A Story About Albatross

Total Page:16

File Type:pdf, Size:1020Kb

A Story About Albatross A Story About Albatross Tracking their Travels and Tracking Plastic Trash © Sophie Webb 2004 This is a story about tracking albatross and tracking plastic trash. In particular, this story is about the dark albatross (right side of image) – this is the Black-footed albatross. These birds criss-cross the entire Pacific Ocean like you and I criss-cross our backyards! 1 “If we didn’t clean our shorelines, where could the litter go?” “How can your coastal clean- up efforts benefit these unique birds?” These are two important questions to think about during this presentation. 2 Seabird Diversity H. Nevins J.Harvey Alcid WWW.nzbirds.com Penguin Pelican Petrel H. Nevins Four main orders of seabirds: Sphenisciformes - Penguins Procellariiformes – Albatrosses, Shearwaters, Fulmars, & Petrels Pelecaniformes - Pelicans, Cormorants, Boobies, Frigate birds Charadriiformes - Gulls, Terns, & Alcids There are 4 main orders of seabirds: Sphenisciformes, Procellariiformes, Pelecaniformes, and Charadriiformes. Seabirds that belong to the order Procellariiformes are among the most pelagic and far-ranging of seabirds that occur in all the oceans. This story is about seabirds from this group. 3 Seabird Feeding Methods FEEDERS Plunging (Ashmole 1971) Seabirds feed in three main ways: (1) they collect food items from the surface, (2) they plunge to capture submerged prey, and (3) they use their wings and feet to fly or swim underwater. The foraging methods of seabirds influence their ability to gather different types of prey and marine debris (e.g., floating versus sinking). Whereas most plastics float on the surface, other types may float deeper down in the water column. Thus, not all the debris that sinks at the surface ends up in the bottom of the sea. When a sinking piece of debris reaches a layer of water whose density matches its own, it becomes neutrally bouyant (not sinking, but merely floating suspended in the water column). Therefore, this debris drifts passively in the water column, where diving turtles and seabirds can encounter it. 4 What is a seabird? © J. Adams Diagram credit: © W.Henry Lars Löfgren Seabirds make their living on the ocean; what makes them unique? They only come to land to breed and often do so on remote islands, where they form dense colonies; most species lay one egg and raise one chick; return to breed at island where they were hatched; they are long-lived (e.g., Albatross >80 yrs, shearwaters >50 years). The most important point is that these birds depend exclusively on the ocean through-out their lives. To contend with excess salt taken in by drinking and feeding, seabirds have their own desalinization systems in the form of glands of various shapes and sizes that lie in shallow depressions in or above the eye socket. The excess salt extracted from the blood by these glands passes as a concentrated solution through ducts into the nasal cavity and is eliminated through the nostrils in liquid form. 5 Black-footed albatross Laysan albatross Photo credit: P.Pyle Albatrosses are monogamous; they start arriving at nest sites (NW Hawaiian Islands) in mid-Oct; begin dancing and perform ritualized displays accompanied by distinct vocalizations; they have elaborate courtship displays and form long-term pair-bonds. The function of all the dancing is to help form and reinforce the pair bonds. They go through an “engagement” period of a yearr or longer; and some even build a mock nest. They eventually start breeding at age of 7-10 years old; they come together every year and a bird will take a new mate only if its partner dies or disappears; they return to the precise nesting spot (within a few meters); about 75% breed annually; lay a single egg by early November; the female returns to sea for 2-3 days after laying and the male incubates egg; develop oval area of bare skin; brood patch; male on nest first; doesn’t eat or leave the nest for 18-23 days; chick hatches late January /early February, 63-68 days after laying; chick is guarded by one parent that take turns for 2-3 weeks; then both male / female go to sea after 4 weeks; leave chick for a few days and as long as two weeks and visit chick to feed it 6 Unique characteristic of Procellariiformes? • Tubular nostrils – often called “tube-nosed seabirds” •Leach’s storm petrel – excellent example showing the nostrips on the top of the bill, merged into a single tube divided by a vertical septum. The prominence of the tube varies between species and its function is uncertain – it may aid in olfaction; smell is exceptionally good in many procellariiforms. 7 Black-footed albatross Sophie Webb Hyrenbach This is the Black-footed albatross, a wondrous ocean wanderer, which migrates thousands of miles across the North Pacific Ocean. With a 7 ft wingspan it can fly for hours and perhaps days, without ever flapping its wings because it flies so efficiently. They use the power of the wind, and can cover vast areas of the North Pacific using very little energy by using a process called ‘dynamic soaring’ – whereby they use uplift from the waves to gain lift (and potential energy) – which they they convert into momentum (speed). 8 WhatWhat makes makesseabirds vulnerable? seabirds vulnerable? • Long-line and other fishery interactions • Oiling from oil spills Ebbert • Threats at colonies: introduced mammals, habitat destruction Photo: W. Henry • Marine debris Because many species of seabirds are long-lived and far-ranging, and depend exclusively on the ocean through-out their lives, they are thus susceptible to human activities on their colonies and at-sea. There are 4 major sources of seabird morality: (1) long-line and other fishery interactions – in particular Albatross are attracted to fishing vessels and are often entangled in baited hooks, and drown – can result in injury or death by drowning; (2) oiling from oil spills; (3) predation at colonies from introduced mammals such as rats and cats; and (4) habitat destruction and degradation – including marine debris at-sea. 9 What are some threats to seabirds? • entanglement Entanglement is an obvious problem associated with marine debris. Sooty shearwaters (upper left photo) are affected by marine debris on their long journey from their nesting areas in New Zealand, Australia, and South America to waters off central California. Common murres and other diving seabirds often get entangled and killed by marine debris. Many other species of marine life are also affected by entanglement including fishes, marine mammals, and sea turtles. 10 What makes seabirds vulnerable?• Plastic ingestion Photo: Cynthia Vanderlip Another less conspicuous impact of marine debris is plastic ingestion. Seabirds eat plastic. This is a photo of a dead albatross chick with a stomach full of plastic debris – note the amount of bottle caps, the comb, and the toy car wheel. 11 Seabirds most susceptible to plastic ingestion Saenz • Black-footed and Laysan Albatross Webb Saenz • Northern fulmar Three factors influence the incidence of seabird ingestion of plastics: (1) foraging mode, (2) habitat use and (3) body size. Far-ranging species that feed opportunistically at the sea surface are most susceptible to plastic ingestion. Three examples are the BFAL, LAAL, and NOFU. Surface feeders have a greater rate of plastic ingestion and also ingest greater proportions of user plastic. Diving birds also eat plastic but are not as susceptible as surface feeders. Oceanic species - which commonly range over vast areas in search of broadly- distributed prey – seem more prone to plastic ingestion that coastal species – which target dense aggregations of fish and zooplankton prey. Finally, because larger seabirds consume larger prey items, large-bodies species often ingest larger plastic fragments. 12 This photo shows Laysan albatross chicks (red arrows) waiting patiently for their parents to return to feed them. Chicks will wait for as long as two weeks at a time, while the male / female travel thousands of kilometers to find food for themselves and their chicks. 13 Photo credit: Kinnan When the parent returns, it regurgitates whatever it has collected at sea in an oily slurry, into the chick’s mouth. 14 Should contain: •50% fish •32% squid •5% crustaceans •10% stomach oil (Harrison et al. 1983 Fry 1987) Photo credit: Kinnan When chicks get ready to fledge (leave the nest site) they regurgitate a bolus, a compacted mass of indigestible material that should contain fish parts, squid beaks and hard parts of crustaceans. 15 Analysis of Albatross Chick Boluses • Kure Atoll, Hawaiian Island Chain (Kinan 2000) – Analyzed 144 boluses from Laysan and Black-footed albatrosses – Plastic found in every single one (100%) The contents of boluses provide an index of ocean health – like a barometer. Seabirds are excellent indicators of the state of marine ecosystems and of impacts from human activities, which can reach far from land. Kinan did a study in Kure Atoll in 1999-2000 and found plastic in all 144 Black-footed and Laysan albatross boluses she examined. 16 Photo: C. Vanderlip This is a photo of the contents of a dissected bolus. How many plastic items can you identify? 17 Effects of plastic ingestion? • Large plastic items – ulcerations, infection & obstruction • Small plastic items – reduce meal size, dehydration Long-term effects of plastic ingestion? • Leaching of toxic chemicals from the plastic ? • Lower breeding success ? The incidence of plastic ingestion in many long-lived species is an emerging ecological issues on a global scale. Plastic ingestion studies (Sievert & Sileo 1993, Ludwig et al. 1998), have revealed several short and long term effects of plastic ingestion: -Chicks eat less and grow weak; plastic ingestion can result in gut obstruction and lesions, diminished feeding stimulus due to satiation and low fledging weights. -Adults regurgitate large objects to their young, however objects may be too large for chick to regurgitate until it reaches fledging stage.
Recommended publications
  • Plumage Variation and Hybridization in Black-Footed and Laysan Albatrosses
    PlumaDevariation and hybridizationin Black-footedand LaysanAlbatrosses Tristan McKee P.O. Box631 Ferndale,California 95536 (eraall:bertmckee•yahoo.com) PeterPyle 4990Shoreline Highway SUnsonBeach, California 94970 (email:[email protected]) INTRODUCTION Black-footed(Phoebastria nigripes) and Laysan (P. immutabilis) Albatrosses nest sideby sidein denseisland colonies. Their breeding populations center in the northwesternHawaiian Islands, with smaller colonies scattered across the subtrop- icalNorth Pacific. Both species visit nutrient-rich waters off the west coast of North Americathroughout the year to forage. Black-footeds concentrate in coastal waters fromnorthern California tosouthern Alaska, while Laysans frequent more offshore andnortherly waters in thisregion. Bkders on pelagic trips off the West Coast often encountersignificant numbers of oneor bothof thesespecies, and searching for other,rarer albatrosses among them has proven to be a worthwhile pursuit in recen! years(Stallcup and Terrill 1996, Cole 2000). Albatrossesidentified as Black-looted x Laysan hybrids have been seen and studiedon MidwayAtoll and other northwestern Hawaiian Islands since the late 1800s(Rothschild 1900, Fisher 1948, 1972). In addition,considerable variation in appearanceis found within both species, indMduals with strikinglyaberrant plumageand soft part colors occasionally being encountered (Fisher 1972, Whittow 1993a).Midway Atoll hosts approximately two-thirds of the world'sbreeding A presumedhybrid Laysan x Black-lootedAlbatross tends a chickat Midway LaysanAlbatrosses
    [Show full text]
  • 156 Glossy Ibis
    Text and images extracted from Marchant, S. & Higgins, P.J. (co-ordinating editors) 1990. Handbook of Australian, New Zealand & Antarctic Birds. Volume 1, Ratites to ducks; Part B, Australian pelican to ducks. Melbourne, Oxford University Press. Pages 953, 1071-1 078; plate 78. Reproduced with the permission of Bird life Australia and Jeff Davies. 953 Order CICONIIFORMES Medium-sized to huge, long-legged wading birds with well developed hallux or hind toe, and large bill. Variations in shape of bill used for recognition of sub-families. Despite long legs, walk rather than run and escape by flying. Five families of which three (Ardeidae, Ciconiidae, Threskiornithidae) represented in our region; others - Balaenicipitidae (Shoe-billed Stork) and Scopidae (Hammerhead) - monotypic and exclusively Ethiopian. Re­ lated to Phoenicopteriformes, which sometimes considered as belonging to same order, and, more distantly, to Anseriformes. Behavioural similarities suggest affinities also to Pelecaniformes (van Tets 1965; Meyerriecks 1966), but close relationship not supported by studies of egg-white proteins (Sibley & Ahlquist 1972). Suggested also, mainly on osteological and other anatomical characters, that Ardeidae should be placed in separate order from Ciconiidae and that Cathartidae (New World vultures) should be placed in same order as latter (Ligon 1967). REFERENCES Ligon, J.D. 1967. Occas. Pap. Mus. Zool. Univ. Mich. 651. Sibley, C. G., & J.E. Ahlquist. 1972. Bull. Peabody Mus. nat. Meyerriecks, A.J. 1966. Auk 83: 683-4. Hist. 39. van Tets, G.F. 1965. AOU orn. Monogr. 2. 1071 Family PLATALEIDAE ibises, spoonbills Medium-sized to large wading and terrestial birds. About 30 species in about 15 genera, divided into two sub­ families: ibises (Threskiornithinae) and spoonbills (Plataleinae); five species in three genera breeding in our region.
    [Show full text]
  • Behavior and Attendance Patterns of the Fork-Tailed Storm-Petrel
    BEHAVIOR AND ATTENDANCE PATTERNS OF THE FORK-TAILED STORM-PETREL THEODORE R. SIMONS Wildlife Science Group, Collegeof Forest Resources, University of Washington, Seattle, Washington 98195 USA ABSTRACT.--Behavior and attendance patterns of breeding Fork-tailed Storm-Petrels (Ocea- nodromafurcata) were monitored over two nesting seasonson the Barren Islands, Alaska. The asynchrony of egg laying and hatching shown by these birds apparently reflects the influence of severalfactors, including snow conditionson the breedinggrounds, egg neglectduring incubation, and food availability. Communication between breeding birds was characterized by auditory and tactile signals.Two distinct vocalizationswere identified, one of which appearsto be a sex-specific call given by males during pair formation. Generally, both adults were present in the burrow on the night of egg laying, and the male took the first incubation shift. Incubation shiftsranged from 1 to 5 days, with 2- and 3-day shifts being the most common. Growth parameters of the chicks, reproductive success, and breeding chronology varied considerably between years; this pre- sumably relates to a difference in conditions affecting the availability of food. Adults apparently responded to changes in food availability during incubation by altering their attendance patterns. When conditionswere good, incubation shifts were shorter, egg neglectwas reduced, and chicks were brooded longer and were fed more frequently. Adults assistedthe chick in emerging from the shell. Chicks became active late in the nestling stage and began to venture from the burrow severaldays prior to fledging. Adults continuedto visit the chick during that time but may have reducedthe amountof fooddelivered. Chicks exhibiteda distinctprefledging weight loss.Received 18 September1979, accepted26 July 1980.
    [Show full text]
  • The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
    山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships.
    [Show full text]
  • Tube-Nosed Seabirds) Unique Characteristics
    PELAGIC SEABIRDS OF THE CALIFORNIA CURRENT SYSTEM & CORDELL BANK NATIONAL MARINE SANCTUARY Written by Carol A. Keiper August, 2008 Cordell Bank National Marine Sanctuary protects an area of 529 square miles in one of the most productive offshore regions in North America. The sanctuary is located approximately 43 nautical miles northwest of the Golden Gate Bridge, and San Francisco California. The prominent feature of the Sanctuary is a submerged granite bank 4.5 miles wide and 9.5 miles long, which lay submerged 115 feet below the ocean’s surface. This unique undersea topography, in combination with the nutrient-rich ocean conditions created by the physical process of upwelling, produces a lush feeding ground. for countless invertebrates, fishes (over 180 species), marine mammals (over 25 species), and seabirds (over 60 species). The undersea oasis of the Cordell Bank and surrounding waters teems with life and provides food for hundreds of thousands of seabirds that travel from the Farallon Islands and the Point Reyes peninsula or have migrated thousands of miles from Alaska, Hawaii, Australia, New Zealand, and South America. Cordell Bank is also known as the albatross capital of the Northern Hemisphere because numerous species visit these waters. The US National Marine Sanctuaries are administered and managed by the National Oceanic and Atmospheric Administration (NOAA) who work with the public and other partners to balance human use and enjoyment with long-term conservation. There are four major orders of seabirds: 1) Sphenisciformes – penguins 2) *Procellariformes – albatross, fulmars, shearwaters, petrels 3) Pelecaniformes – pelicans, boobies, cormorants, frigate birds 4) *Charadriiformes - Gulls, Terns, & Alcids *Orders presented in this seminar In general, seabirds have life histories characterized by low productivity, delayed maturity, and relatively high adult survival.
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • LAYSAN ALBATROSS Phoebastria Immutabilis
    Alaska Seabird Information Series LAYSAN ALBATROSS Phoebastria immutabilis Conservation Status ALASKA: High N. AMERICAN: High Concern GLOBAL: Vulnerable Breed Eggs Incubation Fledge Nest Feeding Behavior Diet Nov-July 1 ~ 65 d 165 d ground scrape surface dip fish, squid, fish eggs and waste Life History and Distribution Laysan Albatrosses (Phoebastria immutabilis) breed primarily in the Hawaiian Islands, but they inhabit Alaskan waters during the summer months to feed. They are the 6 most abundant of the three albatross species that visit 200 en Alaska. l The albatross has been described as the “true nomad ff Pok e of the oceans.” Once fledged, it remains at sea for three to J ht ig five years before returning to the island where it was born. r When birds are eight or nine years old they begin to breed. y The breeding season is November to July and the rest of Cop the year, the birds remain at sea. Strong, effortless flight is commonly seen in the southern Bering Sea, Aleutian the key to being able to spend so much time in the air. The Islands, and the northwestern Gulf of Alaska. albatross takes advantage of air currents just above the Nonbreeders may remain in Alaska throughout the year ocean's waves to soar in perpetual fluid motion. It may not and breeding birds are known to travel from Hawaii to flap its wings for hours, or even for days. The aerial Alaska in search of food for their young. Albatrosses master never touches land outside the breeding season, but have the ability to concentrate the food they catch and it does rest on the water to feed and sleep.
    [Show full text]
  • Albatross Or Mōlī (Phoebastria Immutabilis) Black-Footed Albatross Or Ka’Upu (Phoebastria Nigripes) Short-Tailed Albatross (Phoebastria Albatrus)
    Hawaiian Bird Conservation Action Plan Focal Species: Laysan Albatross or Mōlī (Phoebastria immutabilis) Black-footed Albatross or Ka’upu (Phoebastria nigripes) Short-tailed Albatross (Phoebastria albatrus) Synopsis: These three North Pacific albatrosses are demographically similar, share vast oceanic ranges, and face similar threats. Laysan and Black-footed Albatrosses nest primarily in the Northwestern Hawaiian Islands, while the Short-tailed Albatross nests mainly on islands near Japan but forages extensively in U.S. waters. The Short-tailed Albatross was once thought to be extinct but its population has been growing steadily since it was rediscovered in 1951 and now numbers over 3,000 birds. The Laysan is the most numerous albatross species in the world with a population over 1.5 million, but its trend has been hard to determine because of fluctuations in number of breeding pairs. The Black-footed Albatross is one-tenth as numerous as the Laysan and its trend also has been difficult to determine. Fisheries bycatch caused unsustainable mortality of adults in all three species but has been greatly reduced in the past 10-20 years. Climate change and sea level rise are perhaps the greatest long-term threat to Laysan and Black-footed Albatrosses because their largest colonies are on low-lying atolls. Protecting and creating colonies on higher islands and managing non-native predators and human conflicts may become keys to their survival. Laysan, Black-footed, and Short-tailed Albatrosses (left to right), Midway. Photos Eric VanderWerf Status
    [Show full text]
  • BLACK-BROWED ALBATROSS THALASSARCHE Melanophrys FEEDING on a WILSON’S STORM-PETREL OCEANITES OCEANICUS
    Seco Pon & Gandini: Wilson’s Storm-Petrel consumed by albatross 77 BLACK-BROWED ALBATROSS THALASSARCHE melanophrys FEEDING ON A WILSON’S STORM-PETREL OCEANITES OCEANICUS JUAN P. SECO PON1,2 & PATRICIA A. GANDINI1,3 1Centro de Investigaciones de Puerto Deseado, Universidad Nacional de la Patagonia Austral–Unidad Académica Caleta Olivia, cc 238 Av. Prefectura, s/n (9050), Puerto Deseado Santa Cruz, Argentina ([email protected]) 2Current address: Av. Colón 1908 8o L, Mar del Plata (7600), Buenos Aires, Argentina 3Consejo Nacional de Investigaciones Científicas y Técnicas and Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York, New York, 10460, USA Received 4 April 2007, accepted 10 November 2007 The diet of Black-browed Albatross Thalassarche melanophrys has in the stomachs of albatrosses. Although in general, penguins tend been studied at several sub-Antarctic colonies (e.g. Ridoux 1994, to be recorded more frequently, prions Pachyptila spp. and diving- Reid et al. 1996, Xavier et al. 2003) and found to consist mainly of petrels Pelecanoides spp. also occur in the diet of albatrosses in the fish, cephalopods and crustaceans. Although this albatross species Southern Ocean. Thus, the occurrence of small seabirds, such as travels vast distances during the non-breeding season (Croxall the Wilson’s Storm-Petrel, in the diet of Black-browed Albatrosses & Wood 2002), the types of food taken remain similar, although is not surprising. prey species and percentages tend to vary (Xavier et al. 2003, Gandini et al. unpubl.). Nevertheless, other prey items—such ACKnowledgements as seabirds, chiefly Spheniscidae and Pelecanoididae (Cherel & Klages 1997) and terns Sterna spp.
    [Show full text]
  • Cytochrome-B Evidence for Validity and Phylogenetic Relationships of Pseudobulweria and Bulweria (Procellariidae)
    The Auk 115(1):188-195, 1998 CYTOCHROME-B EVIDENCE FOR VALIDITY AND PHYLOGENETIC RELATIONSHIPS OF PSEUDOBULWERIA AND BULWERIA (PROCELLARIIDAE) VINCENT BRETAGNOLLE,•'5 CAROLE A3VFII•,2 AND ERIC PASQUET3'4 •CEBC-CNRS, 79360 Beauvoirsur Niort, France; 2Villiers en Bois, 79360 Beauvoirsur Niort, France; 3Laboratoirede ZoologieMammi•res et Oiseaux,Museum National d'Histoire Naturelie, 55 rue Buffon,75005 Paris, France; and 4Laboratoirede Syst•matiquemol•culaire, CNRS-GDR 1005, Museum National d'Histoire Naturelie, 43 rue Cuvier, 75005 Paris, France ABSTRACT.--Althoughthe genus Pseudobulweria was described in 1936for the Fiji Petrel (Ps.macgillivrayi), itsvalidity, phylogenetic relationships, and the number of constituenttaxa it containsremain controversial. We tried to clarifythese issues with 496bp sequencesfrom the mitochondrialcytochrome-b gene of 12 taxa representingthree putative subspecies of Pseudobulweria,seven species in six othergenera of the Procellariidae(fulmars, petrels, and shearwaters),and onespecies each from the Hydrobatidae(storm-petrels) and Pelecanoidi- dae (diving-petrels).We alsoinclude published sequences for two otherpetrels (Procellaria cinereaand Macronectesgiganteus ) and use Diomedeaexulans and Pelecanuserythrorhynchos as outgroups.Based on thepronounced sequence divergence (5 to 5.5%)and separate phylo- genetichistory from othergenera that havebeen thought to be closelyrelated to or have beensynonymized with Pseudobulweria,we conclude that the genusis valid, and that the MascarenePetrel (Pseudobulweria aterrima)
    [Show full text]
  • The Winter Diet of the Great-Winged Petrel Pterodroma Macroptera at Sub-Antarctic Marion Island in 1991
    Cooper & Klages: Winter diet of the Great-winged Petrel 261 THE WINTER DIET OF THE GREAT-WINGED PETREL PTERODROMA MACROPTERA AT SUB-ANTARCTIC MARION ISLAND IN 1991 JOHN COOPER1 & NORBERT T.W. KLAGES2 1Animal Demography Unit, Department of Zoology, University of Cape Town, Rondebosch, 7701, South Africa ([email protected]) 253 Clarendon Street, Mount Pleasant, Port Elizabeth, 6070, South Africa Received 11 June 2008, accepted 24 December 2008 SUMMARY COOPER, J. & KLAGES, N.T.W. 2009. The winter diet of the Great-winged Petrel Pterodroma macroptera at sub-Antarctic Marion Island in 1991. Marine Ornithology 37: 261–263. The diet of winter-breeding Great-winged Petrels Pterodroma macroptera was studied at sub-Antarctic Marion Island, Prince Edward Islands, southern Indian Ocean in August–October 1991 by multiple stomach flushing of weighed chicks after parental feeding. The Great-winged Petrel at Marion Island may be described as a cephalopod specialist, because squid formed the larger part of the diet in terms of diversity, frequency of occurrence and contribution by mass, and were the largest prey items taken. Fish and crustaceans formed relatively minor parts of the diet. These findings are broadly in accord with those of three previous quantitative studies at the same and other localities. Key words: Great-winged Petrel, Pterodroma macroptera, cephalopods, Marion Island, diet INTRODUCTION visited at irregular intervals in the evenings and later at night, and any chicks that had gained at least 10 g because of a parental feed Seabirds are important “top predators” in the Southern Ocean, and over this time period were subjected to multiple stomach-flushing.
    [Show full text]
  • Relative Passage Rates of Lipid and Aqueous Digesta in the Formation of Stomach Oils
    RELATIVE PASSAGE RATES OF LIPID AND AQUEOUS DIGESTA IN THE FORMATION OF STOMACH OILS DANIEL D. ROBY,• KAREN L. BRINK,2 AND ALLEN R. PLACE3 •CooperativeWildlife Research Laboratory and Department of Zoology, SouthernIllinois University, Carbondale, Illinois 62901 USA, 2P.O. Box 571, Carbondale,Illinois 62903 USA, and 3Centerof MarineBiotechnology, University of Maryland,Baltimore, Maryland 21202 USA ABSTRACT.--Weused tritium-labeled glycerol triether as a nonabsorbablelipid-phase mark- er and carbon-14labeled polyethylene glycol as a nonabsorbableaqueous-phase marker to examine gastrointestinaltransit of a homogenized fish meal fed to 4-week-old chicks of AntarcticGiant-Petrels (Macronectes giganteus) and GentooPenguins (Pygoscelis papua). Both aqueous-phaseand lipid-phase markers passedthrough the gastrointestinaltract without being metabolized.Label recoveries from the two specieswere statisticallyindistinguishable. Mean retention time was significantlylonger for lipid-phasecomponents than for aqueous- phasecomponents in both species.In the petrel, mean retention time for lipid-phaseand for aqueous-phasewas significantlylonger than in the penguin. Interspecificdifferences in retention were largely the result of differing ratesof gastricemptying. Both markersemptied rapidly from the proventriculusand gizzard of the penguins,while in giant-petrelsthe lipid- phase was retained for extended periods in the stomach.Differential transit of lipid and aqueousphases coupled with the lower rate of gastricemptying in giant-petrelchicks provides a physiologicalbasis for accumulationof dietary lipids in the proventriculus. The large, distensibleproventriculus and the ventral positionof the pyloric valve relative to the gizzard and proventriculusare morphologicaltraits which enhance the formation and retention of stomachoils. Received31 May 1988,accepted 19 December1988. OFall avian internal organs,the range of mor- (Matthews 1949, Duke et al. 1989). In other birds phologicalvariation in the stomachis the great- the much smaller proventriculus is cranial to est.
    [Show full text]