may be members of Appendix 1. Characters used in phylogenetic analysis 233 the myriapod stem-group. Parsimony analysis of319 characters Appendix 2. Characters optimised on cladogram in for extant arthropods provides a basis for defending myriapod Fig. 2 251 monophyly and identifying those morphological characters that are to taxon to The necessary assign a fossil the Myriapoda. the most of the allianceofhexapods and crustaceans need notrelegate myriapods “Perhaps perplexing arthropod taxa 1998: to the arthropod stem-group; the Mandibulatahypothesis accom- are the myriapods” (Budd, 136). modates Myriapoda and Tetraconata as sister taxa. No known pre-Silurianfossils have characters that convincingly place them in the Myriapoda or the myriapod stem-group. Because the Introduction strongest apomorphies ofMyriapoda are details ofthe mandible and tentorial endoskeleton,exceptional fossil preservation seems confound For necessary to recognise a stem-group myriapod. Myriapods palaeontologists. all that Cambrian Lagerstdtten like the Burgess Shale and Chengjiang have contributed to knowledge of basal Contents arthropod inter-relationships, they are notably si- lent on the matter of myriapod origins and affini- Introduction 207 ties.
    [Show full text]
  • Phylogenomics Illuminates the Backbone of the Myriapoda Tree of Life and Reconciles Morphological and Molecular Phylogenies
    Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Fernández, R., Edgecombe, G.D. & Giribet, G. Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Sci Rep 8, 83 (2018). https://doi.org/10.1038/s41598-017-18562-w Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37366624 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Title: Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies Rosa Fernández1,2*, Gregory D. Edgecombe3 and Gonzalo Giribet1 1 Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 28 Oxford St., 02138 Cambridge MA, USA 2 Current address: Bioinformatics & Genomics, Centre for Genomic Regulation, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain 3 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] The interrelationships of the four classes of Myriapoda have been an unresolved question in arthropod phylogenetics and an example of conflict between morphology and molecules. Morphology and development provide compelling support for Diplopoda (millipedes) and Pauropoda being closest relatives, and moderate support for Symphyla being more closely related to the diplopod-pauropod group than any of them are to Chilopoda (centipedes).
    [Show full text]
  • Orden PAUROPODA Manual
    Revista IDE@ - SEA, nº 33 (30-06-2015): 1–12. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Pauropoda Orden PAUROPODA Manual Clase PAUROPODA Orden Pauropoda Mª Teresa Domínguez Rodríguez C/ Príncipe de Vergara, 280. 28016 Madrid (España) [email protected] 1. Breve definición del grupo y principales caracteres diagnósticos La clase Pauropoda pertenece a la superclase Myriapoda, formando el grupo Progoneata con Symphyla y Diplopoda y el clado Diagnatha con Diplopoda. La mayoría de las especies tienen muy poco desarrolladas las piezas bucales. Son terrestres, ciegos y lucífugos. Presentan un color blanquecino o amarillento, más oscuro en algunas especies. El cuerpo consta de una cabeza, un tronco segmentado y un pigidio con una placa anal. El tronco posee de 9 a 11 pares de patas marchadoras en los adultos, con 5 o 6 artejos. La longitud del cuerpo oscila entre 0,4 y 2 mm (Fig. 1 y 4, Lámina fotográfica). Las aberturas genitales se sitúan entre el segundo par de patas en la zona ventral. El pigidio anal consta de dos partes, una tergo-dorsal y otra externo-ventral; la placa anal, distinta específicamente, se encuentra bajo la parte dorsal del pigidio. El tronco posee terguitos con cinco pares de largas sedas táctiles o tricobotrios. Las zonas laterales reciben el nombre de pleuras. Las antenas son ramificadas y poseen un tallo segmentado. Los paurópodos, al igual que los Symphyla, buscan biotopos húmedos, viven en grietas del suelo y entre hojarasca. Se alimentan de hongos o de sustancias semilíquidas resultantes de la descomposición de plantas o animales.
    [Show full text]
  • Pauropoda: Pauropodidae)
    Zootaxa 4985 (4): 598–600 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Correspondence ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4985.4.13 http://zoobank.org/urn:lsid:zoobank.org:pub:B3FA62CC-63C2-4765-B329-059D913A1838 On the correct authorship, spelling, and type species of genus Dasongius (Pauropoda: Pauropodidae) CARLOS A. MARTÍNEZ-MUÑOZ1 & YUN BU2 1Zoological Museum, Biodiversity Unit. FIN-20014 University of Turku, Finland. [email protected]; https://orcid.org/0000-0003-4345-120X 2Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai 200041, China. [email protected]; https://orcid.org/0000-0002-7177-9686 The genus Songius Sun & Guo in Guo et al., 2010 (Pauropoda: Pauropodidae) was established for two new species from China: Songius rugosus Sun & Guo in Guo et al., 2010 and Songius bicruris Guo & Sun in Guo et al., 2010. The manu- script was received by the journal Zoological Science on 7th April 2010 and the article is displayed on the BioOne platform with the publication date of 1st November 2010. In the same year, Yin et al. (2010) established the genus Songius Yin & Li in Yin et al., 2010 (Coleoptera: Staphylinidae: Pselaphinae). According to Qian et al. (2015: 533) the publication date of the article by Yin et al. (2010) is June 2010. Therefore, Qian et al. (2015: 533) recognized the genus Songius Sun & Guo in Guo et al., 2010 as a junior homonym of the genus Songius Yin & Li in Yin et al., 2010, and proposed a new replacement name for the junior homonym.
    [Show full text]
  • BHP Billiton Iron Ore Assessment of Troglofauna at OB32 East
    Assessment of Troglofauna at OB32 East Prepared for: BHP Billiton Iron Ore May 2015 Final Report OB32E Troglofauna Assessment BHP Billiton Iron Ore Assessment of Troglofauna at OB32 East Bennelongia Pty Ltd 5 Bishop Street Jolimont WA 6014 P: (08) 9285 8722 F: (08) 9285 8811 E: [email protected] ABN: 55 124 110 167 Report Number: 234 Report Version Prepared by Reviewed by Submitted to Client Method Date Draft Andrew Trotter Stuart Halse email 20 April 2015 Final Andrew Trotter Stuart Halse email 12 May 2015 K:\Projects\B_BHPBIO_61\Report_OB32 Subterranean Fauna Assessment Report_final12v15 This document has been prepared to the requirements of the Client and is for the use by the Client, its agents, and Bennelongia Environmental Consultants. Copyright and any other Intellectual Property associated with the document belongs to Bennelongia Environmental Consultants and may not be reproduced without written permission of the Client or Bennelongia. No liability or responsibility is accepted in respect of any use by a third party or for purposes other than for which the document was commissioned. Bennelongia has not attempted to verify the accuracy and completeness of information supplied by the Client. © Copyright 2015 Bennelongia Pty Ltd. i OB32E Troglofauna Assessment BHP Billiton Iron Ore EXECUTIVE SUMMARY Background BHP Billiton Iron Ore is currently preparing a submission to the Environmental Protection Authority for the proposed development of the Orebody 32 East (OB32 East). OB32 East lies within BHP Billiton Iron Ore’s Homestead project area, approximately 7 km north of Newman. Homestead is part of the Ophthalmia Range, which itself is an eastwards continuation of the better known Hamersley Range.
    [Show full text]
  • Morphological Data, Extant Myriapoda, and the Myriapod Stem-Group
    Contributions to Zoology, 73 (3) 207-252 (2004) SPB Academic Publishing bv, The Hague Morphological data, extant Myriapoda, and the myriapod stem-group Gregory+D. Edgecombe Australian Museum, 6 College Street, Sydney, NSW 2010, Australia, e-mail: [email protected] Keywords: Myriapoda, phylogeny, stem-group, fossils Abstract Tagmosis; long-bodied fossils 222 Fossil candidates for the stem-group? 222 Conclusions 225 The status ofMyriapoda (whether mono-, para- or polyphyletic) Acknowledgments 225 and controversial, position of myriapods in the Arthropoda are References 225 .. fossils that an impediment to evaluating may be members of Appendix 1. Characters used in phylogenetic analysis 233 the myriapod stem-group. Parsimony analysis of319 characters Appendix 2. Characters optimised on cladogram in for extant arthropods provides a basis for defending myriapod Fig. 2 251 monophyly and identifying those morphological characters that are to taxon to The necessary assign a fossil the Myriapoda. the most of the allianceofhexapods and crustaceans need notrelegate myriapods “Perhaps perplexing arthropod taxa 1998: to the arthropod stem-group; the Mandibulatahypothesis accom- are the myriapods” (Budd, 136). modates Myriapoda and Tetraconata as sister taxa. No known pre-Silurianfossils have characters that convincingly place them in the Myriapoda or the myriapod stem-group. Because the Introduction strongest apomorphies ofMyriapoda are details ofthe mandible and tentorial endoskeleton,exceptional fossil preservation seems confound For necessary to recognise a stem-group myriapod. Myriapods palaeontologists. all that Cambrian Lagerstdtten like the Burgess Shale and Chengjiang have contributed to knowledge of basal Contents arthropod inter-relationships, they are notably si- lent on the matter of myriapod origins and affini- Introduction 207 ties.
    [Show full text]
  • Influence of Agricultural Practices on Arthropod Communities in a Vertisol (Martinique) Gladys Loranger, Jean-François Ponge, Patrick Lavelle
    Influence of agricultural practices on arthropod communities in a vertisol (Martinique) Gladys Loranger, Jean-François Ponge, Patrick Lavelle To cite this version: Gladys Loranger, Jean-François Ponge, Patrick Lavelle. Influence of agricultural practices on arthro- pod communities in a vertisol (Martinique). European Journal of Soil Biology, Elsevier, 1998, 34 (4), pp.157-165. 10.1016/S1164-5563(00)86658-3. hal-00505462 HAL Id: hal-00505462 https://hal.archives-ouvertes.fr/hal-00505462 Submitted on 23 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INFLUENCE OF AGRICULTURAL PRACTICES ON ARTHROPOD COMMUNITIES IN A VERTISOL (MARTINIQUE) Gladys Loranger (1) *, Jean François Ponge (2), Eric Blanchart (3) and Patrick Lavelle (1) (1) Laboratoire d’Ecologie des Sols Tropicaux, IRD / Université Paris VI, 32 Avenue Henri Varagnat, F-93143 Bondy France. (2) Muséum National d’Histoire Naturelle, Laboratoire d’Ecologie Générale, 4 Avenue du Petit Château, F-91800 Brunoy France. (3) Laboratoire de Biologie et d’Organisation des Sols Tropicaux, IRD B.P. 8006, 97259 Fort de France, Martinique, French West Indies. Short title : Agricultural practices and soil arthropods * Corresponding author Gladys Loranger, Laboratoire d’Ecologie des Sols Tropicaux, IRD, 32 Avenue Henri Varagnat, F-93143 Bondy France.
    [Show full text]
  • Millipedes Made Easy
    MILLI-PEET, Introduction to Millipedes; Page - 1 - Millipedes Made Easy A. Introduction The class Diplopoda, or the millipedes, contains about 10,000 described species. The animals have a long distinguished history on our planet, spanning over 400 million year. Their ecological importance is immense: the health and survival of every decidu- ous forest depends on them, since they are one of the prime mechanical decomposers of wood and leaf litter, especially in the tropics. Despite their importance they are very poorly known and have long been neglected in all areas of biological research. Even basic identification of specimens is a challenge. We hope to make millipede identification accessible to many. The first challenge may be to distinguish a millipede from other members of the Myriapoda. Section B demonstrates the differences between the four myriapod groups. Section C provides a very short introduction to millipede morphology. Section D lists a number of tips on how to deal with millipede specimens under the dissecting scope. The illustrated identification key to orders can be found in the section: Key to Orders in several languages. The key was constructed with purely practical considerations in mind. We tried to use characters that are easy to recognize and will allow non-millipede specialists to find the right path to the order quickly. Several couplets are not dichotomous, but are organized on the multiple choice principle: discrete, mutually exclusive alternative characters are listed and the user must choose one of them. After you have become familiar with the identifying features, you may often just use the flow chart at the end of the Identification Key to identify a millipede to order.
    [Show full text]