Final Rule to List the Short-Tailed Albatross As Endangered

Total Page:16

File Type:pdf, Size:1020Kb

Final Rule to List the Short-Tailed Albatross As Endangered Federal Register / Vol. 65, No. 147 / Monday, July 31, 2000 / Rules and Regulations 46643 Issued on: July 25, 2000. DEPARTMENT OF THE INTERIOR ACTION: Final rule. Rosalyn G. Millman, Fish and Wildlife Service SUMMARY: Under the authority of the Deputy Administrator. Endangered Species Act (Act) of 1973, [FR Doc. 00±19123 Filed 7±25±00; 5:00 pm] 50 CFR Part 17 as amended, we, the U.S. Fish and BILLING CODE 4910±59±C Wildlife Service (Service), extend endangered status for the short-tailed RIN 1018±AE91 albatross (Phoebastria albatrus) to Endangered and Threatened Wildlife include the species' range within the and Plants; Final Rule To List the United States. As a result of an Short-Tailed Albatross as Endangered administrative error in the original in the United States listing, the short-tailed albatross is currently listed as endangered AGENCY: Fish and Wildlife Service, throughout its range except in the Interior. United States. Short-tailed albatrosses VerDate 11<MAY>2000 18:38 Jul 28, 2000 Jkt 190000 PO 00000 Frm 00077 Fmt 4700 Sfmt 4700 E:\FR\FM\31JYR1.SGM pfrm11 PsN: 31JYR1 46644 Federal Register / Vol. 65, No. 147 / Monday, July 31, 2000 / Rules and Regulations range throughout the North Pacific short-tailed albatross, the Laysan because high numbers of birds were Ocean and north into the Bering Sea albatross (P. immutabilis), the black- seen nearshore during the summer and during the nonbreeding season; footed albatross (P. nigripes), and the fall months (Yesner 1976). Alaska Aleut breeding colonies are limited to two waved albatross (P. irrorata)(AOU lore referred to local breeding birds, and Japanese islands, Torishima and 1998). the explorer O. Von Kotzebue reported that Natives harvested short-tailed Minami-kojima. Originally numbering Description in the millions, the current worldwide albatross eggs. However, while adult population of breeding age birds is The short-tailed albatross is a large bones were found in Aleut middens approximately 600 individuals and the pelagic bird with long narrow wings (refuse heaps), fledgling remains were worldwide total population is adapted for soaring just above the water not recorded in more than 400 samples approximately 1,200 individuals. There surface. The bill, which is (Yesner 1976). Yesner (1976) believed are no breeding populations of short- disproportionately large compared to that short-tailed albatrosses did not tailed albatrosses in the United States, the bills of other northern hemisphere breed in the Aleutians but were but several individuals have been albatrosses, is pink and hooked with a harvested offshore during the summer, regularly observed during the breeding bluish tip, with external tubular nonbreeding season. Given the season on Midway Atoll in the nostrils, and a thin but conspicuous midwinter constraints on breeding at northwestern Hawaiian Islands. Current black line extending around the base. high latitudes and the known southerly threats to the species include Adult short-tailed albatrosses are the location of winter breeding, it is highly destruction of breeding habitat by only North Pacific albatross with an unlikely that these birds ever bred in volcanic eruption or mud or land slides entirely white back. The white head Alaska (Sherburne 1993). caused by monsoon rains, and develops a yellow-gold crown and nape Additional historical information on demographic or genetic vulnerability over several years. Fledged juveniles are the species' range away from known due to low population size and limited dark brown-black, but soon develop the breeding areas is scant. Evidence from breeding distribution. Longline pale bills and legs that distinguish them archeological studies in middens fisheries, plastics ingestion, from black-footed and Laysan suggests that hunters in kayaks had contaminants, and airplane strikes may albatrosses (Tuck 1978, Roberson 1980). access to an abundant nearshore supply also be factors affecting the species' Historical Distribution of short-tailed albatrosses from conservation. This rule implements the California north to St. Lawrence Island The short-tailed albatross once ranged as early as 4,000 years ago (Howard and Federal protection and recovery throughout most of the North Pacific provisions provided by the Act for Dodson 1933, Yesner and Aigner 1976, Ocean and Bering Sea, with known Murie 1959). In the 1880s and 1890s, individuals when they occur in the nesting colonies on the following United States. short-tailed albatross abundance and islands: Torishima in the Seven Islands distribution during the nonbreeding DATES: This rule is effective August 30, of Izu Group in Japan; Mukojima, season was generalized by statements 2000. Nishinoshima, Yomeshima, and such as ``more or less numerous'' in the ADDRESSES: The complete file for this Kitanoshima in the Bonin Islands of vicinity of the Aleutian Islands (Yesner rule is available for inspection, by Japan; Kita-daitojima, Minami- 1976). They were reported as highly appointment, during normal business daitojima, and Okino-daitojima of the abundant around Cape Newenham, in hours at the Anchorage Field Office, Daito group of Japan; Senkaku Retto of western Alaska (DeGange 1981), and U.S. Fish and Wildlife Service, 605 southern Ryukyu Islands of Japan, Veniaminof regarded them as abundant West 4th Avenue, Room G±62, including Minami-kojima, Kobisho, and near the Pribilof Islands (Gabrielson and Anchorage, AK 99501 (telephone 907/ Uotsurijima; Iwo Jima in the western Lincoln 1959). In 1904, they were 271±2888). Volcanic Islands (Kazan-Retto) of Japan; considered ``tolerably common on both FOR FURTHER INFORMATION CONTACT: Greg Agincourt Island, Taiwan; and coasts of Vancouver Island, but more Balogh, Endangered Species Biologist, at Pescadore Islands, of Taiwan, including abundant on the west coast'' (Kermode the above address or telephone 907/ Byosho Island (Hasegawa 1979, King in Campbell et al., 1990). 271±2778. 1981). Other undocumented nesting colonies may have existed. For example, Historical Population Status SUPPLEMENTARY INFORMATION: recent observations, together with At the beginning of the 20th century, Background records from the 1930s, suggest that the the species declined in population short-tailed albatross may have once numbers to near extinction, primarily as Taxonomy nested on Midway Atoll. However, no a result of hunting at the breeding George Steller made the first record of confirmed historical breeding accounts colonies in Japan. Albatross were killed the short-tailed albatross in the 1740s. are available for this area. Throughout for their feathers and various other body The type specimen for the species was this rule when we refer to Midway parts. The down feathers were used for collected offshore of Kamchatka, Russia, Atoll, we mean the complex of islets quilts and pillows, and wing and tail and was described in 1769 by P.S. Pallas that occur within Midway Atoll that feathers were used for writing quills; in Spicilegia Zoologica (American includes Sand Islet, Eastern Islet, and their bodies were processed into Ornithologists' Union (AOU) 1997). In Spit Islet. Midway Atoll is located east fertilizer and rendered into fat, and their the order of tube-nosed marine birds, of Kure Atoll, at the northwestern end eggs were collected for food (Austin Procellariiformes, the short-tailed of the Hawaiian Archipelago. A subset 1949). albatross is classified within the family of atolls, islands, and reefs located north Pre-exploitation worldwide Diomedeidae. Until recently, it had been and west of the main Hawaiian Islands population estimates of short-tailed assigned to the genus Diomedea. (Hawaii Island to Kauai Island) is albatrosses are not known; the total Following the results of genetic studies known as the northwestern Hawaiian number of birds harvested may provide by Nunn et al. (1996), the family Islands (Nihoa Island to Kure Atoll). the best estimate, since the harvest Diomedeidae was arranged in four Early naturalists, such as Turner and drove the species nearly to extinction. genera. The genus Phoebastria, North Chamisso, believed that short-tailed Between approximately 1885 and 1903, Pacific albatrosses, now includes the albatrosses bred in the Aleutian Islands an estimated five million short-tailed VerDate 11<MAY>2000 18:38 Jul 28, 2000 Jkt 190000 PO 00000 Frm 00078 Fmt 4700 Sfmt 4700 E:\FR\FM\31JYR1.SGM pfrm11 PsN: 31JYR1 Federal Register / Vol. 65, No. 147 / Monday, July 31, 2000 / Rules and Regulations 46645 albatrosses were harvested from the breeding sites are limited (Hasegawa the years following the reported breeding colony on Torishima 1997). observation, the reported nest location (Yamashina in Austin 1949), and In 1971, 12 adult short-tailed on Sand Islet in the Midway Atoll was harvest continued until the early 1930s, albatrosses were discovered on Minami- paved, and tens of thousands of except for a few years following the kojima in the Senkaku Islands, one of albatrosses were exterminated from 1903 volcanic eruption. One of the the former breeding colony sites Sand Islet to construct an aircraft residents on the island (a schoolteacher) (Hasegawa 1984). Aerial surveys in 1979 runway and to provide safe conditions reported 3,000 albatrosses killed in and 1980 resulted in observations of for aircraft landings and departures. It is December 1932 and January 1933. By between 16 and 35 adults. In April possible that, if any short-tailed 1949, there were no short-tailed 1988, the first confirmed chicks on albatrosses were nesting on the island, albatrosses breeding at any of the Minami-kojima were observed, and in the individuals were either displaced or historically known breeding sites, March 1991, 10 chicks were observed. killed during this process (E. Flint, including Torishima, and the species In 1991, the estimate for the population Service, Honolulu pers. comm. 1999). was thought to be extinct (Austin 1949). on Minami-kojima was 75 birds and 15 An adult short-tailed albatross was The species persisted, however, and breeding pairs (Hasegawa 1991). In banded at Eastern Islet in Midway Atoll in 1950, the chief of the weather station 1999, the estimate for the population is on March 18, 1966 (Sanger 1972).
Recommended publications
  • Waved Albatross Phoebastria Irrorata
    Waved Albatross Phoebastria irrorata Kingdom Animalia Phylum Chordata Class Aves Order Procellariiformes Family Diomedeidae Common Name Waved or Galapagos Albatross, Albatros de las Galapágos Nearest Relatives There are four families and 93 species of albatrosses, storm-petrels, petrels and shearwaters in the order Procellariformes, which means tubenose. All birds in this order have long, hooked, grooved bills with internal “tubes” that aid in expulsion of salt and also contribute to an unusually acute sense of smell. These birds are all highly pelagic, spending most of their time hunting at sea. They are agile fliers and are awkward or unable to walk on land. Procellariformes are closely related to penguins (Sphenisciformes). The waved albatross is the only albatross species found in the Galapagos though there are several species of petrel, storm-petrel and shearwater as well as the Galapagos penguin. They are most closely related to three other species in the genus Phoebastria, the northern pacific albatrosses. Physical Description This is the largest bird in the Galapagos with a wingspan of up to 2.5 meters and weighs up to 4 kg. The back, wings and tail are light to dark brown becoming lighter grey with wavy barring on the breast, hence the name. The head and neck are mostly white with some buffy yellow/orange on the nape. It has a large, yellow, hooked bill. These birds are easily recognizable by their size and may often be seen floating in large groups offshore. Geographic range Many consider the waved albatross to be endemic to the Galapagos; it is found only on Española (Hood) Island.
    [Show full text]
  • Natural Resources Science Plan
    NATURAL RESOURCES SCIENCE PLAN 2011-2015 PAPAHÄNAUMOKUÄKEA MARINE NATIONAL MONUMENT NATURAL RESOURCES SCIENCE PLAN April 2011 Prepared by: Papahänaumokuäkea Marine National Monument National Oceanic and United States Fish and Hawai‘i Department of Land and Atmospheric Administration Wildlife Service Natural Resources 6600 Kalanianaole Highway, Suite 300 300 Ala Moana Blvd., Room 5-231 1151 Punchbowl Street, Room 130 Honolulu, Hawai‘i 96825 Honolulu, Hawai‘i 96850 Honolulu, Hawai‘i 96813 NATURAL RESOURCES SCIENCE PLAN 2011-2015 Contents 1.0 INTRODUCTION .................................................................................................. 1 1.1 Overview of the Monument.....................................................................................3 1.2 Purpose and Scope of the Plan.................................................................................4 1.3 Stakeholders ............................................................................................................5 2.0 SUMMARY OF PLANNING PROCESS .................................................................... 6 2.1 Development of a Research and Monitoring Framework for the Monument .............6 2.2 Public Review and Comment...................................................................................7 2.3 Profiling Ongoing and Potential New Research and Monitoring Projects .................9 2.4 Identification of Research and Monitoring Gaps and Needs...................................10 2.5 Prioritization of Research and Monitoring Activities...............................................10
    [Show full text]
  • Conservation Status and At-Sea Threats for the Waved Albatross (P H O E B a S T R I a I R R O R a T a )
    Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. INTER-AMERICAN TROPICAL TUNA COMMISSION I A T T C S E A B I R D T E C H N I C A L M E E T I N G DEL MAR, CALIFORNIA, 11 MAY 2009 Conservation status and at-sea threats for the Waved Albatross (P h o e b a s t r i a i r r o r a t a ) Agreement for the Conservation of Albatrosses and Petrels (ACAP) A B S T R A C T This paper presents an updated picture of the information available on the biology of the Waved albatross P h o e b a s t r i a i r r o r a t a and the threats the species is currently facing with particular emphasis on mortality associated with fisheries. The Waved Albatross breeds almost exclusively on Isla Española in the Galapagos Archipelago, and its at-sea distribution is restricted to the eastern Pacific Ocean mostly between the Galapagos and the adjacent mainland of South America from central Ecuador to central Peru, but occasionally ranging farther. A decrease in adult survival and a likely reduction in population size have been recently associated with increased mortality from incidental and intentional catch in fisheries. These, together with other potential threats in breeding sites, led to a recent upgrading of the species under the IUCN Red List as Critically Endangered as it is considered to be facing an extremely high risk of extinction in the wild.
    [Show full text]
  • Distribution, Habitat Use, and Conservation of Albatrosses in Alaska
    Suryan and Kuletz 2018, Iden 72:156-164 Published in a special issue on albatrosses in the January issue of the Japanese journal Iden: the article was submitted by invitation from members of the Yamashina Institute for Ornithology, Hokkaido University Museum, and the Editor of Iden. The article is: Robert M. Suryan and Kathy J. Kuletz. 2018. Distribution, Habitat Use, and Conservation of Albatrosses in Alaska. Iden 72:156-164. It is available online, but is in Japanese; for an English version contact [email protected] or [email protected] Distribution, Habitat Use, and Conservation of Albatrosses in Alaska Robert M. Suryan1,2 and Kathy J. Kuletz3 1Department of Fisheries and Wildlife, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr, Newport, Oregon 97365 2Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 17109 Pt. Lena Loop Rd, Juneau, AK 99801, USA 3US Fish and Wildlife Service, 1011 E. Tudor Road, Anchorage, AK 99503, USA All three North Pacific albatross species forage in marine waters off Alaska. Despite considerable foraging range overlap, however, the three species do show broad-scale niche segregation. Short-tailed albatross (Phoebastria. albatrus) range most widely throughout Alaska, extensively using the continental shelf break and slope regions of the Bering Sea and Aleutian Archipelago in particular, and the Gulf of Alaska to a lesser extent. Due to small population size, however, short-tailed albatrosses are generally far less prevalent than the other two species. Black-footed albatrosses (P. nigripes) are most abundant in the Gulf of Alaska, and in late summer near some Aleutian passes, occupying foraging habitat similar to short-tailed albatrosses.
    [Show full text]
  • An Assessment for Fisheries Operating in South Georgia and South Sandwich Islands
    FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands by Nigel Varty, Ben Sullivan and Andy Black BirdLife International Global Seabird Programme Cover photo – Fishery Patrol Vessel (FPV) Pharos SG in Cumberland Bay, South Georgia This document should be cited as: Varty, N., Sullivan, B. J. and Black, A. D. (2008). FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands. BirdLife International Global Seabird Programme. Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, UK. 2 Executive Summary As a result of international concern over the cause and level of seabird mortality in longline fisheries, the United Nations Food and Agricultural Organisation (FAO) Committee of Fisheries (COFI) developed an International Plan of Action-Seabirds. The IPOA-Seabirds stipulates that countries with longline fisheries (conducted by their own or foreign vessels) or a fleet that fishes elsewhere should carry out an assessment of these fisheries to determine if a bycatch problem exists and, if so, to determine its extent and nature. If a problem is identified, countries should adopt a National Plan of Action – Seabirds for reducing the incidental catch of seabirds in their fisheries. South Georgia and the South Sandwich Islands (SGSSI) are a United Kingdom Overseas Territory and the combined area covered by the Territorial Sea and Maritime Zone of South Georgia is referred to as the South Georgia Maritime Zone (SGMZ) and fisheries within the SGMZ are managed by the Government of South Georgia and South Sandwich Islands (GSGSSI) within the framework of the Convention on the Conservation of Antarctic Marine Living (CCAMLR).
    [Show full text]
  • Identification of Infrasonic and Seismic Components of Tremors in Single
    Kurokawa and Ichihara Earth, Planets and Space (2020) 72:171 https://doi.org/10.1186/s40623-020-01302-2 FULL PAPER Open Access Identifcation of infrasonic and seismic components of tremors in single-station records: application to the 2013 and 2018 events at Ioto Island, Japan Aika K. Kurokawa1* and Mie Ichihara2 Abstract Infrasonic stations are sparse at many volcanoes, especially those on remote islands and those with less frequent eruptions. When only a single infrasound station is available, the seismic–infrasonic cross-correlation method has been used to extract infrasound from wind noise. However, it does not work with intense seismicity and sometimes mistakes ground-to-atmosphere signals as infrasound. This paper proposes a complementary method to identify the seismic component and the infrasonic component using a single microphone and a seismometer. We applied the method to estimate the surface activity on Ioto Island. We focused on volcanic tremors during the phreatic eruption on April 11, 2013, and during an unconfrmed event on September 12, 2018. We used the spectral amplitude ratios of the vertical ground motion to the pressure oscillation and compared those for the tremors with those for known signals generated by volcano-tectonic earthquakes and airplanes fying over the station. We were able to identify the infrasound component in the part of the seismic tremor with the 2013 eruption. On the other hand, the tremor with the unconfrmed 2018 event was accompanied by no apparent infrasound. We interpreted the results that the infrasound with the 2013 event was excited by the vent opening or the ejection of ballistic rocks, and the 2018 event was not an explosive eruption either on the ground or in the shallow water.
    [Show full text]
  • Appendix, French Names, Supplement
    685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U.
    [Show full text]
  • Synthesis of Habitat Use by Black-Footed Albatross Tracked from Cordell Bank National Marine Sanctuary (2004 – 2008) and Kure Atoll Seabird Sanctuary (2008)
    Revised FINAL Report to NOAA Synthesis of Habitat Use by Black-footed Albatross tracked from Cordell Bank National Marine Sanctuary (2004 – 2008) and Kure Atoll Seabird Sanctuary (2008) January 30, 2012 David Hyrenbach1,2, Michelle Hester1, Joshua Adams3, Pam Michael1,2, Cynthia Vanderlip4, Carol Keiper1, and Michael Carver5 1 Oikonos Ecosystem Knowledge, P.O. Box 1932, Benicia, CA 94510; [email protected] 2 Hawai’i Pacific University, 41-202 Kalaniana’ole Hwy, Waimanalo, HI 96795 3 U.S. Geological Survey, Western Ecological Research Center, Pacific Coastal & Marine Science Center, Santa Cruz, CA 95060 4 State of Hawai’i, Dept. of Land & Natural Resources, Div. of Forestry and Wildlife, Makiki, Honolulu, HI 96822 5 Cordell Bank National Marine Sanctuary, P.O. Box 159, Olema, CA 94950 SUMMARY Oikonos Ecosystem Knowledge, working with state and federal resource managers and university partners tracked the oceanic distribution and behavior of post-breeding and chick provisioning Black-footed Albatross (BFAL, Phoebastria nigripes) tagged at-sea within the Cordell Bank National Marine Sanctuary (CBNMS) and on the Kure Atoll colony within the Papahānaumokuākea Marine National Monument (PMNM) over a four year period (2004, 2005, 2007, 2008). The overarching goal of this project was to summarize the existing information to inform the management of this far-ranging protected species, in the context of static oceanic habitats (bathymetric domains and features), existing jurisdictions (U.S. National Marine Sanctuaries (NMS) and Marine Monuments), and international exclusive economic zones (E.E.Z.). INTRODUCTION The conservation status of North Pacific albatross populations warrants comprehensive efforts to understand their ecological requirements and to develop strategies to minimize the impacts of known and potential threats.
    [Show full text]
  • BYC-08 INF J(A) ACAP: Update on the Conservation Status
    INTER-AMERICAN TROPICAL TUNA COMMISSION SCIENTIFIC ADVISORY COMMITTEE NINTH MEETING La Jolla, California (USA) 14-18 May 2018 DOCUMENT BYC-08 INF J(a) UPDATE ON THE CONSERVATION STATUS, DISTRIBUTION AND PRIORITIES FOR ALBATROSSES AND LARGE PETRELS Agreement on the Conservation of Albatrosses and Petrels (ACAP) and BirdLife International 1. STATUS AND TRENDS OF ALBATROSSES AND PETRELS Seabirds are amongst the most globally-threatened of all groups of birds, and conservation issues specific to albatrosses and large petrels led to drafting of the multi-lateral Agreement on the Conservation of Albatrosses and Petrels (ACAP). A review of the conservation status and priorities for albatrosses and large petrels was recently published in Biological Conservation (Phillips et al. 2016). There are currently 31 species listed in Annex 1 of the Agreement. Of these, 21 (68%) are classified at risk of extinction, a stark contrast to the overall rate of 12% for the 10,694 bird species worldwide (Croxall et al. 2012, Gill & Donsker 2017). Of the 22 species of albatrosses listed by ACAP, three are listed as Critically Endangered (CR), six are Endangered (EN), six are Vulnerable (VU), six are Near Threatened (NT), and one is of Least Concern (LC). Of the nine petrel species, one is listed as CR, one as EN, four as VU, one as NT and two species as LC. The population trends of ACAP species over the last twenty years (since the mid-1990s) were re-examined in 2017 by the ACAP Population and Conservation Status Working Group (PaCSWG). Thirteen ACAP species (42%) are currently showing overall population declines.
    [Show full text]
  • Chapter 2. Deploying Land, Infrastructure, Transport And
    Section 2 Measures, etc. against Aging Social Infrastructures Deploying Land, Infrastructure, Transport and Chapter 2 Tourism Administration Tailored to Urges of the Times II Chapter 2 Section 1 Driving the Implementation of a National Land Policy Package The implementation of a comprehensive national land policy package has been driven on the basis of a full package of Deploying Land, Infrastructure, Transport and Tourism Administration Tailored to Urges of the Times to Urges Administration Tailored and Tourism Transport Deploying Land, Infrastructure, measures designed to guide the work of national spatial land planning; namely, National Spatial Strategies (national plan) (2008 Cabinet decision), which envisions “the construction of a national land where diverse regional blocks develop autonomously and the creation of a beautiful national land where life is comfortable” as a new vision of national land, Global Regional Plans (2009 Minister decision), which summarize the regional strategies of the individual global blocks and the specific approaches they take to implement the strategies and the Fourth National Land Use Plan (national plan) (2008 Cabinet decision), which is committed to a key principle of sustainable land management. The implementation of these plans is being monitored from year to year to get them consolidated among the stakeholders concerned with National Spatial Strategies. About seven years since the formulation of National Spatial Strategies (national plan), Japan is confronted with drastic changes, such as intensifying competition between nations and cities in pace with progressive globalization and imminent possible threats from huge natural disasters, such as the Nankai Trough Mega Earthquake and Tokyo Inland Earthquake, as well as a rapidly shrinking population in an aging society with falling birthrates, with the population predicted to halve in about 60% of all the regions in 2050 and elderly people accounting for about 40% of the total population.
    [Show full text]
  • Volcano Monitoring
    Nov. 1st, 2018 JPTM2018 Volcano Monitoring Location : Sakurajima Date : Jan. 2, 2013 Camera : Canon EOS 60D F number : 5.6 Shutter speed : 30 seconds ISO : 800 Photographer : JMA expert 1 Today’s topics HOW CAN WE USE ALOS-2 DATA FOR MONITORING VOLCANOES? 2 Active Volcanoes in Japan • 111 active volcanoes (Active volcanoes: it erupted within 10,000 years) • 5 volcanoes erupted this year (Kusatsu -Shiranesan, Kirishimayama (Shinmoedake, Iwo-yama crater), Nishinoshima, Sakurajima, Suwanosejima ) • 50 volcanoes are continuously monitored. circle: active volcanoes, red-triangle: erupted this year 3 Volcanic Observation and Warning Center Continuous Observation stations Seismometer GNSS Tiltmeter Camera Remote sensing Volcanic Observation and Warning Center offline data Volcanic Observation and Information System(VOIS) Information Schema of volcanic process Warning/ Multi Volcanic activity Unrest/anomaly ・Local Governments ・Mass media Monitoring and Analysis × × × ・Public × × × × × × Quick Evaluation Web Site online Collaborative Work Coordinating reference Committee for Prediction of Past events DB Volcanic Eruption JMA Experts Mobile PC Local Governments Explanation 4 Advantages of ALOS-2(PALSAR-2) data GNSS ALOS-2 data Observed Land-covering Coordinate of point data deformation Equipment Need to built NOT need to built on land observation stations observation stations In spite of isolated islands or activated volcanoes where we can’t access, volcanic activities are monitored. ~In Emergency situation~ Detect volcanic unrest/anomalies JAXA judges schedules of ALOS-2 observation JMA orders JAXA take an emergency observation data an emergency observation (originally planned observation cancelled) 5 Kusatsu-Shiranesan volcano Erupted on Jan. 23th, 2018 • Kusatsu-Shiranesan is an active volcanone which has 3 pyroclastic cones. • Yugama is the most active crater of Kusatsu-Shiranesan.
    [Show full text]
  • Dr. Scott A. Shaffer UCSC Agreement No. 12170-‐B-‐G104 Final Report
    Dr. Scott A. Shaffer UCSC Agreement No. 12170-B-G104 Final Report Federal Agency: US Fish & Wildlife Service Agreement No: 12170-B-G104 Project Title: Behavioral, Dietary, And Demographic Responses Of Hawaiian Albatrosses To Environmental Change PI Contact: Dr. Scott A. Shaffer Tel: 408 924 4871 Email: [email protected] Submission Date: 16 May 2014 DUNS: 125084723 EIN Number: 94-1539563 Recipient Organization: Institute of Marine Sciences University of California Santa Cruz CA 95060-5730 Project/Grant Period: 01 October 2011 to 30 January 2014 Reporting Period End Date: 30 April 2014 Project Cost: $77,867 Signature of Submitting Official: Dr. Scott A. Shaffer UCSC Agreement No. 12170-B-G104 2. PUBLIC SUMMARY: Pelagic seabirds (albatrosses and petrels) find food by relying on distinct oceanographic features like transition zones, upwelling, and large eddies. These oceanographic features change intensity, distribution, and duration during El Niño/La Niña events resulting in poor breeding performance in seabirds. Climate models predict that these perturbations will last longer, be more variable, and in some cases, cause major shifts in oceanographic regimes. We analyzed our decade-long dataset of tracked Laysan and black-footed albatrosses (N = 192 individual trips) the breed in the Northwest Hawaiian Islands to investigate the mechanistic role that oceanography plays in affecting the foraging distributions and its subsequent feedback on breeding performance in albatrosses. We compared the total distance traveled, maximum foraging range, trip duration, and the distribution of albatrosses in each year to the distance of the Transition Zone Chlorophyll Front (TZCF) and found that albatrosses traveled farther and for significantly longer durations when the TZCF was greater than 700 km from the colony.
    [Show full text]