SYN Seabird Curricul
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Campbell Island Seabirds: Operation Endurance November 2019
Rexer-Huber et al. 2020 Campbell seabirds Campbell Island seabirds: Operation Endurance November 2019 Kalinka Rexer-Huber, Kevin A. Parker, Graham C. Parker April 2020 Department of Conservation, Marine Species and Threats project BCBC 2019-03: Campbell Island Seabird Research 1 Rexer-Huber et al. 2020 Campbell seabirds Campbell Island seabirds: Operation Endurance November 2019 Final report to Department of Conservation, Marine Species and Threats April 2020 Kalinka Rexer-Huber 1*, Kevin A. Parker 2 & Graham C. Parker 1 1 Parker Conservation, 126 Maryhill Terrace, Dunedin, New Zealand 2 Parker Conservation, PO Box 130, Warkworth 0941, New Zealand * Corresponding author: [email protected] Please cite as: Rexer-Huber K., Parker K.A., Parker G.C. 2020. Campbell Island seabirds: Operation Endurance November 2019. Final report to Marine Species and Threats, Department of Conservation. Parker Conservation, Dunedin. 23 p. 2 Rexer-Huber et al. 2020 Campbell seabirds Summary Seabird population monitoring and survey on Campbell Island was enabled via Operation Endurance in November 2019. Specific objectives were to collect photo-point and ground-truthing data at Campbell and grey-headed albatross colonies, repeat whole-island counts of breeding Northern giant petrels, collect GLS trackers from Southern royal albatrosses, use sound recorders to record burrowing petrel distribution and check the bands of all banded birds seen. Photo-points for Campbell albatross and grey-headed albatross (Thalassarche impavida and T. chrysostoma) were revisited to take a new set of photographs for population monitoring. These photo-points have been used for counts since 1987, but some colonies have been photographed since the 1940s. -
The Short-Tailed Shearwater: a Review of Its Biology
Corella, 1991 , 15(2): 45-52 A11srralasia11 Hird l?<'l'iews - N11111ber 3 THE SHORT-TAILED SHEARWATER: A REVIEW OF ITS BIOLOGY IRYNEJ SKIRA Department of Parks. Wiltllifc and Heritage, 134 Macquarie St.. Hobart. Tas 7000 {<eceived I May /990 The life history of the Short-tailed Shearwater Puffinus tenuirostris has been well documented since it first came to the attention of naturalists. Approximately 23 million birds breed in about 250 colonies in southeastern Australia from September to April. The Short-tailed Shearwater commences to breed when 4 to 15 years. During their completed lifetimes 27 per cent of all individuals produce no young and 19 per cent only one chick. Mortality is age-related with the median survival time for breeding being 9.3 years after first breeding. Many areas remain open for study, with a particular need for interdisciplinary research that includes oceanography. INTRODUCTION The Short-tailed Shearwater was one of the first Australian birds to be banded in large numbers The Short-tailed Shearwater Puffinustenuirostris, (Serventy 1957, 1961) and to be subjected to a commonly known as the Tasmanian muttonbird, long-term scientific study (Guiler et al. 1958). This is one of about I 00 species in the Procellarii study was commenced on Fisher Island in the formes. The diagno�tic feature of the order is the Furneaux Group of Tasmania in March 1947 by external nostrils produced into tubes extending Dominic Serventy formerly of the CSIRO onto the bill. Other distinctive features are the (Scrventy 1977) and continues to the present. 42 hooked and plated bill. -
Full Text in Pdf Format
Vol. 651: 163–181, 2020 MARINE ECOLOGY PROGRESS SERIES Published October 1 https://doi.org/10.3354/meps13439 Mar Ecol Prog Ser OPEN ACCESS Habitat preferences, foraging behaviour and bycatch risk among breeding sooty shearwaters Ardenna grisea in the Southwest Atlantic Anne-Sophie Bonnet-Lebrun1,2,3,8,*, Paulo Catry1, Tyler J. Clark4,9, Letizia Campioni1, Amanda Kuepfer5,6,7, Megan Tierny6, Elizabeth Kilbride4, Ewan D. Wakefield4 1MARE − Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal 2Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK 3Centre d’Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS — Université de Montpellier - Université Paul-Valéry Montpellier — EPHE, 34293 Montpellier cedex 5, France 4Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK 5FIFD — Falkland Islands Fisheries Department, Falkland Islands Government, PO Box 598, Stanley, Falkland Islands, FIQQ 1ZZ, UK 6SAERI — South Atlantic Environmental Research Institute, Stanley, Falkland Islands, FIQQ 1ZZ, UK 7Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK 8Present address: British Antarctic Survey, High Cross, Madingley Road, Cambridge CB4 0ET, UK 9Present address: Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA ABSTRACT: Pelagic seabirds are important components of many marine ecosystems. The most abundant species are medium/small sized petrels (<1100 g), yet the sub-mesoscale (<10 km) distri- bution, habitat use and foraging behaviour of this group are not well understood. Sooty shearwaters Ardenna grisea are among the world’s most numerous pelagic seabirds. -
Breeding Status and Population Trends of Seabirds in Alaska, 2014
BREEDING STATUS AND POPULATION TRENDS OF SEABIRDS IN ALASKA, 2014 U.S. FISH AND WILDLIFE SERVICE AMNWR 2015/03 BREEDING STATUS AND POPULATION TRENDS OF SEABIRDS IN ALASKA, 2014 Compiled By: Donald E. Dragoo, Heather M. Renner and David B. Ironsa Key words: Aethia, Alaska, Aleutian Islands, ancient murrelet, Bering Sea, black-legged kittiwake, Cepphus, Cerorhinca, Chukchi Sea, common murre, crested auklet, fork-tailed storm-petrel, Fratercula, Fulmarus, glaucous-winged gull, Gulf of Alaska, hatching chronology, horned puffin, Larus, Leach’s storm-petrel, least auklet, long-term monitoring, northern fulmar, Oceanodroma, parakeet auklet, pelagic cormorant, Phalacrocorax, pigeon guillemot, Prince William Sound, productivity, red-faced cormorant, red-legged kittiwake, rhinoceros auklet, Rissa, seabirds, Synthliboramphus, thick-billed murre, tufted puffin, Uria, whiskered auklet. U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, Alaska, USA 99603 February 2015 Cite as: Dragoo, D. E., H. M. Renner, and D. B. Irons. 2015. Breeding status and population trends of seabirds in Alaska, 2014. U.S. Fish and Wildlife Service Report AMNWR 2015/03. Homer, Alaska. aDragoo ([email protected]) and Renner ([email protected]), Alaska Maritime NWR, Homer; Irons ([email protected]), U. S. Fish and Wildlife Service, Migratory Bird Management, 1011 East Tudor Road, Anchorage, Alaska USA 99503 When using information from this report, data, results, or conclusions specific to a location(s) should not be used in other publications without first obtaining permission from the original contributor(s). Results and conclusions general to large geographic areas may be cited without permission. This report updates previous reports. -
Arctic Seabirds and Shrinking Sea Ice: Egg Analyses Reveal the Importance
www.nature.com/scientificreports OPEN Arctic seabirds and shrinking sea ice: egg analyses reveal the importance of ice-derived resources Fanny Cusset1*, Jérôme Fort2, Mark Mallory3, Birgit Braune4, Philippe Massicotte1 & Guillaume Massé1,5 In the Arctic, sea-ice plays a central role in the functioning of marine food webs and its rapid shrinking has large efects on the biota. It is thus crucial to assess the importance of sea-ice and ice-derived resources to Arctic marine species. Here, we used a multi-biomarker approach combining Highly Branched Isoprenoids (HBIs) with δ13C and δ15N to evaluate how much Arctic seabirds rely on sea-ice derived resources during the pre-laying period, and if changes in sea-ice extent and duration afect their investment in reproduction. Eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) were collected in the Canadian Arctic during four years of highly contrasting ice conditions, and analysed for HBIs, isotopic (carbon and nitrogen) and energetic composition. Murres heavily relied on ice-associated prey, and sea-ice was benefcial for this species which produced larger and more energy-dense eggs during icier years. In contrast, fulmars did not exhibit any clear association with sympagic communities and were not impacted by changes in sea ice. Murres, like other species more constrained in their response to sea-ice variations, therefore appear more sensitive to changes and may become the losers of future climate shifts in the Arctic, unlike more resilient species such as fulmars. Sea ice plays a central role in polar marine ecosystems; it drives the phenology of primary producers that con- stitute the base of marine food webs. -
Breeding Ecology and Extinction of the Great Auk (Pinguinus Impennis): Anecdotal Evidence and Conjectures
THE AUK A QUARTERLY JOURNAL OF ORNITHOLOGY VOL. 101 JANUARY1984 No. 1 BREEDING ECOLOGY AND EXTINCTION OF THE GREAT AUK (PINGUINUS IMPENNIS): ANECDOTAL EVIDENCE AND CONJECTURES SVEN-AXEL BENGTSON Museumof Zoology,University of Lund,Helgonavi•en 3, S-223 62 Lund,Sweden The Garefowl, or Great Auk (Pinguinusimpen- Thus, the sad history of this grand, flightless nis)(Frontispiece), met its final fate in 1844 (or auk has received considerable attention and has shortly thereafter), before anyone versed in often been told. Still, the final episodeof the natural history had endeavoured to study the epilogue deservesto be repeated.Probably al- living bird in the field. In fact, no naturalist ready before the beginning of the 19th centu- ever reported having met with a Great Auk in ry, the GreatAuk wasgone on the westernside its natural environment, although specimens of the Atlantic, and in Europe it was on the were occasionallykept in captivity for short verge of extinction. The last few pairs were periods of time. For instance, the Danish nat- known to breed on some isolated skerries and uralist Ole Worm (Worm 1655) obtained a live rocks off the southwesternpeninsula of Ice- bird from the Faroe Islands and observed it for land. One day between 2 and 5 June 1844, a several months, and Fleming (1824) had the party of Icelanderslanded on Eldey, a stackof opportunity to study a Great Auk that had been volcanic tuff with precipitouscliffs and a flat caught on the island of St. Kilda, Outer Heb- top, now harbouring one of the largestsgan- rides, in 1821. nettles in the world. -
Population Increases of Large Bird Species in Relation to Impact Standards for Aircraft Engines and Airframes
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service February 2002 POPULATION INCREASES OF LARGE BIRD SPECIES IN RELATION TO IMPACT STANDARDS FOR AIRCRAFT ENGINES AND AIRFRAMES Richard A. Dolbeer U.S. Department of Agriculture, National Wildlife Research Center Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Environmental Sciences Commons Dolbeer, Richard A., "POPULATION INCREASES OF LARGE BIRD SPECIES IN RELATION TO IMPACT STANDARDS FOR AIRCRAFT ENGINES AND AIRFRAMES" (2002). USDA National Wildlife Research Center - Staff Publications. 153. https://digitalcommons.unl.edu/icwdm_usdanwrc/153 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Dolbeer 1 POPULATION INCREASES OF LARGE BIRD SPECIES IN RELATION TO IMPACT STANDARDS FOR AIRCRAFT ENGINES AND AIRFRAMES By: Richard A. Dolbeer U.S. Department of Agriculture, National Wildlife Research Center, 6100 Columbus Avenue, Sandusky, Ohio 44870 USA Paul Eschenfelder Air Line Pilots Association, 16326 Cranwood, Spring, Texas, 77379 USA PRESENTED FOR THE 2002 FEDERAL AVIATION ADMINISTRATION TECHNOLOGY TRANSFER CONFERENCE 02/02 Dolbeer 2 ABSTRACT: Bird-aircraft collisions (bird strikes) are an increasing safety and economic concern to the USA civil aviation industry, costing over $400 million each year. One approach to reducing risks associated with strikes is to require commercial aircraft components to meet certain standards of safe performance in the event of a bird strike. -
A Guide to the Birds of Barrow Island
A Guide to the Birds of Barrow Island Operated by Chevron Australia This document has been printed by a Sustainable Green Printer on stock that is certified carbon in joint venture with neutral and is Forestry Stewardship Council (FSC) mix certified, ensuring fibres are sourced from certified and well managed forests. The stock 55% recycled (30% pre consumer, 25% post- Cert no. L2/0011.2010 consumer) and has an ISO 14001 Environmental Certification. ISBN 978-0-9871120-1-9 Gorgon Project Osaka Gas | Tokyo Gas | Chubu Electric Power Chevron’s Policy on Working in Sensitive Areas Protecting the safety and health of people and the environment is a Chevron core value. About the Authors Therefore, we: • Strive to design our facilities and conduct our operations to avoid adverse impacts to human health and to operate in an environmentally sound, reliable and Dr Dorian Moro efficient manner. • Conduct our operations responsibly in all areas, including environments with sensitive Dorian Moro works for Chevron Australia as the Terrestrial Ecologist biological characteristics. in the Australasia Strategic Business Unit. His Bachelor of Science Chevron strives to avoid or reduce significant risks and impacts our projects and (Hons) studies at La Trobe University (Victoria), focused on small operations may pose to sensitive species, habitats and ecosystems. This means that we: mammal communities in coastal areas of Victoria. His PhD (University • Integrate biodiversity into our business decision-making and management through our of Western Australia) -
Sea of Okhotsk: Seals, Seabirds and a Legacy of Sorrow
SEA OF OKHOTSK: SEALS, SEABIRDS AND A LEGACY OF SORROW Little known outside of Russia and seldom visited by westerners, Russia's Sea of Okhotsk dominates the Northwest Pacific. Bounded to the north and west by the Russian continent and the Kamchatka Peninsula to the east, with the Kuril Islands and Sakhalin Island guarding the southern border, it is almost landlocked. Its coasts were once home to a number of groups of indigenous people: the Nivkhi, Oroki, Even and Itelmen. Their name for this sea simply translates as something like the ‘Sea of Hunters' or ‘Hunters Sea', perhaps a clue to the abundance of wildlife found here. In 1725, and again in 1733, the Russian explorer Vitus Bering launched two expeditions from the town of Okhotsk on the western shores of this sea in order to explore the eastern coasts of the Russian Empire. For a long time this town was the gateway to Kamchatka and beyond. The modern make it an inhospitable place. However the lure of a rich fishery town of Okhotsk is built near the site of the old town, and little and, more recently, oil and gas discoveries means this sea is has changed over the centuries. Inhabitants now have an air still being exploited, so nothing has changed. In 1854, no fewer service, but their lives are still dominated by the sea. Perhaps than 160 American and British whaling ships were there hunting no other sea in the world has witnessed as much human whales. Despite this seemingly relentless exploitation the suffering and misery as the Sea of Okhotsk. -
Status and Occurrence of Parakeet Auklet (Aethia Psittacula) in British Columbia
Status and Occurrence of Parakeet Auklet (Aethia psittacula) in British Columbia. By Rick Toochin and Louis Haviland. Introduction and Distribution The Parakeet Auklet (Aethia psittacula) is a small species of auklet found breeding in the Beringia region of Alaska and Russia (Gaston and Jones 1998). This species has an Alaskan population estimated at 1 million birds (Gaston and Jones 1998). There is also a Russian population, but the exact population total is not known, due to a lack of population inventory work, but it is estimated to number about 400,000 birds with the vast majority, about 300,000 birds, found in the Sea of Okhotsk (Gaston and Jones 1998). The Parakeet Auklet has breeding colonies that are found on rocky mainland points and islands in the Gulf of Alaska (Jones et al. 2001). These sites include: Shumagin Island, Semidi Isand, Chirikof Island near Kodiak, locally in Kenai Peninsula and southeastern Alaska with small numbers south to St. Lazaria, Hazy and Forrester Island; and in the Aleutian Islands west to Buldir and Agattu Island; and in the Bering Sea at Little Diomede, St. Lawrence Island, King Island, St. Matthew Island, Pribilof Island and Nunivak Island (Sowls et al. 1978). The Parakeet Auklet also breeds in Russia in the Kurile Island chain with colonies on Chirinkontan, Lovushki, Raikoke, Matua, Yankicha, Simushir, Brat Chirpoev, Urup, and Iturup Island (Jones et al. 2001, Brazil 2009). They are also breeding on islands in the Sea of Okhotsk with colonies on Sakhalin, Tyuleniy, Iona, Talan, and Yamskyie Island (Jones et al. 2001, Brazil 2009). The Parakeet Auklet is also found breeding on Commander Island, and northwards locally along coast of the Kamchatka Peninsula, on Karaginski Island, Cape Navarin, and on Chukotka Peninsula (Konyukhov 1989, Kondratyev et al. -
Population Estimates and Temporal Trends of Pribilof Island Seabirds
POPULATION ESTIMATES AND TEMPORAL TRENDS OF PRIBILOF ISLAND SEABIRDS by F. Lance Craighead and Jill Oppenheim Alaska Biological Research P.O. BOX 81934 Fairbanks, Alaska 99708 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 628 November 1982 307 ACKNOWLEDGEMENTS Dan Roby and Karen Brink, University of Pennsylvania, Philadelphia, were especially helpful to us during our stay on St. George and shared their observations with us. Bob Day, University of Alaska, Fairbanks, also provided comparative data from his findings on St. George in 1981. We would like to thank the Aleut communities of St. George and St. Paul and Roger Gentry and other NMFS biologists on St. George for their hospitality and friendship. Bob Ritchie and Jim Curatolo edited an earlier version of this report. Mary Moran drafted the figures. Nancy Murphy and Patty Dwyer-Smith typed drafts of this report. Amy Reges assisted with final report preparation. Finally, we’d like to thank Dr. J.J. Hickey for initiating seabird surveys on the Pribi of Islands, which were the basis for this study. This study was funded by the Bureau of Land Management through interagency agreement with the National Oceanic and Atmospheric Administra- tion, as part of the Outer Continental Shelf Environmental Assessment Program. 308 TABLE OF CONTENTS ~ ACKNOWLEDGEMENTS. ● . ● . ● . ● . 308 EXECUTIVE SUMMARY . ✎ . ● ✎ . ● . ● ● . ✎ . ● ● . 311 INTRODUCTION. ✎ . ● ✎ . ✎ . ✎ ✎ . ● ✎ ● . ● ✎ . 313 STUDY AREA. ● . ✎ ✎ . ✎ . ✎ ✎ . ✎ ✎ ✎ . , . ● ✎ . ● . 315 METHODS . ● . ✎ -
Onetouch 4.0 Scanned Documents
/ Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.