Foraging Destinations of Three Low-Latitude Albatross (Phoebastria) Species

Total Page:16

File Type:pdf, Size:1020Kb

Foraging Destinations of Three Low-Latitude Albatross (Phoebastria) Species J. Zool., Lond. (2001) 254, 391±404 # 2001 The Zoological Society of London Printed in the United Kingdom Foraging destinations of three low-latitude albatross (Phoebastria) species Patricia FernaÂndez1, David J. Anderson1*, Paul R. Sievert2 and Kathryn P. Huyvaert1 1 Department of Biology, Wake Forest University, Winston-Salem, NC 27109-7325, U.S.A. 2 Department of Natural Resources Conservation, University of Massachusetts, Amherst, MA 01003-4210, U.S.A. (Accepted 6 September 2000) Abstract Satellite telemetry was used to identify the foraging distributions of three congeneric species of albatrosses that nest in the tropics/subtropics. Breeding waved albatrosses Phoebastria irrorata from the GalaÂpagos Islands travelled to the productive upwelling near the Peruvian coast and nearby areas during the rearing period in 1996. Black-footed albatrosses P. nigripes and Laysan albatrosses P. immutabilis nesting in the Hawaiian Islands and tracked during the 1997±98 and 1998±99 breeding seasons also performed long foraging trips, to continental shelf areas of North America. In both years, breeding black-footed albatrosses made long trips to the west coast of North America (British Columbia to California). In 1997±98, breeding Laysan albatrosses travelled primarily to the north of the Hawaiian Islands and reached the waters of the Aleutian Islands and the Gulf of Alaska. In 1998±99, Laysan albatrosses had a complete breeding failure, and no long trips by breeders were tracked as a result. These three species mixed short and long trips during the chick-rearing period, but not the brooding period nor incubation period. Waved albatrosses made only long trips during the incubation period. Analysis of movement patterns showed that the core feeding areas during long trips were located over the continental shelves of North and South America. The data on foraging biology of these species have implications for assessing bycatch risk in commercial ®sheries. Key words: albatross, Phoebastria, foraging, bycatch INTRODUCTION particularly distribution of albatrosses at sea in relation to bycatch risk in ®sheries operations (Croxall & Prince, Recent advances in satellite telemetry have opened a 1996; Brothers et al., 1998; Prince, Croxall et al., 1998). window on the previously obscure life of albatrosses at Most of the albatross species that have been tracked sea. They have shown, for example, that breeding by satellite nest on high-latitude islands in the Southern wandering albatrosses Diomedea exulans can cover Ocean. Little is known about the foraging characteris- between 3600 and 15 000 km between visits to their tics of the albatross species nesting in the tropics and chick, reaching speeds of up to 80 km/h over distances subtropics; these species comprise the genus Phoebas- of up to 900 km/day (Jouventin & Weimerskirch, 1990). tria, the `North Paci®c' albatross clade (see Robertson This technique has been applied to various studies of & Nunn, 1998). Of these species, the black-footed seabird foraging ecology, documenting resource parti- albatross P. nigripes and Laysan albatross P. immut- tioning between sympatric species (Waugh et al., 1999) abilis nest primarily in the Hawaiian Islands and are and between sexes (Prince, Wood et al., 1992), changes sympatric on most of their breeding islands. The short- in foraging behaviour through the breeding season tailed albatross P. albatrus, currently limited to a single (Weimerskirch, Salamolard et al., 1993; Arnould et al., breeding population on Torishima Island, Japan, and 1996; Weimerskirch, Wilson & Lys, 1997), biotic and the waved albatross P. irrorata of the GalaÂpagos Islands abiotic properties of the feeding site (Rodhouse & are the remaining members of the genus. The objective Prince, 1993; Weimerskirch, Doncaster et al., 1994; of this study was to use satellite telemetry to identify the Cherel & Weimerskirch, 1995; Weimerskirch, Wilson, foraging areas of three of these species: black-footed, Guinet et al., 1995; Hull, Hindell & Michael, 1997), and Laysan, and waved albatrosses. Ship-based sightings show that Laysan albatrosses *All correspondence to: D. J. Anderson. are observed and recovered in greatest numbers in the E-mail: [email protected] north-western part of the Paci®c during their breeding 392 P. FernA ndez ET AL. season, whereas the number of black-footed albatrosses Laysan albatrosses, also during brooding. One set of 16 increases to the south-east and east, to the North birds were tracked through their entire breeding effort, American coast, during the same period (Shuntov, but transmitters recovered from 3 birds whose chicks 1974). The distribution data used to reach these conclu- died was mounted on 3 other individuals (2 black- sions depended in part on the distribution of boats footed and 1 Laysan albatross). Therefore, in 1998±99, bearing observers, with the resulting potential for sam- a total of 10 black-footed albatrosses and 9 Laysan pling bias. Satellite tracking overcomes this bias by albatrosses were tracked. Overall, a total of 48 alba- having no geographical limits on observers. Satellite trosses (25 black-footed and 23 Laysan) were tracked tracking also allows the study of movements of speci®c for 4±182 days (x = 57 days). No bird was tracked in individuals of known status throughout their entire trip, both seasons. Transmitters in both seasons used 8 h on : which is not possible using non-telemetric methods. For 24 h off duty cycles. example, in a preliminary study satellite tracking was Previous satellite tracking studies of albatrosses have used to study movements of waved albatrosses during concluded that the PTT does not affect the perfor- the incubation period in 1995 (Anderson, Schwandt & mance of the bird measurably during the breeding Douglas, 1998). All tracked birds `commuted' c. 1200 km season (Jouventin & Weimerskirch, 1990; Prince, Wood from the breeding site on Isla EspanÄola, GalaÂpagos to et al., 1992; Wiemerskirch & Robertson, 1994; Arnould the cold upwelling area over the western South Amer- et al., 1996; Anderson et al., 1998). Moreover, innova- ican continental shelf, off the coasts of Peru and tions in the design of the transmitters have reduced Ecuador. While movement between GalaÂpagos and the their size; the mass of our transmitters (32 g) was c.1% continental shelf was direct and rapid, movement within of the bird's own mass, and was unlikely to impose a the upwelling zone was slow with frequent turning. signi®cant energetic cost on tagged birds (Anderson Simple distribution data would indicate that waved et al., 1998). Nevertheless, to identify any effect of albatrosses occupy the entire area between GalaÂpagos transmitters on the birds' reproductive success, we and the continent, while the satellite tracking data monitored nest histories of 20 time-matched nests, revealed the area-speci®c behaviour of the birds. located near the nests of tagged birds, that served as controls. We demonstrated that beak length accurately indicates gender by associating cloacal distension, at MATERIALS AND METHODS the time of egg laying, with beak length. Within Laysan albatross breeding pairs, 20/21 (95.2%) of males had Seven waved albatrosses breeding on Isla EspanÄola, longer beaks than their mates did. Similarly, 33/33 GalaÂpagos (1822'S, 89839'W) were tracked between (100%) of black-footed albatross males had longer 4 June and 13 October 1996, during the brooding beaks than their mates did. Beak length of both (hatching to chick age 18 days) and rearing (chick age members of a pair was used to determine the gender of > 18 days; Harris, 1973; Whittow, 1993a,b) periods as a the birds tracked in this study. In both the GalaÂpagos complement to work in the previous breeding season and Hawaii studies birds were chosen for tracking and during the incubation period, using the methods of for controls using only 2 criteria: they had a nest in the Anderson et al. (1998). PTT100 (Platform Transmitter area designated for the study and they had hatched Terminals; Microwave Telemetry, Columbia, MD) their egg. We are not aware of any other bias in our transmitters were attached to dorsal contour feathers choice of study animals or assignment to tracked or using epoxy glue. The signals from these transmitters control groups. were received by orbiting TIROS-N satellites, passed to Argos System performance on Tern Island was Argos System ground stations (Service Argos, Largo ground-truthed by comparing the reported locations of MD), and forwarded to us by electronic mail. all transmitters during 5 days with a known, stationary The two Hawaiian albatross species breeding on Tern location (by GPS). Anderson et al. (1998) conducted a Island (23852'N, 166817'W), French Frigate Shoals, similar exercise at the GalaÂpagos nesting site. To north-west Hawaiian Islands were also studied. Tape analyse the performance of the transmitters at different attachment, rather than glue, was used to ®x the trans- locations and years, we calculated the mean number of mitters to the mid-dorsal feathers of the mantle signals received per transmitter per day during each year (FernaÂndez, 1999). In January 1998, 12 PTT100 units of the study. These means were pooled and their were mounted on 6 Laysan and 6 black-footed alba- average calculated; the variation in reception frequency trosses during the brooding part (hatching to chick age is expressed with the standard error (se), as is commonly 18 days) of the nesting cycle. The transmitters were used to present the standard deviation of statistics removed from the ®rst set of birds after 10±16 days and (Sokal & Rohlf, 1995). re-mounted on a second set of 12 breeding adults. Five Descriptions of the movement parameters (distance, of these transmitters were recovered for deployment on maximum range, and days spent at sea) during the a third set of breeders, as a result of which, we were able breeding season were based on complete round-trips to track a total of 15 black-footed and 14 Laysan only.
Recommended publications
  • Plumage Variation and Hybridization in Black-Footed and Laysan Albatrosses
    PlumaDevariation and hybridizationin Black-footedand LaysanAlbatrosses Tristan McKee P.O. Box631 Ferndale,California 95536 (eraall:bertmckee•yahoo.com) PeterPyle 4990Shoreline Highway SUnsonBeach, California 94970 (email:[email protected]) INTRODUCTION Black-footed(Phoebastria nigripes) and Laysan (P. immutabilis) Albatrosses nest sideby sidein denseisland colonies. Their breeding populations center in the northwesternHawaiian Islands, with smaller colonies scattered across the subtrop- icalNorth Pacific. Both species visit nutrient-rich waters off the west coast of North Americathroughout the year to forage. Black-footeds concentrate in coastal waters fromnorthern California tosouthern Alaska, while Laysans frequent more offshore andnortherly waters in thisregion. Bkders on pelagic trips off the West Coast often encountersignificant numbers of oneor bothof thesespecies, and searching for other,rarer albatrosses among them has proven to be a worthwhile pursuit in recen! years(Stallcup and Terrill 1996, Cole 2000). Albatrossesidentified as Black-looted x Laysan hybrids have been seen and studiedon MidwayAtoll and other northwestern Hawaiian Islands since the late 1800s(Rothschild 1900, Fisher 1948, 1972). In addition,considerable variation in appearanceis found within both species, indMduals with strikinglyaberrant plumageand soft part colors occasionally being encountered (Fisher 1972, Whittow 1993a).Midway Atoll hosts approximately two-thirds of the world'sbreeding A presumedhybrid Laysan x Black-lootedAlbatross tends a chickat Midway LaysanAlbatrosses
    [Show full text]
  • Waved Albatross Phoebastria Irrorata
    Waved Albatross Phoebastria irrorata Kingdom Animalia Phylum Chordata Class Aves Order Procellariiformes Family Diomedeidae Common Name Waved or Galapagos Albatross, Albatros de las Galapágos Nearest Relatives There are four families and 93 species of albatrosses, storm-petrels, petrels and shearwaters in the order Procellariformes, which means tubenose. All birds in this order have long, hooked, grooved bills with internal “tubes” that aid in expulsion of salt and also contribute to an unusually acute sense of smell. These birds are all highly pelagic, spending most of their time hunting at sea. They are agile fliers and are awkward or unable to walk on land. Procellariformes are closely related to penguins (Sphenisciformes). The waved albatross is the only albatross species found in the Galapagos though there are several species of petrel, storm-petrel and shearwater as well as the Galapagos penguin. They are most closely related to three other species in the genus Phoebastria, the northern pacific albatrosses. Physical Description This is the largest bird in the Galapagos with a wingspan of up to 2.5 meters and weighs up to 4 kg. The back, wings and tail are light to dark brown becoming lighter grey with wavy barring on the breast, hence the name. The head and neck are mostly white with some buffy yellow/orange on the nape. It has a large, yellow, hooked bill. These birds are easily recognizable by their size and may often be seen floating in large groups offshore. Geographic range Many consider the waved albatross to be endemic to the Galapagos; it is found only on Española (Hood) Island.
    [Show full text]
  • Behavior and Attendance Patterns of the Fork-Tailed Storm-Petrel
    BEHAVIOR AND ATTENDANCE PATTERNS OF THE FORK-TAILED STORM-PETREL THEODORE R. SIMONS Wildlife Science Group, Collegeof Forest Resources, University of Washington, Seattle, Washington 98195 USA ABSTRACT.--Behavior and attendance patterns of breeding Fork-tailed Storm-Petrels (Ocea- nodromafurcata) were monitored over two nesting seasonson the Barren Islands, Alaska. The asynchrony of egg laying and hatching shown by these birds apparently reflects the influence of severalfactors, including snow conditionson the breedinggrounds, egg neglectduring incubation, and food availability. Communication between breeding birds was characterized by auditory and tactile signals.Two distinct vocalizationswere identified, one of which appearsto be a sex-specific call given by males during pair formation. Generally, both adults were present in the burrow on the night of egg laying, and the male took the first incubation shift. Incubation shiftsranged from 1 to 5 days, with 2- and 3-day shifts being the most common. Growth parameters of the chicks, reproductive success, and breeding chronology varied considerably between years; this pre- sumably relates to a difference in conditions affecting the availability of food. Adults apparently responded to changes in food availability during incubation by altering their attendance patterns. When conditionswere good, incubation shifts were shorter, egg neglectwas reduced, and chicks were brooded longer and were fed more frequently. Adults assistedthe chick in emerging from the shell. Chicks became active late in the nestling stage and began to venture from the burrow severaldays prior to fledging. Adults continuedto visit the chick during that time but may have reducedthe amountof fooddelivered. Chicks exhibiteda distinctprefledging weight loss.Received 18 September1979, accepted26 July 1980.
    [Show full text]
  • The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
    山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships.
    [Show full text]
  • Natural Resources Science Plan
    NATURAL RESOURCES SCIENCE PLAN 2011-2015 PAPAHÄNAUMOKUÄKEA MARINE NATIONAL MONUMENT NATURAL RESOURCES SCIENCE PLAN April 2011 Prepared by: Papahänaumokuäkea Marine National Monument National Oceanic and United States Fish and Hawai‘i Department of Land and Atmospheric Administration Wildlife Service Natural Resources 6600 Kalanianaole Highway, Suite 300 300 Ala Moana Blvd., Room 5-231 1151 Punchbowl Street, Room 130 Honolulu, Hawai‘i 96825 Honolulu, Hawai‘i 96850 Honolulu, Hawai‘i 96813 NATURAL RESOURCES SCIENCE PLAN 2011-2015 Contents 1.0 INTRODUCTION .................................................................................................. 1 1.1 Overview of the Monument.....................................................................................3 1.2 Purpose and Scope of the Plan.................................................................................4 1.3 Stakeholders ............................................................................................................5 2.0 SUMMARY OF PLANNING PROCESS .................................................................... 6 2.1 Development of a Research and Monitoring Framework for the Monument .............6 2.2 Public Review and Comment...................................................................................7 2.3 Profiling Ongoing and Potential New Research and Monitoring Projects .................9 2.4 Identification of Research and Monitoring Gaps and Needs...................................10 2.5 Prioritization of Research and Monitoring Activities...............................................10
    [Show full text]
  • Conservation Status and At-Sea Threats for the Waved Albatross (P H O E B a S T R I a I R R O R a T a )
    Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. INTER-AMERICAN TROPICAL TUNA COMMISSION I A T T C S E A B I R D T E C H N I C A L M E E T I N G DEL MAR, CALIFORNIA, 11 MAY 2009 Conservation status and at-sea threats for the Waved Albatross (P h o e b a s t r i a i r r o r a t a ) Agreement for the Conservation of Albatrosses and Petrels (ACAP) A B S T R A C T This paper presents an updated picture of the information available on the biology of the Waved albatross P h o e b a s t r i a i r r o r a t a and the threats the species is currently facing with particular emphasis on mortality associated with fisheries. The Waved Albatross breeds almost exclusively on Isla Española in the Galapagos Archipelago, and its at-sea distribution is restricted to the eastern Pacific Ocean mostly between the Galapagos and the adjacent mainland of South America from central Ecuador to central Peru, but occasionally ranging farther. A decrease in adult survival and a likely reduction in population size have been recently associated with increased mortality from incidental and intentional catch in fisheries. These, together with other potential threats in breeding sites, led to a recent upgrading of the species under the IUCN Red List as Critically Endangered as it is considered to be facing an extremely high risk of extinction in the wild.
    [Show full text]
  • Distribution, Habitat Use, and Conservation of Albatrosses in Alaska
    Suryan and Kuletz 2018, Iden 72:156-164 Published in a special issue on albatrosses in the January issue of the Japanese journal Iden: the article was submitted by invitation from members of the Yamashina Institute for Ornithology, Hokkaido University Museum, and the Editor of Iden. The article is: Robert M. Suryan and Kathy J. Kuletz. 2018. Distribution, Habitat Use, and Conservation of Albatrosses in Alaska. Iden 72:156-164. It is available online, but is in Japanese; for an English version contact [email protected] or [email protected] Distribution, Habitat Use, and Conservation of Albatrosses in Alaska Robert M. Suryan1,2 and Kathy J. Kuletz3 1Department of Fisheries and Wildlife, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr, Newport, Oregon 97365 2Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 17109 Pt. Lena Loop Rd, Juneau, AK 99801, USA 3US Fish and Wildlife Service, 1011 E. Tudor Road, Anchorage, AK 99503, USA All three North Pacific albatross species forage in marine waters off Alaska. Despite considerable foraging range overlap, however, the three species do show broad-scale niche segregation. Short-tailed albatross (Phoebastria. albatrus) range most widely throughout Alaska, extensively using the continental shelf break and slope regions of the Bering Sea and Aleutian Archipelago in particular, and the Gulf of Alaska to a lesser extent. Due to small population size, however, short-tailed albatrosses are generally far less prevalent than the other two species. Black-footed albatrosses (P. nigripes) are most abundant in the Gulf of Alaska, and in late summer near some Aleutian passes, occupying foraging habitat similar to short-tailed albatrosses.
    [Show full text]
  • An Assessment for Fisheries Operating in South Georgia and South Sandwich Islands
    FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands by Nigel Varty, Ben Sullivan and Andy Black BirdLife International Global Seabird Programme Cover photo – Fishery Patrol Vessel (FPV) Pharos SG in Cumberland Bay, South Georgia This document should be cited as: Varty, N., Sullivan, B. J. and Black, A. D. (2008). FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands. BirdLife International Global Seabird Programme. Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, UK. 2 Executive Summary As a result of international concern over the cause and level of seabird mortality in longline fisheries, the United Nations Food and Agricultural Organisation (FAO) Committee of Fisheries (COFI) developed an International Plan of Action-Seabirds. The IPOA-Seabirds stipulates that countries with longline fisheries (conducted by their own or foreign vessels) or a fleet that fishes elsewhere should carry out an assessment of these fisheries to determine if a bycatch problem exists and, if so, to determine its extent and nature. If a problem is identified, countries should adopt a National Plan of Action – Seabirds for reducing the incidental catch of seabirds in their fisheries. South Georgia and the South Sandwich Islands (SGSSI) are a United Kingdom Overseas Territory and the combined area covered by the Territorial Sea and Maritime Zone of South Georgia is referred to as the South Georgia Maritime Zone (SGMZ) and fisheries within the SGMZ are managed by the Government of South Georgia and South Sandwich Islands (GSGSSI) within the framework of the Convention on the Conservation of Antarctic Marine Living (CCAMLR).
    [Show full text]
  • BLACK-BROWED ALBATROSS THALASSARCHE Melanophrys FEEDING on a WILSON’S STORM-PETREL OCEANITES OCEANICUS
    Seco Pon & Gandini: Wilson’s Storm-Petrel consumed by albatross 77 BLACK-BROWED ALBATROSS THALASSARCHE melanophrys FEEDING ON A WILSON’S STORM-PETREL OCEANITES OCEANICUS JUAN P. SECO PON1,2 & PATRICIA A. GANDINI1,3 1Centro de Investigaciones de Puerto Deseado, Universidad Nacional de la Patagonia Austral–Unidad Académica Caleta Olivia, cc 238 Av. Prefectura, s/n (9050), Puerto Deseado Santa Cruz, Argentina ([email protected]) 2Current address: Av. Colón 1908 8o L, Mar del Plata (7600), Buenos Aires, Argentina 3Consejo Nacional de Investigaciones Científicas y Técnicas and Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York, New York, 10460, USA Received 4 April 2007, accepted 10 November 2007 The diet of Black-browed Albatross Thalassarche melanophrys has in the stomachs of albatrosses. Although in general, penguins tend been studied at several sub-Antarctic colonies (e.g. Ridoux 1994, to be recorded more frequently, prions Pachyptila spp. and diving- Reid et al. 1996, Xavier et al. 2003) and found to consist mainly of petrels Pelecanoides spp. also occur in the diet of albatrosses in the fish, cephalopods and crustaceans. Although this albatross species Southern Ocean. Thus, the occurrence of small seabirds, such as travels vast distances during the non-breeding season (Croxall the Wilson’s Storm-Petrel, in the diet of Black-browed Albatrosses & Wood 2002), the types of food taken remain similar, although is not surprising. prey species and percentages tend to vary (Xavier et al. 2003, Gandini et al. unpubl.). Nevertheless, other prey items—such ACKnowledgements as seabirds, chiefly Spheniscidae and Pelecanoididae (Cherel & Klages 1997) and terns Sterna spp.
    [Show full text]
  • Cytochrome-B Evidence for Validity and Phylogenetic Relationships of Pseudobulweria and Bulweria (Procellariidae)
    The Auk 115(1):188-195, 1998 CYTOCHROME-B EVIDENCE FOR VALIDITY AND PHYLOGENETIC RELATIONSHIPS OF PSEUDOBULWERIA AND BULWERIA (PROCELLARIIDAE) VINCENT BRETAGNOLLE,•'5 CAROLE A3VFII•,2 AND ERIC PASQUET3'4 •CEBC-CNRS, 79360 Beauvoirsur Niort, France; 2Villiers en Bois, 79360 Beauvoirsur Niort, France; 3Laboratoirede ZoologieMammi•res et Oiseaux,Museum National d'Histoire Naturelie, 55 rue Buffon,75005 Paris, France; and 4Laboratoirede Syst•matiquemol•culaire, CNRS-GDR 1005, Museum National d'Histoire Naturelie, 43 rue Cuvier, 75005 Paris, France ABSTRACT.--Althoughthe genus Pseudobulweria was described in 1936for the Fiji Petrel (Ps.macgillivrayi), itsvalidity, phylogenetic relationships, and the number of constituenttaxa it containsremain controversial. We tried to clarifythese issues with 496bp sequencesfrom the mitochondrialcytochrome-b gene of 12 taxa representingthree putative subspecies of Pseudobulweria,seven species in six othergenera of the Procellariidae(fulmars, petrels, and shearwaters),and onespecies each from the Hydrobatidae(storm-petrels) and Pelecanoidi- dae (diving-petrels).We alsoinclude published sequences for two otherpetrels (Procellaria cinereaand Macronectesgiganteus ) and use Diomedeaexulans and Pelecanuserythrorhynchos as outgroups.Based on thepronounced sequence divergence (5 to 5.5%)and separate phylo- genetichistory from othergenera that havebeen thought to be closelyrelated to or have beensynonymized with Pseudobulweria,we conclude that the genusis valid, and that the MascarenePetrel (Pseudobulweria aterrima)
    [Show full text]
  • Appendix, French Names, Supplement
    685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U.
    [Show full text]
  • Synthesis of Habitat Use by Black-Footed Albatross Tracked from Cordell Bank National Marine Sanctuary (2004 – 2008) and Kure Atoll Seabird Sanctuary (2008)
    Revised FINAL Report to NOAA Synthesis of Habitat Use by Black-footed Albatross tracked from Cordell Bank National Marine Sanctuary (2004 – 2008) and Kure Atoll Seabird Sanctuary (2008) January 30, 2012 David Hyrenbach1,2, Michelle Hester1, Joshua Adams3, Pam Michael1,2, Cynthia Vanderlip4, Carol Keiper1, and Michael Carver5 1 Oikonos Ecosystem Knowledge, P.O. Box 1932, Benicia, CA 94510; [email protected] 2 Hawai’i Pacific University, 41-202 Kalaniana’ole Hwy, Waimanalo, HI 96795 3 U.S. Geological Survey, Western Ecological Research Center, Pacific Coastal & Marine Science Center, Santa Cruz, CA 95060 4 State of Hawai’i, Dept. of Land & Natural Resources, Div. of Forestry and Wildlife, Makiki, Honolulu, HI 96822 5 Cordell Bank National Marine Sanctuary, P.O. Box 159, Olema, CA 94950 SUMMARY Oikonos Ecosystem Knowledge, working with state and federal resource managers and university partners tracked the oceanic distribution and behavior of post-breeding and chick provisioning Black-footed Albatross (BFAL, Phoebastria nigripes) tagged at-sea within the Cordell Bank National Marine Sanctuary (CBNMS) and on the Kure Atoll colony within the Papahānaumokuākea Marine National Monument (PMNM) over a four year period (2004, 2005, 2007, 2008). The overarching goal of this project was to summarize the existing information to inform the management of this far-ranging protected species, in the context of static oceanic habitats (bathymetric domains and features), existing jurisdictions (U.S. National Marine Sanctuaries (NMS) and Marine Monuments), and international exclusive economic zones (E.E.Z.). INTRODUCTION The conservation status of North Pacific albatross populations warrants comprehensive efforts to understand their ecological requirements and to develop strategies to minimize the impacts of known and potential threats.
    [Show full text]