Turbulent-Prandtl-Number.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Convection Heat Transfer
Convection Heat Transfer Heat transfer from a solid to the surrounding fluid Consider fluid motion Recall flow of water in a pipe Thermal Boundary Layer • A temperature profile similar to velocity profile. Temperature of pipe surface is kept constant. At the end of the thermal entry region, the boundary layer extends to the center of the pipe. Therefore, two boundary layers: hydrodynamic boundary layer and a thermal boundary layer. Analytical treatment is beyond the scope of this course. Instead we will use an empirical approach. Drawback of empirical approach: need to collect large amount of data. Reynolds Number: Nusselt Number: it is the dimensionless form of convective heat transfer coefficient. Consider a layer of fluid as shown If the fluid is stationary, then And Dividing Replacing l with a more general term for dimension, called the characteristic dimension, dc, we get hd N ≡ c Nu k Nusselt number is the enhancement in the rate of heat transfer caused by convection over the conduction mode. If NNu =1, then there is no improvement of heat transfer by convection over conduction. On the other hand, if NNu =10, then rate of convective heat transfer is 10 times the rate of heat transfer if the fluid was stagnant. Prandtl Number: It describes the thickness of the hydrodynamic boundary layer compared with the thermal boundary layer. It is the ratio between the molecular diffusivity of momentum to the molecular diffusivity of heat. kinematic viscosity υ N == Pr thermal diffusivity α μcp N = Pr k If NPr =1 then the thickness of the hydrodynamic and thermal boundary layers will be the same. -
A Two-Layer Turbulence Model for Simulating Indoor Airflow Part I
Energy and Buildings 33 +2001) 613±625 A two-layer turbulence model for simulating indoor air¯ow Part I. Model development Weiran Xu, Qingyan Chen* Department of Architecture, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA 02139, USA Received 2 August 2000; accepted 7 October 2000 Abstract Energy ef®cient buildings should provide a thermally comfortable and healthy indoor environment. Most indoor air¯ows involve combined forced and natural convection +mixed convection). In order to simulate the ¯ows accurately and ef®ciently, this paper proposes a two-layer turbulence model for predicting forced, natural and mixed convection. The model combines a near-wall one-equation model [J. Fluid Eng. 115 +1993) 196] and a near-wall natural convection model [Int. J. Heat Mass Transfer 41 +1998) 3161] with the aid of direct numerical simulation +DNS) data [Int. J. Heat Fluid Flow 18 +1997) 88]. # 2001 Published by Elsevier Science B.V. Keywords: Two-layer turbulence model; Low-Reynolds-number +LRN); k±e Model +KEM) 1. Introduction This paper presents a new two-layer turbulence model that performs two tasks: 1.1. Objectives 1. It can accurately predict flows under various conditions, i.e. from purely forced to purely natural convection. This Energy ef®cient buildings should provide a thermally model allows building ventilation designers to use one comfortable and healthy indoor environment. The comfort single model to calculate flows instead of selecting and health parameters in indoor environment include the different turbulence models empirically from many distributions of velocity, air temperature, relative humidity, available models. and contaminant concentrations. These parameters can be 2. -
Chapter 5 Dimensional Analysis and Similarity
Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences. -
Turbulent Prandtl Number and Its Use in Prediction of Heat Transfer Coefficient for Liquids
Nahrain University, College of Engineering Journal (NUCEJ) Vol.10, No.1, 2007 pp.53-64 Basim O. Hasan Chemistry. Engineering Dept.- Nahrain University Turbulent Prandtl Number and its Use in Prediction of Heat Transfer Coefficient for Liquids Basim O. Hasan, Ph.D Abstract: eddy conductivity is unspecified in the case of heat transfer. The classical approach for obtaining the A theoretical study is performed to determine the transport mechanism for the heat transfer problem turbulent Prandtl number (Prt ) for liquids of wide follows the laminar approach, namely, the momentum range of molecular Prandtl number (Pr=1 to 600) and thermal transport mechanisms are related by a under turbulent flow conditions of Reynolds number factor, the Prandtl number, hence combining the range 10000- 100000 by analysis of experimental molecular and eddy viscosities one obtain the momentum and heat transfer data of other authors. A Boussinesq relation for shear stress: semi empirical correlation for Prt is obtained and employed to predict the heat transfer coefficient for du the investigated range of Re and molecular Prandtl ( ) 1 number (Pr). Also an expression for momentum eddy m dy diffusivity is developed. The results revealed that the Prt is less than 0.7 and is function of both Re and Pr according to the following relation: and the analogous relation for heat flux: Prt=6.374Re-0.238 Pr-0.161 q dT The capability of many previously proposed models of ( h ) 2 Prt in predicting the heat transfer coefficient is c p dy examined. Cebeci [1973] model is found to give good The turbulent Prandtl number is the ratio between the accuracy when used with the momentum eddy momentum and thermal eddy diffusivities, i.e., Prt= m/ diffusivity developed in the present analysis. -
Analysis of Mass Transfer by Jet Impingement and Heat Transfer by Convection
Analysis of Mass Transfer by Jet Impingement and Study of Heat Transfer in a Trapezoidal Microchannel by Ejiro Stephen Ojada A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department of Mechanical Engineering University of South Florida Major Professor: Muhammad M. Rahman, Ph.D. Frank Pyrtle, III, Ph.D. Rasim Guldiken, Ph.D. Date of Approval: November 5, 2009 Keywords: Fully-Confined Fluid, Sherwood number, Rotating Disk, Gadolinium, Heat Sink ©Copyright 2009, Ejiro Stephen Ojada i TABLE OF CONTENTS LIST OF FIGURES ii LIST OF SYMBOLS v ABSTRACT viii CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 1 1.1 Introduction (Mass Transfer by Jet Impingement ) 1 1.2 Literature Review (Mass Transfer by Jet Impingement) 2 1.3 Introduction (Heat Transfer in a Microchannel) 7 1.4 Literature Review (Heat Transfer in a Microchannel) 8 CHAPTER 2: ANALYSIS OF MASS TRANSFER BY JET IMPINGEMENT 15 2.1 Mathematical Model 15 2.2 Numerical Simulation 19 2.3 Results and Discussion 21 CHAPTER 3: ANALYSIS OF HEAT TRANSFER IN A TRAPEZOIDAL MICROCHANNEL 42 3.1 Modeling and Simulation 42 3.2 Results and Discussion 48 CHAPTER 4: CONCLUSION 65 REFERENCES 67 APPENDICES 79 Appendix A: FIDAP Code for Analysis of Mass Transfer by Jet Impingement 80 Appendix B: FIDAP Code for Fluid Flow and Heat Transfer in a Composite Trapezoidal Microchannel 86 i LIST OF FIGURES Figure 2.1a Confined liquid jet impingement between a rotating disk and an impingement plate, two-dimensional schematic. 18 Figure 2.1b Confined liquid jet impingement between a rotating disk and an impingement plate, three-dimensional schematic. -
Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar
Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma Mahendra K. Verma Department of Physics, Indian Institute of Technology, Kanpur 208016, India November 12, 2018 Abstract In this paper we have estimated typical anomalous viscosity, re- sistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [Verma et al., 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron’s thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of mag- nitude higher than those calculated earlier using classical transport theories of Braginskii. In this paper we have also estimated the eddy turbulent viscosity. arXiv:chao-dyn/9509002v1 5 Sep 1995 1 1 Introduction The solar wind is a collisionless plasma; the distance travelled by protons between two consecutive Coulomb collisions is approximately 3 AU [Barnes, 1979]. Therefore, the dissipation in the solar wind involves wave-particle interactions rather than particle-particle collisions. For the observational evidence of the wave-particle interactions in the solar wind refer to the review articles by Gurnett [1991], Marsch [1991] and references therein. Due to these reasons for the calculations of transport coefficients in the solar wind, the scales of wave-particle interactions appear more appropriate than those of particle-particle interactions [Braginskii, 1965]. Note that the viscosity in a turbulent fluid is scale dependent. -
Prandtl Number and Thermoacoustic Refrigerators M
Prandtl number and thermoacoustic refrigerators M. E. H. Tijani, J. C. H. Zeegers, and A. T. A. M. de Waele Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ͑Received 28 November 2001; revised 25 April 2002; accepted 4 May 2002͒ From kinetic gas theory, it is known that the Prandtl number for hard-sphere monatomic gases is 2/3. Lower values can be realized using gas mixtures of heavy and light monatomic gases. Prandtl numbers varying between 0.2 and 0.67 are obtained by using gas mixtures of helium–argon, helium–krypton, and helium–xenon. This paper presents the results of an experimental investigation into the effect of Prandtl number on the performance of a thermoacoustic refrigerator using gas mixtures. The measurements show that the performance of the refrigerator improves as the Prandtl number decreases. The lowest Prandtl number of 0.2, obtained with a mixture containing 30% xenon, leads to a coefficient of performance relative to Carnot which is 70% higher than with pure helium. © 2002 Acoustical Society of America. ͓DOI: 10.1121/1.1489451͔ PACS numbers: 43.35.Ud, 43.35.Ty ͓RR͔ I. INTRODUCTION while compressing and expanding. The interaction of the moving gas in the stack with the stack surface generates heat The basic understanding of the physical principles un- transport.2 A detailed description of the refrigerator can be derlying the thermoacoustic effect is well established and has found in the literature.3,6 been discussed in many papers.1,2 However, a quantitative experimental investigation of the effect of some important parameters on the behavior of the thermoacoustic devices is II. -
Turbulence, Entropy and Dynamics
TURBULENCE, ENTROPY AND DYNAMICS Lecture Notes, UPC 2014 Jose M. Redondo Contents 1 Turbulence 1 1.1 Features ................................................ 2 1.2 Examples of turbulence ........................................ 3 1.3 Heat and momentum transfer ..................................... 4 1.4 Kolmogorov’s theory of 1941 ..................................... 4 1.5 See also ................................................ 6 1.6 References and notes ......................................... 6 1.7 Further reading ............................................ 7 1.7.1 General ............................................ 7 1.7.2 Original scientific research papers and classic monographs .................. 7 1.8 External links ............................................. 7 2 Turbulence modeling 8 2.1 Closure problem ............................................ 8 2.2 Eddy viscosity ............................................. 8 2.3 Prandtl’s mixing-length concept .................................... 8 2.4 Smagorinsky model for the sub-grid scale eddy viscosity ....................... 8 2.5 Spalart–Allmaras, k–ε and k–ω models ................................ 9 2.6 Common models ........................................... 9 2.7 References ............................................... 9 2.7.1 Notes ............................................. 9 2.7.2 Other ............................................. 9 3 Reynolds stress equation model 10 3.1 Production term ............................................ 10 3.2 Pressure-strain interactions -
Numerical Calculations of Two-Dimensional Large Prandtl Number Convection in a Box
J. Fluid Mech. (2013), vol. 729, pp. 584–602. c Cambridge University Press 2013 584 doi:10.1017/jfm.2013.330 Numerical calculations of two-dimensional large Prandtl number convection in a box J. A. Whitehead1,†, A. Cotel2, S. Hart3, C. Lithgow-Bertelloni4 and W. Newsome5 1Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 2Civil and Environmental Engineering Department, University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109, USA 3Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 4Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK 5Geological Sciences Department, University of Michigan, 1100 North University Avenue, Ann Arbor, MI 48109, USA (Received 30 August 2012; revised 17 June 2013; accepted 22 June 2013; first published online 24 July 2013) Convection from an isolated heat source in a chamber has been previously studied numerically, experimentally and analytically. These have not covered long time spans for wide ranges of Rayleigh number Ra and Prandtl number Pr. Numerical calculations of constant viscosity convection partially fill the gap in the ranges Ra 103–106 and Pr 1; 10; 100; 1000 and . Calculations begin with cold fluid everywhereD and localizedD hot temperature at1 the centre of the bottom of a square two-dimensional chamber. For Ra > 20 000, temperature increases above the hot bottom and forms a rising plume head. The head has small internal recirculation and minor outward conduction of heat during ascent. The head approaches the top, flattens, splits and the two remnants are swept to the sidewalls and diffused away. -
Huq, P. and E.J. Stewart, 2008. Measurements and Analysis of the Turbulent Schmidt Number in Density
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L23604, doi:10.1029/2008GL036056, 2008 Measurements and analysis of the turbulent Schmidt number in density stratified turbulence Pablo Huq1 and Edward J. Stewart2 Received 18 September 2008; revised 27 October 2008; accepted 3 November 2008; published 3 December 2008. [1] Results are reported of measurements of the turbulent where rw is the buoyancy flux, uw is the Reynolds shear Schmidt number Sct in a stably stratified water tunnel stress. The ratio Km/Kr is termed the turbulent Schmidt experiment. Sct values varied with two parameters: number Sct (rather than turbulent Prandtl number) as Richardson number, Ri, and ratio of time scales, T*, of salinity gradients in water are used for stratification in the eddy turnover and eddy advection from the source of experiments. Prescription of a functional dependence of Sct turbulence generation. For large values (T* 10) values on Ri = N2/S2 is a turbulence closure scheme [Kantha and of Sct approach those of neutral stratification (Sct 1). In Clayson, 2000]. Here the buoyancy frequency N is defined 2 contrast for small values (T* 1) values of Sct increase by the gradient of density r as N =(Àg/ro)(dr/dz), and g is with Ri. The variation of Sct with T* explains the large the gravitational acceleration. S =dU/dz is the velocity scatter of Sct values observed in atmospheric and oceanic shear. Analyses of field, lab and numerical (RANS, DNS data sets as a range of values of T* occur at any given Ri. and LES) data sets have led to the consensus that Sct The dependence of Sct values on advective processes increases with Ri [see Esau and Grachev, 2007, and upstream of the measurement location complicates the references therein]. -
The Influence of Prandtl Number on Free Convection in a Rectangular Cavity
hr. J. Heor Mm\ Transfer. Vol. 24, pp. 125-131 0017-93lO/8ljOlOl-0125SOsoZ.OO/O 0 Pergamon Press Ltd. 1981. Printed in GreatBritain THE INFLUENCE OF PRANDTL NUMBER ON FREE CONVECTION IN A RECTANGULAR CAVITY W. P. GRAEBEL Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI. 48109, U.S.A. (Receioed 19 May 1980) Abstract-Natural convection in a rectangular cavity is considered for the problem where one vertical wall is heated and the other is cooled. The boundary layer flow is solved using a modified Oseen technique in a manner similar to Gill’s solution. Temperature and velocity profiles in the core, and the Nusselt number, are found as functions of the Rayleigh and Prandtl numbers and the length ratio. The solution indicates that for a Prandtl number less than l/7, a midsection shear layer develops. NOMENCLATURE more reasonable matching condition and obtained overall Nusselt numbers which are in good agreement C, constant of integration; with available experimental and numerical heat- 9, gravitational constant ; transfer data. H, cavity height; The present note generalizes Gill’s results for arbit- K = (Pr - l)/(Pr + 1); rary values of the Prandtl number, so that the small L, cavity length; Prandtl number limit, suitable for liquid metals, can Nu, Nusselt number ; pressure; also be obtained. The method of Bejan is used in P? evaluating the constant of integration which appears Pr, Prandtl number ; in the solution. 49 =2u,/v2 (K + 1)3; Q, total heat flux; BASIC ASSUMPTIONS Ra, = jlgL3(TL - T&q Rayleigh number; The height of the cavity is taken as H and the T, temperature; horizontal spacing of the walls as The vertical walls 11,w, velocity components, u = a*/az, w = L. -
Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt Number Average Nusselt Number: Nul = Convective
Jingwei Zhu http://jingweizhu.weebly.com/course-note.html Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Average Nusselt number: convective heat transfer ℎ퐿 Nu = = L conductive heat transfer 푘 where L is the characteristic length, k is the thermal conductivity of the fluid, h is the convective heat transfer coefficient of the fluid. Selection of the characteristic length should be in the direction of growth (or thickness) of the boundary layer; some examples of characteristic length are: the outer diameter of a cylinder in (external) cross flow (perpendicular to the cylinder axis), the length of a vertical plate undergoing natural convection, or the diameter of a sphere. For complex shapes, the length may be defined as the volume of the fluid body divided by the surface area. The thermal conductivity of the fluid is typically (but not always) evaluated at the film temperature, which for engineering purposes may be calculated as the mean-average of the bulk fluid temperature T∞ and wall surface temperature Tw. Local Nusselt number: hxx Nu = x k The length x is defined to be the distance from the surface boundary to the local point of interest. 2. Prandtl number The Prandtl number Pr is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity. That is, the Prandtl number is given as: viscous diffusion rate ν Cpμ Pr = = = thermal diffusion rate α k where: ν: kinematic viscosity, ν = μ/ρ, (SI units : m²/s) k α: thermal diffusivity, α = , (SI units : m²/s) ρCp μ: dynamic viscosity, (SI units : Pa ∗ s = N ∗ s/m²) W k: thermal conductivity, (SI units : ) m∗K J C : specific heat, (SI units : ) p kg∗K ρ: density, (SI units : kg/m³).