Large Pelagic Seabirds: Picture of Bird

Total Page:16

File Type:pdf, Size:1020Kb

Large Pelagic Seabirds: Picture of Bird Large Pelagic seabirds: Picture Albatrosses, Mollymawks & Giant Petrels of bird For idenDficaon and species info refer to: www.nzbirdsonline.org.nz Introduc4on Ecology and life history New Zealand has the highest diversity of Normal adult weight range: Adult Buller’s mollymawks can weigh as albatrosses and mollymawks with 12 liNle as 2.5kg while the Southern Royal Albatross can weigh up to species that breed on NZ's sub-antarcDc 10kg. Due to the variability of normal weight ranges between species islands and 7 endemic species. It is unlikely and within species it is recommended to calculate doses based on that large numbers of these birds would be individual body weights. effected during a single oil spill event Moult: Gradual, mostly during their non-breeding year but conDnues unless it occurs near a breeding colony. into breeding. Biennial wing moult - outer primaries one year, inner Although albatrosses are in the group primaries the next year. commonly called "tubenoses", they differ Breeding: All albatross species and the grey-headed mollymawk from other tubenose families in that their produce a single young every two years. Incubang and rearing a chick tube-shaped nostrils are separated and takes 1 year and then take one year to recover. located on either side of the bill. All birds The other mollymawk species and the two giant petrel species breed in the order Procellariformes (including once a year, usually from August to May. petrels and shearwaters) have three front- Lifespan: Long-lived facing toes with webbing. Diet: Water surface scavengers Personal protecve equipment (PPE): Appropriate PPE must be worn when capturing and handling oiled wildlife to prevent exposure to oil (disposable nitrile gloves, safety glasses/goggles, protecDon for clothing e.g. Tyvec suit). Old towels or blue inconDnence pads are useful to handle oiled birds as they can be discarded once soiled. Capture Handling Consider the safety of both humans and birds. Wear thick protecDve gloves (eg. Gardwell® Garden Masonary These large birds require a run up and winds of at gloves from Bunnings) to protect hands from sharp edges of bill. least 20km/h in order to take off and therefore These birds are in the group called "tubenoses". They have when an oiled bird is stranded on land they are external nostrils on the top surface of the bill and therefore they relavely easy to approach and capture. Ensure can breathe when their bill is closed. that someone is standing between the bird and Their bill can be restrained by grasping the water to prevent them from entering it. Birds above with fingers and below with the on land can be captured by hand using a large thumb, ensuring that the nostrils are not towel to restrain the bird's wings and cover the covered (pictured). Use a large towel to head or using a long-handled fishing net. If the restrain wings and legs and tuck the bird is sing on water use a large long-handled body under the arm while holding the net. This group of birds will oden regurgitate bill in the other hand. Handling for stomach oil as a defense mechanism. Take care feeding is best done with two people - not to get oil on feathers. one to restrain and one to feed. Transport to WARNING – NEVER place your eyes close to holes in transport boxes. Herons, gannets & cormorants will lunge at eyes causing serious injury or blindness. facility Transport box: made of plasDc (NOT wood) as oil contaminaon can be cleaned and the box reused. Best opDon is an PetPak carrier: Model PP90, XXXXXL, 77(W) x 131(L) x 85(H) cm ONE bird per box Flooring: Correct flooring in the transport box is important. It should (i) be sod and non-abrasive in order to prevent development of bumblefoot during transport, (ii) be non-slip so that the bird can steady itself and (iii) prevent build up of faecal maer that can cause urate burns. Blue-tube rubber mang covered with blue inconDnence pads or a suspended neng floor are the best opDons. Folded newspaper is inappropriate as it becomes too slippery when contaminated by faeces. Shredded paper, straw, hay and seagrass should be avoided as it increases the risk of Aspergillosis Vehicle transport: van or ute, with canopy and a separate air space from people to prevent inhalaon of oil fumes. Ideally temperature controlled (heang on cold days, cooling on hot days). Large pelagic seabirds HUSBANDRY REQUIREMENTS Housing keep indoors and temperature controlled at 25-27°C because oiled animals cannot thermoregulate. pre-cleaning The area must be well venDlated to disperse the oil fumes. (oiled) Enclosure: • keep in temperature controlled rooms. • Enclosures should be large enough to allow birds to stretch their wings. Minimum recommended dimensions are 6 (length) x 3 (width) x 2 (height) meters. • If room is very large then build temporary aviaries with a roof. Ensure walls of temporary enclosure are made of materials that can easily be cleaned of oil such as plasDc or metal, not wood. Examples of suitable walls include temporary metal fencing with walls and roof lined with shade cloth to prevent damage to feathers. Ensure metal fencing is not galvanised with zinc or lead as this could lead to heavy metal poisoning if the birds chew on the fence. • Only ONE bird per room/aviary as they can be very aggressive toward each other. • Reduce visibility of humans and noise to minimise stress. Flooring • Best opDon is fine (0.5cm) non-knoNed coNon neng using PVC pipe as a frame and suspended at least 15cm above floor. • Alternavely blue tube mang can be used (available at hardware stores) • Correct flooring is very important to prevent uric acid and faecal buildup which can cause feather damage and bumblefoot. • Avoid oil coming into contact with a concrete floor as it is very difficult to clean. Line floor with heavy duty plasDc sheets (e.g. pond liner or large garbage bags) then place neng or tube mang on top. Housing Enclosure: post-cleaning • Outdoor aviary with shade cloth covering the roof and walls. Large enough to allow them to stretch their wings. Minimum recommended dimensions are 6 (length) x 3 (width) x 2m (height). (no oil) Flooring • Blue tube mang on floor to prevent uric acid and faecal buildup and bumblefoot. NOTE: grey tube flooring is harder than the blue version which increases risk of bumblefoot. Burrows • Hides are not necessary as they do not normally burrow. Solitary • Albatrossess and mollymawks are generally solitary birds and only come together during the breeding season. Therefore they are best housed separately. Pool • Seabirds in the rehabilitaon phase need access to water in their enclosure to aid waterproofing. • Suitable pool types: built-in, large plasDc containers or plasDc (non-inflatable) child’s pool. • Non-slip ramps to allow easy access and exit of water. • Preferably use seawater, but freshwater can be used. If using freshwater then provide birds with a salt supplement in order to maintain salt glands (see “Supplements” secDon). • No need to heat pool water. • ConDnuous flow of water is required to prevent buildup of fish oil and faeces on the surface of the water which inhibits the waterproofing process. This is most easily achieved by placing a hose above the pool allowing the running water to break the surface of the pool water and leng it overflow. Good drainage around the pool is required. Transport As per handling instrucDons. within facility If bird is oiled then appropriate PPE must be worn to prevent oil exposure. Use large towels for restraint and dispose if contaminated with oil. Cover head to reduce visual sDmuli and stress. IdenDficaon Leg band (temporary idenDficaon to be removed before release) Large pelagic seabirds NUTRITION, SUPPLEMENTS and FLUIDS At admission Triage assessment: physical examinaon by trained personnel (preferably a veterinarian) Record cloacal temperature. Give fluids at ini-al stabilisa-on rates below. FOOT PROTECTION ON ARRIVAL: Large pelagic seabirds are parDcularly vulnerable to pressure sores on their feet because they normally rest on water rather than land. The weight of their heavy body when dry-docked can cause pressure sores to develop within a few hours. To prevent bumblefoot, bandage both feet on arrival: 1st layer non- adherent gauze dressing on plantar surface, 2nd layer 3-5mm thick foam sheeDng cut to shape of foot on plantar surface, 3rd layer sodban, 4th layer vet wrap. Change bandages every 2-3 days depending on degree of soiling. Fluid rate IniDal stabilisaon: 80-100ml/kg BW/day divided into two doses PO Once hydrated: 60-70ml/kg BW/day divided into two doses PO Fluid type Large pelagic seabirds are highly suscepDble to salt gland atrophy and hyponatremia. For long term maintenance give 3% saline solu4on (30g/L) OR isotonic fluids WITH salt supplements Amount Feed 10% of body weight (BW) TWICE a day. (i.e. 20% of body weight total each day) Food type If weak, emaciated and dehydrated: Give oral electrolyte fluids at ‘iniDal stabilisaon’ rate listed above for 24 hours to rehydrate gut. Use either: Equal parts (50:50) Hartmann’s soluDon and 2.5% dextrose in 0.45% saline 5% dextrose in 0.9% saline or Vytrate®/Lectade® Once gut is hydrated, then start with small amounts of fish slurry. If able to take solids: human grade small whole salmon or large salmon cut into pieces. Food Fish slurry: Place human grade salmon in heavy duty blender and blend. Add just enough isotonic preparaon (0.9% NaCl) fluid to blender to achieve a smooth consistency. Sieve slurry using a metal sieve to remove any chunks that may clog the feeding tube.
Recommended publications
  • NSW Vagrant Bird Review
    an atlas of the birds of new south wales and the australian capital territory Vagrant Species Ian A.W. McAllan & David J. James The species listed here are those that have been found on very few occasions (usually less than 20 times) in NSW and the ACT, and are not known to have bred here. Species that have been recorded breeding in NSW are included in the Species Accounts sections of the three volumes, even if they have been recorded in the Atlas area less than 20 times. In determining the number of records of a species, when several birds are recorded in a short period together, or whether alive or dead, these are here referred to as a ‘set’ of records. The cut-off date for vagrant records and reports is 31 December 2019. As with the rest of the Atlas, the area covered in this account includes marine waters east from the NSW coast to 160°E. This is approximately 865 km east of the coast at its widest extent in the south of the State. The New South Wales-Queensland border lies at about 28°08’S at the coast, following the centre of Border Street through Coolangatta and Tweed Heads to Point Danger (Anon. 2001a). This means that the Britannia Seamounts, where many rare seabirds have been recorded on extended pelagic trips from Southport, Queensland, are east of the NSW coast and therefore in NSW and the Atlas area. Conversely, the lookout at Point Danger is to the north of the actual Point and in Queensland but looks over both NSW and Queensland marine waters.
    [Show full text]
  • SEABIRDS RECORDED at the CHATHAM ISLANDS, 1960 to MAY 1993 by M.J
    SEABIRDS RECORDED AT THE CHATHAM ISLANDS, 1960 TO MAY 1993 By M.J. IMBER Science and Research Directorate, Department of Conservation, P. 0. Box 10420, Wellington ABSTRACT Between 1960 and hlay 1993,62 species of seabirds were recorded at Chatham Islands, including 43 procellariiforms, 5 penguins, 5 pelecaniforms, and 9 hi.Apart &om the 24 breeding species, there were 14 regular visitors, 13 stragglers, 2 rarely seen on migration, and 9 found only beach-cast or as other remains. There is considerable endemism: 8 species or subspecies are confined, or largely confined, to breeding at the Chathams. INTRODUCTION The Chatham Islands (44OS, 176.5OW) are about 900 km east of New Zealand, and 560 km and 720 km respectively north-east of Bounty and Antipodes Islands. The Chatham Islands lie on the Subtropical Convergence (Fleming 1939) - the boundary between subtropical and subantarctic water masses; near the eastern end of the Chatham Rise - a shallow (4'500 m) submarine ridge extending almost to the New Zealand mainland. Chatham Island seabirds can feed over large areas of four marine habitats: the continental shelf of the Chatham Rise; the continental slope around it; and subtropical and subantarctic waters to the north, east, and south. The Chatham Islands' fauna and flora have, however, been very adversely affected by human colonisation for about 500 years (B. McFadgen, pers. cornrn.). Knowledge of the seabird fauna of the Chatham Islands gained up to 1960 is siunmarised in Oliver (1930), Fleming (1939), Dawson (1955, 1973), and papers quoted therein. The present paper summarises published and unpublished data on the seabirds of the archipelago from 1960 to May 1993, from when visits to these islands depended on infrequent passages by ship from Lyttelton, South Island, to the present, when a visit involves a 2-h scheduled flight from Napier, Wellington, or Christchurch, six dayslweek.
    [Show full text]
  • Evaluating Threats to New Zealand Seabirds Report for the Department of Conservation
    Evaluating threats to New Zealand seabirds Report for the Department of Conservation Authors: Edward Abraham Yvan Richard Katherine Clements PO Box 27535, Wellington 6141 New Zealand dragonfly.co.nz Cover Notes To be cited as: Abraham, Edward; Yvan Richard; Katherine Clements (2016). Evaluating threats to New Zealand seabirds, 19 pages. Report for the Department of Conservation. Crown copyright © This report is licensed for re-use under a Creative Commons Aribution 3.0 New Zealand Licence. This allows you to distribute, use, and build upon this work, provided credit is given to the original source. Cover image: hps://www.flickr.com/photos/4nitsirk/16121373851 EXECUTIVE SUMMARY The New Zealand Department of Conservation is developing a seabird threat framework, “to beer understand, and manage, at-sea threats to our seabirds”. This framework will allow the impact of threats on seabird populations to be qualitatively assessed, and will be used to prioritise a programme of seabird population monitoring. As a first stage in developing the framework, a database of demographic parameters and threats was prepared. In this project, a process was estab- lished for reviewing and synthesising this information. The demographic parameters were then used to develop an online tool, which allowed for the impact of changes in parameters on population growth rates to be assessed. In the future, this tool will allow the impact of current and potential threats on seabird populations to be promptly explored. The process was trialled on the 12 albatross taxa recognised
    [Show full text]
  • The Winter Diet of the Great-Winged Petrel Pterodroma Macroptera at Sub-Antarctic Marion Island in 1991
    Cooper & Klages: Winter diet of the Great-winged Petrel 261 THE WINTER DIET OF THE GREAT-WINGED PETREL PTERODROMA MACROPTERA AT SUB-ANTARCTIC MARION ISLAND IN 1991 JOHN COOPER1 & NORBERT T.W. KLAGES2 1Animal Demography Unit, Department of Zoology, University of Cape Town, Rondebosch, 7701, South Africa ([email protected]) 253 Clarendon Street, Mount Pleasant, Port Elizabeth, 6070, South Africa Received 11 June 2008, accepted 24 December 2008 SUMMARY COOPER, J. & KLAGES, N.T.W. 2009. The winter diet of the Great-winged Petrel Pterodroma macroptera at sub-Antarctic Marion Island in 1991. Marine Ornithology 37: 261–263. The diet of winter-breeding Great-winged Petrels Pterodroma macroptera was studied at sub-Antarctic Marion Island, Prince Edward Islands, southern Indian Ocean in August–October 1991 by multiple stomach flushing of weighed chicks after parental feeding. The Great-winged Petrel at Marion Island may be described as a cephalopod specialist, because squid formed the larger part of the diet in terms of diversity, frequency of occurrence and contribution by mass, and were the largest prey items taken. Fish and crustaceans formed relatively minor parts of the diet. These findings are broadly in accord with those of three previous quantitative studies at the same and other localities. Key words: Great-winged Petrel, Pterodroma macroptera, cephalopods, Marion Island, diet INTRODUCTION visited at irregular intervals in the evenings and later at night, and any chicks that had gained at least 10 g because of a parental feed Seabirds are important “top predators” in the Southern Ocean, and over this time period were subjected to multiple stomach-flushing.
    [Show full text]
  • Relative Passage Rates of Lipid and Aqueous Digesta in the Formation of Stomach Oils
    RELATIVE PASSAGE RATES OF LIPID AND AQUEOUS DIGESTA IN THE FORMATION OF STOMACH OILS DANIEL D. ROBY,• KAREN L. BRINK,2 AND ALLEN R. PLACE3 •CooperativeWildlife Research Laboratory and Department of Zoology, SouthernIllinois University, Carbondale, Illinois 62901 USA, 2P.O. Box 571, Carbondale,Illinois 62903 USA, and 3Centerof MarineBiotechnology, University of Maryland,Baltimore, Maryland 21202 USA ABSTRACT.--Weused tritium-labeled glycerol triether as a nonabsorbablelipid-phase mark- er and carbon-14labeled polyethylene glycol as a nonabsorbableaqueous-phase marker to examine gastrointestinaltransit of a homogenized fish meal fed to 4-week-old chicks of AntarcticGiant-Petrels (Macronectes giganteus) and GentooPenguins (Pygoscelis papua). Both aqueous-phaseand lipid-phase markers passedthrough the gastrointestinaltract without being metabolized.Label recoveries from the two specieswere statisticallyindistinguishable. Mean retention time was significantlylonger for lipid-phasecomponents than for aqueous- phasecomponents in both species.In the petrel, mean retention time for lipid-phaseand for aqueous-phasewas significantlylonger than in the penguin. Interspecificdifferences in retention were largely the result of differing ratesof gastricemptying. Both markersemptied rapidly from the proventriculusand gizzard of the penguins,while in giant-petrelsthe lipid- phase was retained for extended periods in the stomach.Differential transit of lipid and aqueousphases coupled with the lower rate of gastricemptying in giant-petrelchicks provides a physiologicalbasis for accumulationof dietary lipids in the proventriculus. The large, distensibleproventriculus and the ventral positionof the pyloric valve relative to the gizzard and proventriculusare morphologicaltraits which enhance the formation and retention of stomachoils. Received31 May 1988,accepted 19 December1988. OFall avian internal organs,the range of mor- (Matthews 1949, Duke et al. 1989). In other birds phologicalvariation in the stomachis the great- the much smaller proventriculus is cranial to est.
    [Show full text]
  • REVIEWS Edited by J
    REVIEWS Edited by J. M. Penhallurick BOOKS A Field Guide to the Seabirds of Britain and the World by is consistent in the text (pp 264 - 5) but uses Fleshy-footed Gerald Tuck and Hermann Heinzel, 1978. London: Collins. (a bette~name) in the map (p. 270). Pp xxviii + 292, b. & w. ills.?. 56-, col. pll2 +48, maps 314. 130 x 200 mm. B.25. Parslow does not use scientific names and his English A Field Guide to the Seabirds of Australia and the World by names follow the British custom of dropping the locally Gerald Tuck and Hermann Heinzel, 1980. London: Collins. superfluous adjectives, Thus his names are Leach's Storm- Pp xxviii + 276, b. & w. ills c. 56, col. pll2 + 48, maps 300. Petrel, with a hyphen, and Storm Petrel, without a hyphen; 130 x 200 mm. $A 19.95. and then the Fulmar, the Gannet, the Cormorant, the Shag, A Guide to Seabirds on the Ocean Routes by Gerald Tuck, the Kittiwake and the Puffin. On page 44 we find also 1980. London: Collins. Pp 144, b. & w. ills 58, maps 2. Storm Petrel but elsewhere Hydrobates pelagicus is called 130 x 200 mm. Approx. fi.50. the British Storm-Petrel. A fourth variation in names occurs on page xxv for Comparison of the first two of these books reveals a ridi- seabirds on the danger list of the Red Data Book, where culous discrepancy in price, which is about the only impor- Macgillivray's Petrel is a Pterodroma but on page 44 it is tant difference between them.
    [Show full text]
  • The Chatham Island Mollymawk (Diomedea Eremita) in Australia
    NOTORNIS 44 SHORT NOTE The Chatham Island Mollymawk (Diomedea eremita) in Australia The Chatham Island Mollymawk (Diomedea eremita) is generally considered either a rare vagrant, or occasional visitor, in southeast Australian waters (Marchant & Higgins 1990). There is only one previously published record of the species for Australia (Brothers & Davis 1985), despite many thousands of hours of ohsewations (Cox 1976; Barton 1979; Wood 1992; Reid et al. in press). On a world scale, Chatham Island Mollymawks are very rare, with 3-4,000 breeding pairs (Gales 1993; Tennyson et al. 1993), so an understanding of their distribution is important in order to study their ecological requirements, and potential threats to the populations. In this paper, two records from Australian waters are detailed, while all previous records are discussed. On 1February 1995 we observed a Chatham Island Mollymawk from the Australian Antarctic Division vessel the RV Aurora Australis. The ship was stationary conducting oceanographic experiments 23 nautical miles south of the Mewstone, off the south coast of Tasmania. The position was 44"07'S, 146"13'E, over water 1,000 m deep with a sea surface temperature of 15.1% and salinity of 35.18 ppt. A wind of 10 to 15 knots was blowing from the northwest. Many other albatrosses were attending the ship; these included 30 Wandering Albatrosses (D. exularzs), three Southern Royal Albatrosses (D. epomophora epomophora), one Northern Royal Albatross (D. e. sanfordi), 40 Shy Mollymawks (D. cauta cauta or D. c. steadi) and 30 New Zealand Black-browed Mollymawks (D. melanoph ys impavida). One Southern Buller's Mollymawk (D.
    [Show full text]
  • Feeding Ecology of Short-Tailed Shearwaters: Breeding in Tasmania and Foraging in the Antarctic?
    MARINE ECOLOGY PROGRESS SERIES Published June 18 Mar Ecol Prog Ser l Feeding ecology of short-tailed shearwaters: breeding in Tasmania and foraging in the Antarctic? Henri Weimerskirch*, Yves Cherel CEBC - CNRS, F-79360 Beauvoir, France ABSTRACT- The food, feedlng and physiological ecology of foraging were studied in the short-tailed shearwater Puffinus tenujrostris of Tasmania, to establish whether this species can rely on Antarctic food to fledge its chick. Parents were found to use a 2-fold foraging strategy, on average performing 2 successive short trips at sea of 1 to 2 d duration followed by 1 long trip of 9 to 17 d. These long foraging tnps are the longest yet recorded for any seabird. During short trips the parents tend to lose mass, feed- ing the chick with Australian krill and fish larvae caught in coastal and neritic waters around Tasma- nia. The prey are caught at maximum diving depths of 13 m on average (maximum 30 m).During long trips, adults gain mass and feed their chlcks with a very rich mixture of stomach oil and digested food composed of a high diversity of prey including myctophid fish, sub-Antarctic krill and squids. Prey are probably caught mainly in the Polar Frontal Zone, at least 1000 km south of Tasmania, at maximum depths of 58 m on average (maximum 71 m). Long foraging trips in distant southern waters gave at least twice the yield of trips in close waters but during the former, yield decreased with the time spent for- aging, as indicated by the inverse relationship between time spent forag~ngand adult body condition.
    [Show full text]
  • The Incidence, Functions and Ecological Significance of Petrel Stomach Oils
    84 PROCEEDINGS OF THE NEW ZEALAND ECOLOGICAL SOCIETY, VOL. 24, 1977 THE INCIDENCE, FUNCTIONS AND ECOLOGICAL SIGNIFICANCE OF PETREL STOMACH OILS JOHN WARHAM Department of Zoology, University of Canterbury, Chrb;tchurch SUMMARY: Recent research into the origins and compositions of the stomach oils unique to sea~birds of the order Procellariifonnes is reviewed. The sources of these oils, most of which contain mainly wax esters and/or trigIycerides, is discussed in relation to the presence of such compounds in the marine environment. A number of functions are proposed as the ecological roles of the oils, including their use as slowIy~mobilisable energy and water reserves for adults and chicks and as defensive weaponry for surface-nesting species. Suggestions are made for further research, particularly into physiological and nutritional aspects. INTRODUCTION their table, a balm for their wounds, and a medicine Birds of the Order Procellariiforrnes (albatrosses, for their distempers." In New Zealand, Travers and fuJmars, shearwaters and other petrels) are peculiar Travers (1873) described how the Chatham Island in being able to store oil in their large, glandular and Morioris held young petrels over their mouths and very distensible fore-guts or proventriculi.. All petrel allowed the oil to drain directly into them. In some spedes so far examined, with the significant excep- years the St Kildans exported part of thei.r oil har~ tion of the diving petrels, Fam. Pelecanoididae, have vest, as the Australian mutton-birders stilI do with been found to contain oil at various times. The oi.1 oil from the chicks of P. tenuirostris. This has been occurs in both adults and chicks, in breeders and used as a basis for sun~tan lotions, but most nowa- non~breeders, and in birds taken at sea and on land.
    [Show full text]
  • Intra- and Inter-Annual Breeding Season Diet of Leach's Storm-Petrel (Oceanodroma Leucorhoa) at a Colony in Southern Oregon
    INTRA- AND INTER-ANNUAL BREEDING SEASON DIET OF LEACH'S STORM-PETREL (OCEANODROMA LEUCORHOA) AT A COLONY IN SOUTHERN OREGON by MICHELLE ANDRIESE SCHUITEMAN A THESIS Presented to the Department ofBiology and the Graduate School ofthe University ofOregon in partial fulfillment ofthe requirements for the degree of Master ofScience December 2006 11 "Intra- and Inter-annual Breeding Season Diet ofLeach's Storm-petrel (Oceanodroma leucorhoa) at a Colony in Southern Oregon" a thesis prepared by Michelle Andriese Schuiteman in partial fulfillment ofthe requirments for the Master ofScience degree in the Department ofBiology. This thesis has been approved and accepted by: Date Committee in Charge: Dr Alan Shanks, Chair Dr. Jan Hodder Dr. William Sydeman Accepted by: Dean ofthe Graduate School 111 © 2006 Michelle Schuiteman lV An Abstract ofthe Thesis of Michelle Andriese Schuiteman for the degree of Master ofScience in the Department ofBiology to be taken December 2006 Title: INTRA- AND INTER-ANNUAL BREEDING SEASON DIET OF LEACH'S STORM-PETREL (OCEANODROMA LEUCORHOA) AT A COLONY IN SOUTHERN OREGON The oceanic habitat varies on multiple spatial and temporal scales. Aspects ofthe ecology oforganisms that utilize this habitat can, in certain cases, be used as indicators of ocean conditions. In this study, diet ofthe Leach's storm-petrel (Oceanodroma leucorhoa) is examined to determine ifevidence ofchanging ocean conditions can be found in the diet. Regurgitations were collected from the birds in order to describe diet. Euphausiids and fish composed 80 - 90% ofthe diet in both years, with composition of each diametrically different between years. Other items found in samples included . hyperiid and gammariid amphipods, cephalopods, plastic pieces and a new species of Cirolanid isopod.
    [Show full text]
  • SYN Seabird Curricul
    Seabirds 2017 Pribilof School District Auk Ecological Oregon State Seabird Youth Network Pribilof School District Ram Papish Consulting University National Park Service Thalassa US Fish and Wildlife Service Oikonos NORTAC PB i www.seabirdyouth.org Elementary/Middle School Curriculum Table of Contents INTRODUCTION . 1 CURRICULUM OVERVIEW . 3 LESSON ONE Seabird Basics . 6 Activity 1.1 Seabird Characteristics . 12 Activity 1.2 Seabird Groups . 20 Activity 1.3 Seabirds of the Pribilofs . 24 Activity 1.4 Seabird Fact Sheet . 26 LESSON TWO Seabird Feeding . 31 Worksheet 2.1 Seabird Feeding . 40 Worksheet 2.2 Catching Food . 42 Worksheet 2.3 Chick Feeding . 44 Worksheet 2.4 Puffin Chick Feeding . 46 LESSON THREE Seabird Breeding . 50 Worksheet 3.1 Seabird Nesting Habitats . .5 . 9 LESSON FOUR Seabird Conservation . 63 Worksheet 4.1 Rat Maze . 72 Worksheet 4.2 Northern Fulmar Threats . 74 Worksheet 4.3 Northern Fulmars and Bycatch . 76 Worksheet 4.4 Northern Fulmars Habitat and Fishing . 78 LESSON FIVE Seabird Cultural Importance . 80 Activity 5.1 Seabird Cultural Importance . 87 LESSON SIX Seabird Research Tools and Methods . 88 Activity 6.1 Seabird Measuring . 102 Activity 6.2 Seabird Monitoring . 108 LESSON SEVEN Seabirds as Marine Indicators . 113 APPENDIX I Glossary . 119 APPENDIX II Educational Standards . 121 APPENDIX III Resources . 123 APPENDIX IV Science Fair Project Ideas . 130 ii www.seabirdyouth.org 1 INTRODUCTION 2017 Seabirds SEABIRDS A seabird is a bird that spends most of its life at sea. Despite a diversity of species, seabirds share similar characteristics. They are all adapted for a life at sea and they all must come to land to lay their eggs and raise their chicks.
    [Show full text]
  • P0111-P0141.Pdf
    Vol,1950 67]J RecentLiterature 111 RECENT LITERATURE Catalogue of Birds of the Americas and the Adjacent Islands.--HELLMAYR, C•IARL•S E. and BOAm)M• CONOV•. Field Mus. Nat. Hist. Publ., Zool. Ser., vol. 13, pt. 1, no. 4: vi d- 358 pp., August 19, 1949.--The last part of this indispen- sable catalogue is devoted to the Falconiformes; it follows the plan which has been pursued throughout the seriessince Hellmayr took over after Cory's death and which is by now so familiar that further comment is superfluous. There are no innovations in classificationover current use except that the ospreyshave been awarded family rank; there are a few changes in nomenclature, perhaps the most important being the replacing of Polyborusby Caracara, it having been shown that the former genus is a synonym of Circus. Geranoaetusand Asturina are merged with Buteo; Urubi- tornis is swallowed up in Harpyhaliaetus; Urubitinga is restored at the expense of Hypomorphnus. One new name is proposed,Buteo nitidus blakei. The importance of the final part of the Birds of the Americas is overshadowedby the fact that it is the final part. This ambitious work was conceivedby the late Charles B. Cory, Curator of the Department of Zoology at the Field Museum of Natural History. The first part (really pt. II, no. 1) appeared in March, 1918, the second(pt. II, no. 2) on December 31, 1919. In November, 1920, Cory was stricken with partial paralysis and was unable to continue work at the Museum but worked at his home for a short time daily so that, at his death in July, 1921, a third part was ready for the printer and the manuscript of the fourth part was under way.
    [Show full text]