Final Rule to List the Short-Tailed Albatross As Endangered
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Waved Albatross Phoebastria Irrorata
Waved Albatross Phoebastria irrorata Kingdom Animalia Phylum Chordata Class Aves Order Procellariiformes Family Diomedeidae Common Name Waved or Galapagos Albatross, Albatros de las Galapágos Nearest Relatives There are four families and 93 species of albatrosses, storm-petrels, petrels and shearwaters in the order Procellariformes, which means tubenose. All birds in this order have long, hooked, grooved bills with internal “tubes” that aid in expulsion of salt and also contribute to an unusually acute sense of smell. These birds are all highly pelagic, spending most of their time hunting at sea. They are agile fliers and are awkward or unable to walk on land. Procellariformes are closely related to penguins (Sphenisciformes). The waved albatross is the only albatross species found in the Galapagos though there are several species of petrel, storm-petrel and shearwater as well as the Galapagos penguin. They are most closely related to three other species in the genus Phoebastria, the northern pacific albatrosses. Physical Description This is the largest bird in the Galapagos with a wingspan of up to 2.5 meters and weighs up to 4 kg. The back, wings and tail are light to dark brown becoming lighter grey with wavy barring on the breast, hence the name. The head and neck are mostly white with some buffy yellow/orange on the nape. It has a large, yellow, hooked bill. These birds are easily recognizable by their size and may often be seen floating in large groups offshore. Geographic range Many consider the waved albatross to be endemic to the Galapagos; it is found only on Española (Hood) Island. -
Natural Resources Science Plan
NATURAL RESOURCES SCIENCE PLAN 2011-2015 PAPAHÄNAUMOKUÄKEA MARINE NATIONAL MONUMENT NATURAL RESOURCES SCIENCE PLAN April 2011 Prepared by: Papahänaumokuäkea Marine National Monument National Oceanic and United States Fish and Hawai‘i Department of Land and Atmospheric Administration Wildlife Service Natural Resources 6600 Kalanianaole Highway, Suite 300 300 Ala Moana Blvd., Room 5-231 1151 Punchbowl Street, Room 130 Honolulu, Hawai‘i 96825 Honolulu, Hawai‘i 96850 Honolulu, Hawai‘i 96813 NATURAL RESOURCES SCIENCE PLAN 2011-2015 Contents 1.0 INTRODUCTION .................................................................................................. 1 1.1 Overview of the Monument.....................................................................................3 1.2 Purpose and Scope of the Plan.................................................................................4 1.3 Stakeholders ............................................................................................................5 2.0 SUMMARY OF PLANNING PROCESS .................................................................... 6 2.1 Development of a Research and Monitoring Framework for the Monument .............6 2.2 Public Review and Comment...................................................................................7 2.3 Profiling Ongoing and Potential New Research and Monitoring Projects .................9 2.4 Identification of Research and Monitoring Gaps and Needs...................................10 2.5 Prioritization of Research and Monitoring Activities...............................................10 -
Conservation Status and At-Sea Threats for the Waved Albatross (P H O E B a S T R I a I R R O R a T a )
Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. INTER-AMERICAN TROPICAL TUNA COMMISSION I A T T C S E A B I R D T E C H N I C A L M E E T I N G DEL MAR, CALIFORNIA, 11 MAY 2009 Conservation status and at-sea threats for the Waved Albatross (P h o e b a s t r i a i r r o r a t a ) Agreement for the Conservation of Albatrosses and Petrels (ACAP) A B S T R A C T This paper presents an updated picture of the information available on the biology of the Waved albatross P h o e b a s t r i a i r r o r a t a and the threats the species is currently facing with particular emphasis on mortality associated with fisheries. The Waved Albatross breeds almost exclusively on Isla Española in the Galapagos Archipelago, and its at-sea distribution is restricted to the eastern Pacific Ocean mostly between the Galapagos and the adjacent mainland of South America from central Ecuador to central Peru, but occasionally ranging farther. A decrease in adult survival and a likely reduction in population size have been recently associated with increased mortality from incidental and intentional catch in fisheries. These, together with other potential threats in breeding sites, led to a recent upgrading of the species under the IUCN Red List as Critically Endangered as it is considered to be facing an extremely high risk of extinction in the wild. -
Distribution, Habitat Use, and Conservation of Albatrosses in Alaska
Suryan and Kuletz 2018, Iden 72:156-164 Published in a special issue on albatrosses in the January issue of the Japanese journal Iden: the article was submitted by invitation from members of the Yamashina Institute for Ornithology, Hokkaido University Museum, and the Editor of Iden. The article is: Robert M. Suryan and Kathy J. Kuletz. 2018. Distribution, Habitat Use, and Conservation of Albatrosses in Alaska. Iden 72:156-164. It is available online, but is in Japanese; for an English version contact [email protected] or [email protected] Distribution, Habitat Use, and Conservation of Albatrosses in Alaska Robert M. Suryan1,2 and Kathy J. Kuletz3 1Department of Fisheries and Wildlife, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr, Newport, Oregon 97365 2Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 17109 Pt. Lena Loop Rd, Juneau, AK 99801, USA 3US Fish and Wildlife Service, 1011 E. Tudor Road, Anchorage, AK 99503, USA All three North Pacific albatross species forage in marine waters off Alaska. Despite considerable foraging range overlap, however, the three species do show broad-scale niche segregation. Short-tailed albatross (Phoebastria. albatrus) range most widely throughout Alaska, extensively using the continental shelf break and slope regions of the Bering Sea and Aleutian Archipelago in particular, and the Gulf of Alaska to a lesser extent. Due to small population size, however, short-tailed albatrosses are generally far less prevalent than the other two species. Black-footed albatrosses (P. nigripes) are most abundant in the Gulf of Alaska, and in late summer near some Aleutian passes, occupying foraging habitat similar to short-tailed albatrosses. -
An Assessment for Fisheries Operating in South Georgia and South Sandwich Islands
FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands by Nigel Varty, Ben Sullivan and Andy Black BirdLife International Global Seabird Programme Cover photo – Fishery Patrol Vessel (FPV) Pharos SG in Cumberland Bay, South Georgia This document should be cited as: Varty, N., Sullivan, B. J. and Black, A. D. (2008). FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands. BirdLife International Global Seabird Programme. Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, UK. 2 Executive Summary As a result of international concern over the cause and level of seabird mortality in longline fisheries, the United Nations Food and Agricultural Organisation (FAO) Committee of Fisheries (COFI) developed an International Plan of Action-Seabirds. The IPOA-Seabirds stipulates that countries with longline fisheries (conducted by their own or foreign vessels) or a fleet that fishes elsewhere should carry out an assessment of these fisheries to determine if a bycatch problem exists and, if so, to determine its extent and nature. If a problem is identified, countries should adopt a National Plan of Action – Seabirds for reducing the incidental catch of seabirds in their fisheries. South Georgia and the South Sandwich Islands (SGSSI) are a United Kingdom Overseas Territory and the combined area covered by the Territorial Sea and Maritime Zone of South Georgia is referred to as the South Georgia Maritime Zone (SGMZ) and fisheries within the SGMZ are managed by the Government of South Georgia and South Sandwich Islands (GSGSSI) within the framework of the Convention on the Conservation of Antarctic Marine Living (CCAMLR). -
Identification of Infrasonic and Seismic Components of Tremors in Single
Kurokawa and Ichihara Earth, Planets and Space (2020) 72:171 https://doi.org/10.1186/s40623-020-01302-2 FULL PAPER Open Access Identifcation of infrasonic and seismic components of tremors in single-station records: application to the 2013 and 2018 events at Ioto Island, Japan Aika K. Kurokawa1* and Mie Ichihara2 Abstract Infrasonic stations are sparse at many volcanoes, especially those on remote islands and those with less frequent eruptions. When only a single infrasound station is available, the seismic–infrasonic cross-correlation method has been used to extract infrasound from wind noise. However, it does not work with intense seismicity and sometimes mistakes ground-to-atmosphere signals as infrasound. This paper proposes a complementary method to identify the seismic component and the infrasonic component using a single microphone and a seismometer. We applied the method to estimate the surface activity on Ioto Island. We focused on volcanic tremors during the phreatic eruption on April 11, 2013, and during an unconfrmed event on September 12, 2018. We used the spectral amplitude ratios of the vertical ground motion to the pressure oscillation and compared those for the tremors with those for known signals generated by volcano-tectonic earthquakes and airplanes fying over the station. We were able to identify the infrasound component in the part of the seismic tremor with the 2013 eruption. On the other hand, the tremor with the unconfrmed 2018 event was accompanied by no apparent infrasound. We interpreted the results that the infrasound with the 2013 event was excited by the vent opening or the ejection of ballistic rocks, and the 2018 event was not an explosive eruption either on the ground or in the shallow water. -
Appendix, French Names, Supplement
685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U. -
Synthesis of Habitat Use by Black-Footed Albatross Tracked from Cordell Bank National Marine Sanctuary (2004 – 2008) and Kure Atoll Seabird Sanctuary (2008)
Revised FINAL Report to NOAA Synthesis of Habitat Use by Black-footed Albatross tracked from Cordell Bank National Marine Sanctuary (2004 – 2008) and Kure Atoll Seabird Sanctuary (2008) January 30, 2012 David Hyrenbach1,2, Michelle Hester1, Joshua Adams3, Pam Michael1,2, Cynthia Vanderlip4, Carol Keiper1, and Michael Carver5 1 Oikonos Ecosystem Knowledge, P.O. Box 1932, Benicia, CA 94510; [email protected] 2 Hawai’i Pacific University, 41-202 Kalaniana’ole Hwy, Waimanalo, HI 96795 3 U.S. Geological Survey, Western Ecological Research Center, Pacific Coastal & Marine Science Center, Santa Cruz, CA 95060 4 State of Hawai’i, Dept. of Land & Natural Resources, Div. of Forestry and Wildlife, Makiki, Honolulu, HI 96822 5 Cordell Bank National Marine Sanctuary, P.O. Box 159, Olema, CA 94950 SUMMARY Oikonos Ecosystem Knowledge, working with state and federal resource managers and university partners tracked the oceanic distribution and behavior of post-breeding and chick provisioning Black-footed Albatross (BFAL, Phoebastria nigripes) tagged at-sea within the Cordell Bank National Marine Sanctuary (CBNMS) and on the Kure Atoll colony within the Papahānaumokuākea Marine National Monument (PMNM) over a four year period (2004, 2005, 2007, 2008). The overarching goal of this project was to summarize the existing information to inform the management of this far-ranging protected species, in the context of static oceanic habitats (bathymetric domains and features), existing jurisdictions (U.S. National Marine Sanctuaries (NMS) and Marine Monuments), and international exclusive economic zones (E.E.Z.). INTRODUCTION The conservation status of North Pacific albatross populations warrants comprehensive efforts to understand their ecological requirements and to develop strategies to minimize the impacts of known and potential threats. -
BYC-08 INF J(A) ACAP: Update on the Conservation Status
INTER-AMERICAN TROPICAL TUNA COMMISSION SCIENTIFIC ADVISORY COMMITTEE NINTH MEETING La Jolla, California (USA) 14-18 May 2018 DOCUMENT BYC-08 INF J(a) UPDATE ON THE CONSERVATION STATUS, DISTRIBUTION AND PRIORITIES FOR ALBATROSSES AND LARGE PETRELS Agreement on the Conservation of Albatrosses and Petrels (ACAP) and BirdLife International 1. STATUS AND TRENDS OF ALBATROSSES AND PETRELS Seabirds are amongst the most globally-threatened of all groups of birds, and conservation issues specific to albatrosses and large petrels led to drafting of the multi-lateral Agreement on the Conservation of Albatrosses and Petrels (ACAP). A review of the conservation status and priorities for albatrosses and large petrels was recently published in Biological Conservation (Phillips et al. 2016). There are currently 31 species listed in Annex 1 of the Agreement. Of these, 21 (68%) are classified at risk of extinction, a stark contrast to the overall rate of 12% for the 10,694 bird species worldwide (Croxall et al. 2012, Gill & Donsker 2017). Of the 22 species of albatrosses listed by ACAP, three are listed as Critically Endangered (CR), six are Endangered (EN), six are Vulnerable (VU), six are Near Threatened (NT), and one is of Least Concern (LC). Of the nine petrel species, one is listed as CR, one as EN, four as VU, one as NT and two species as LC. The population trends of ACAP species over the last twenty years (since the mid-1990s) were re-examined in 2017 by the ACAP Population and Conservation Status Working Group (PaCSWG). Thirteen ACAP species (42%) are currently showing overall population declines. -
Chapter 2. Deploying Land, Infrastructure, Transport And
Section 2 Measures, etc. against Aging Social Infrastructures Deploying Land, Infrastructure, Transport and Chapter 2 Tourism Administration Tailored to Urges of the Times II Chapter 2 Section 1 Driving the Implementation of a National Land Policy Package The implementation of a comprehensive national land policy package has been driven on the basis of a full package of Deploying Land, Infrastructure, Transport and Tourism Administration Tailored to Urges of the Times to Urges Administration Tailored and Tourism Transport Deploying Land, Infrastructure, measures designed to guide the work of national spatial land planning; namely, National Spatial Strategies (national plan) (2008 Cabinet decision), which envisions “the construction of a national land where diverse regional blocks develop autonomously and the creation of a beautiful national land where life is comfortable” as a new vision of national land, Global Regional Plans (2009 Minister decision), which summarize the regional strategies of the individual global blocks and the specific approaches they take to implement the strategies and the Fourth National Land Use Plan (national plan) (2008 Cabinet decision), which is committed to a key principle of sustainable land management. The implementation of these plans is being monitored from year to year to get them consolidated among the stakeholders concerned with National Spatial Strategies. About seven years since the formulation of National Spatial Strategies (national plan), Japan is confronted with drastic changes, such as intensifying competition between nations and cities in pace with progressive globalization and imminent possible threats from huge natural disasters, such as the Nankai Trough Mega Earthquake and Tokyo Inland Earthquake, as well as a rapidly shrinking population in an aging society with falling birthrates, with the population predicted to halve in about 60% of all the regions in 2050 and elderly people accounting for about 40% of the total population. -
Volcano Monitoring
Nov. 1st, 2018 JPTM2018 Volcano Monitoring Location : Sakurajima Date : Jan. 2, 2013 Camera : Canon EOS 60D F number : 5.6 Shutter speed : 30 seconds ISO : 800 Photographer : JMA expert 1 Today’s topics HOW CAN WE USE ALOS-2 DATA FOR MONITORING VOLCANOES? 2 Active Volcanoes in Japan • 111 active volcanoes (Active volcanoes: it erupted within 10,000 years) • 5 volcanoes erupted this year (Kusatsu -Shiranesan, Kirishimayama (Shinmoedake, Iwo-yama crater), Nishinoshima, Sakurajima, Suwanosejima ) • 50 volcanoes are continuously monitored. circle: active volcanoes, red-triangle: erupted this year 3 Volcanic Observation and Warning Center Continuous Observation stations Seismometer GNSS Tiltmeter Camera Remote sensing Volcanic Observation and Warning Center offline data Volcanic Observation and Information System(VOIS) Information Schema of volcanic process Warning/ Multi Volcanic activity Unrest/anomaly ・Local Governments ・Mass media Monitoring and Analysis × × × ・Public × × × × × × Quick Evaluation Web Site online Collaborative Work Coordinating reference Committee for Prediction of Past events DB Volcanic Eruption JMA Experts Mobile PC Local Governments Explanation 4 Advantages of ALOS-2(PALSAR-2) data GNSS ALOS-2 data Observed Land-covering Coordinate of point data deformation Equipment Need to built NOT need to built on land observation stations observation stations In spite of isolated islands or activated volcanoes where we can’t access, volcanic activities are monitored. ~In Emergency situation~ Detect volcanic unrest/anomalies JAXA judges schedules of ALOS-2 observation JMA orders JAXA take an emergency observation data an emergency observation (originally planned observation cancelled) 5 Kusatsu-Shiranesan volcano Erupted on Jan. 23th, 2018 • Kusatsu-Shiranesan is an active volcanone which has 3 pyroclastic cones. • Yugama is the most active crater of Kusatsu-Shiranesan. -
Dr. Scott A. Shaffer UCSC Agreement No. 12170-‐B-‐G104 Final Report
Dr. Scott A. Shaffer UCSC Agreement No. 12170-B-G104 Final Report Federal Agency: US Fish & Wildlife Service Agreement No: 12170-B-G104 Project Title: Behavioral, Dietary, And Demographic Responses Of Hawaiian Albatrosses To Environmental Change PI Contact: Dr. Scott A. Shaffer Tel: 408 924 4871 Email: [email protected] Submission Date: 16 May 2014 DUNS: 125084723 EIN Number: 94-1539563 Recipient Organization: Institute of Marine Sciences University of California Santa Cruz CA 95060-5730 Project/Grant Period: 01 October 2011 to 30 January 2014 Reporting Period End Date: 30 April 2014 Project Cost: $77,867 Signature of Submitting Official: Dr. Scott A. Shaffer UCSC Agreement No. 12170-B-G104 2. PUBLIC SUMMARY: Pelagic seabirds (albatrosses and petrels) find food by relying on distinct oceanographic features like transition zones, upwelling, and large eddies. These oceanographic features change intensity, distribution, and duration during El Niño/La Niña events resulting in poor breeding performance in seabirds. Climate models predict that these perturbations will last longer, be more variable, and in some cases, cause major shifts in oceanographic regimes. We analyzed our decade-long dataset of tracked Laysan and black-footed albatrosses (N = 192 individual trips) the breed in the Northwest Hawaiian Islands to investigate the mechanistic role that oceanography plays in affecting the foraging distributions and its subsequent feedback on breeding performance in albatrosses. We compared the total distance traveled, maximum foraging range, trip duration, and the distribution of albatrosses in each year to the distance of the Transition Zone Chlorophyll Front (TZCF) and found that albatrosses traveled farther and for significantly longer durations when the TZCF was greater than 700 km from the colony.